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Abstract

Few-shot classification aims at classifying categories of
a novel task by learning from just a few (typically, 1 to
5) labelled examples. An effective approach to few-shot
classification involves a prior model trained on a large-
sample base domain, which is then finetuned over the novel
few-shot task to yield generalizable representations. How-
ever, task-specific finetuning is prone to overfitting due to
the lack of enough training examples. To alleviate this is-
sue, we propose a new finetuning approach based on con-
trastive learning that reuses unlabelled examples from the
base domain in the form of distractors. Unlike the na-
ture of unlabelled data used in prior works, distractors be-
long to classes that do not overlap with the novel cate-
gories. We demonstrate for the first time that inclusion of
such distractors can significantly boost few-shot general-
ization. Our technical novelty includes a stochastic pair-
ing of examples sharing the same category in the few-shot
task and a weighting term that controls the relative influ-
ence of task-specific negatives and distractors. An impor-
tant aspect of our finetuning objective is that it is agnostic
to distractor labels and hence applicable to various base
domain settings. Compared to state-of-the-art approaches,
our method shows accuracy gains of up to 12% in cross-
domain and up to 5% in unsupervised prior-learning set-
tings. Our code is available at https://github.com/
quantacode/Contrastive-Finetuning.git

1. Introduction

The ability to learn from very few examples is innate to
human intelligence. In contrast, large amounts of labelled
examples are required by modern machine learning algo-
rithms to learn a new task. This limits their applicability
to domains where data is either expensive to annotate and
collect or simply inaccessible due to privacy concerns. To
overcome this limitation, few-shot classification has been
proposed as a generic framework for learning to classify
with very limited supervision [13, 33,36, 61]. Under this
paradigm, most approaches leverage prior knowledge from
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Figure 1: Classification of Kakapos vs. Honduran Emer-
alds with just few examples per class and many distrac-
tors: The idea is to leverage unlabelled data in the form
of distractors that need not be semantically related to the
classes in the few-shot task. The hope is that by pairing
distractors and task samples as negatives (bottom six red
boxes) and encouraging greater dissimilarity between such
pairs, image representations of the two classes, Kakapos
and Honduran Emeralds, will be pushed farther away. This
would ultimately lead to better classification.

a (labelled) base domain to solve a novel task by either
finetuning-based transfer [10, 66] or meta-learning [13, 17,
50,59, 61, 64,73]. In particular, when the base and novel
domains are related, the hope is that representations learnt
in the base domain can be generalized to novel tasks, thus
facilitating positive knowledge transfer.

While the above paradigm is effective for tasks that can
leverage large datasets like ImageNet [54] as the related
base domain, for others, such as rare species classifica-
tion [72] or medical image classification [74], acquiring
necessary prior knowledge can be exceedingly difficult due
to the absence of a related base domain with labelled data.
To relax such data requirements, recent techniques explore
alternative ways such as unsupervised learning [26, 30] or
cross-domain learning [1, 17, 46, 68] to obtain representa-
tions useful for novel tasks. In the absence of labelled base
data, approaches like [26,29,30] seek to benefit from self-
supervised representation learning over unlabelled data in a
related domain. In a more challenging scenario where re-
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lated base data is hard to obtain, cross-domain techniques
[11,66,68] exploit representations learnt in other domains
that do not have the same task characteristics as the novel
tasks.

Although the issue of learning a good prior representa-
tion remains a core focus in few-shot classification, it ad-
dresses only a part of the problem. In this work, we investi-
gate the other important aspect, i.e., effective finetuning spe-
cific to the novel task. Our main motivation comes from re-
cent findings [1,10, 18] that demonstrate the outperformance
of simple finetuning over more sophisticated prior learning
techniques such as meta-learning. Despite its effectiveness,
we suspect that finetuning might still suffer from overfitting
as a consequence of small training set in a few-shot task. To
alleviate this situation, we propose to leverage additional
unlabelled data exclusive to the task. Such datapoints are
referred to as distractors. For instance, in the case of clas-
sifying Honduran Emeralds and Kakapos (rare species of
birds), examples of butterflies, cars or ducks can serve as
distractors (Fig. 1). By the virtue of its task-exclusivity,
distractors can be obtained from various data-abundant do-
mains with categories that could be semantically unrelated
to novel task categories. However, in this work, we restrict
ourselves to just the base data as a source for distractors.
This allows us to efficiently reuse the data under standard
settings and directly compare with prior works.

To this end, we pose the imminent question — Can dis-
tractors improve few-shot generalization? The answer is,
somewhat surprisingly, yes. To elucidate how, we propose
ConFT, a simple finetuning method based on a contrastive
loss that contrasts pairs of the same class against those from
different classes. We show that with a few simple but cru-
cial modifications to the standard contrastive loss, distrac-
tors can be incorporated to boost generalization. We hy-
pothesize that in the absence of extensive in-domain su-
pervision for prior experience, distractor-aware finetuning
can yield non-trivial gains. Towards the design of the loss
function, we adopt an asymmetric construction of similar-
ity pairs to ensure that distractors contribute only through
different-class pairs. Our key insight here is two-fold — 1)
generalization in contrastive learning can be influenced by
not only same-class but also different-class pairs; 2) con-
struction of different-class pairs is extremely flexible in that
it can include samples from task-specific as well as task-
exclusive categories. As a test of generality, we study the
effect of our finetuning approach in conjunction with two
different prior learning setups, namely, cross-domain and
unsupervised prior learning. Our contributions are as fol-
lows.

* We propose contrastive finetuning, ConFT, a novel
finetuning method for transfer based few-shot classi-
fication.

* We show how distractors can be incorporated in a con-
trastive objective to improve few-shot generalization.

* The proposed method outperforms state-of-the-art ap-
proaches by up to 12 points in the cross-domain few-
shot learning and up to 5 points in unsupervised prior
learning settings.

2. Related Work
2.1. Few-Shot Classification

Modern algorithms for few-shot classification are pre-
dominantly based on meta-learning where the goal is to
quickly adapt to novel tasks. These approaches can be
broadly classified into three categories: initialization based
[13, 40, 41, 51, 55], hallucination based [2, 22, 75], and
metric-learning based [4,33,59,61,64,73] methods. Despite
the growing interest in sophisticated meta-learning tech-
niques, recent works [1, 7, 10, 66] have demonstrated that
even simple finetuning based transfer learning [15, 19, 34,
45,80] can outperform them. Such baselines usually involve
cross-entropy training over the base categories followed by
finetuning over a disjoint set of novel classes. Following
these results, we further the investigation of finetuning for
few-shot classification.

Cross-Domain Few-Shot Classification: A number of
recent works [1,12,18,42,44,56,68,69] have been proposed
to address the cross-domain setup where base and novel
classes are not only disjoint but also belong to different do-
mains. Interestingly, [7] demonstrated that in this setup too,
finetuning based transfer approaches outperformed popular
meta-learning methods by significant margins. Following
that, [68] proposed to learn feature-wise transformations via
meta-learning to improve few-shot generalization of metric-
based approaches. While in standard finetuning, the em-
bedding model is usually frozen to avoid overfitting, recent
works like [1, 18] have shown that frozen embeddings can
hinder few-shot generalization. In this work, we build upon
these developments to propose a more effective finetuning
method over the entire embedding model.

In the context of learning from heterogeneous domain,
[67] introduced a benchmark for multi-domain few-shot
classification. This benchmark has been adopted by some
recent works [8, 11,39,57]. While multiple base domains
can alleviate cross-domain learning, we test our approach
on a more challenging setup [68] that only involves a single
base domain. Recent works used [68] as a benchmark to
evaluate the importance of representation change [42] and
spatial contrastive learning [44] in cross-domain few-shot
classification. Another related work [69] leveraged unla-
belled data from the novel domain in addition to few-shot
labelled data to improve the task performance in a similar
benchmark [18]. In contrast to [69], we operate under a



limited access to novel domain data, i.e. only the few-shot
labelled data.

Unlabelled Data in Few-Shot Classification: Our use
of unlabelled data in the form of distractors is inspired from
cognitive neuroscience studies [38] describing the effect of
visual distractors on learning and memory. Prior works that
use additional unlabelled data for few-shot classification in-
clude [5,16,37,52,63,76]. Complementary to [5, 16,63] that
exploit unlabelled data via self-supervised objectives in the
prior learning phase, we use unlabelled data specifically for
task-specific finetuning. Nonetheless, combining both per-
spectives could yield further benefits and is left for future
work.

More related approaches [37, 52] combined heteroge-
neous unlabelled data, i.e., task-specific data and distrac-
tors, in a semi-supervised framework. Our distractor-aware
finetuning differs from these works in two important ways:
our few-shot classification is strictly inductive in that we do
not use unlabelled data specific to the task, and our method
leverages distractors instead of treating them as interfer-
ence that needs to be masked out. The most relevant meth-
ods [1, 15], like us, reused the base (or source) domain as a
source for additional data. The key difference, however, is
that their success relies on effective alignment of the base
and novel classes, whereas we benefit from contrasting the
two. While the importance of distractor-aware learning has
been investigated in the context of object detection [47,82],
their benefit to few-shot generalization has not been studied
before.

Recently, [26,29,30] have studied few-shot classification
in the context of unsupervised prior-learning where the base
data is unlabelled. In this work, we evaluate the benefit of
contrastive finetuning under this setting and and compare it
to existing methods.

2.2. Contrastive Learning

Contrastive learning yields a similarity distribution over
data by comparing pairs of different samples [60]. Recently,
contrastive learning [20, 21, 58, 62] based methods have
emerged as the state of the art for supervised [28, 31, 78]
and self-supervised [6,23,25,27, 65,70, 79] representation
learning. While the supervised approaches primarily ex-
ploit ground-truth labels to construct same-class pairs, self-
supervised techniques leverage domain knowledge in the
form of data augmentation to generate such pairs. As a spe-
cial case, [31] maximized the benefit by integrating both
forms of contrastive losses into a single objective. In this
work, we use a modified version of the supervised con-
trastive loss when more than one labelled example is avail-
able per category. However, in the extreme case of 1-
shot classification, it switches to self-supervised contrastive
learning. Recent works such as [11,44] also explored con-
trastive learning in the context of few-shot classification.

While they use contrastive objectives at the prior-learning
stage to learn a general-purpose representation solely on
the base domain, our method uses a contrastive objective
at finetuning to improve the downstream-task-specific rep-
resentation directly on the target domain task with base do-
main data as distractors. As a design choice, we adopt the
contrastive loss over other losses like cross-entropy since it
allows us to leverage distractor data that does not belong to
the novel categories but improves generalization.

3. Our Approach

To achieve the goal of few-shot generalization, our con-
trastive finetuning method, ConFT, optimizes for two simul-
taneous objectives. First, it aims to bring task-specific sam-
ples that share the same class close to each other; and sec-
ond, it strives to push apart samples that belong to different
classes. This two-fold objective can lead to compact clus-
ters that are well separated amongst each other. In the fol-
lowing sections, we first introduce some notations that we
then use to formally describe our approach. An overview of
our method is presented in Fig. 2.

3.1. Preliminaries

Consider an input space X and a categorical label set
Y = {c1,...,cn} where each of the M classes is rep-
resented via one-hot encoding. A representation space
R C R" of the input is defined by the composition of an
augmentation function A : X — X and a representation
model My : X — R, parameterized by 6. The augmen-
tation function is a composition of standard image transfor-
mations such as random cropping, color jittering, horizontal
flipping efc. Given a small number K, a few-shot classifica-
tion task 7 can be defined as the collection of a support set,
Toupp = (@i, Yi)| s € X, ys € Y, 1 € Lgypp} With K exam-
ples per class, and a query set, 7, = {Z;| Z; € X,j € I;}
sampled from the same (but unobserved) classes. Here,
Iupp and I are the collection of indices for the support and
query sets, respectively. The few-shot classification goal is
to leverage the support set to obtain a classifier for the query
samples. In this case, the classifier is constructed over the
representation model obtained via contrastive finetuning of
a prior model, Mg, over Typp.

3.2. The ConFT Objective

A key component of the ConFT objective is that it in-
cludes unlabelled samples, distractors, to improve few-shot
generalization. Formally, a distractor set, Sy = {z;|z; €
X,i € Iy}, drawn from a domain D : X x YVp together
with the task-specific support set Tgpp, constitutes the train-
ing data for few-shot learning. Here, the distractor class
set Vp is assumed to be task-exclusive, Yp N'Y = 0.
Starting with a support set example ¢ (a.k.a anchor), we
first construct an anchor-negative index set, N (i) = {p €
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Figure 2: Contrastive Finetuning in Cross-Domain Few-Shot Learning: Our contrastive finetuning approach to few-
shot classification comprises of two stages: 1) The prior learning stage trains a representation model on labelled (under
cross-domain settings) base data using a cross-entropy loss; 2) The pretrained representation model is then finetuned over
task-specific samples as well as distractors using a contrastive loss. For each task sample z;, the contrastive objective (right)
maximizes a similarity score, sim, over same-class pairs while minimizing it over other pair types. In the absence of enough
labelled examples, distractors can improve classification by pushing apart task-specific clusters (here, different classes of

birds).

Iupp| ¥i # Yp}, and an anchor-positive index set P(7) such
that y, = v;,Vp € P(i). Samples indexed by N(i) are
treated as negatives within the task, whereas those indexed
by I4 act as negatives exclusive to the task. Finally, we
define our contrastive loss that uses a ls-normalized repre-
sentation z € R" as follows

1 1

Leont(0) = — - log l;,,
Ol ft( ) |Isupp| ez[: ‘P(Z)| Z g lip
€ Lsupp pEP(i)
Zi*Zp
L eXp(T)
P () T Y (BRI 4 Y exp()
neN (i) d€ly

D

where v is a temperature hyper-parameter. The finetuning
objective is simply the minimization of Lo to yield opti-
mal parameters 6, specific to task 7. To classify the query
samples, we construct a nearest-mean classifier [12,48, 60]
atop the updated representation My_. The class-specific
weight vectors are computed as an average over the repre-
sentations of K support examples pertaining to that class.
The j™ query sample is then assigned to the class whose
weight vector has the largest cosine similarity (and hence,
nearest in the Euclidean sense) with the query representa-
tion. We use the accuracy of this classifier to compare vari-
ous baselines in the experiment section.

Construction of Anchor-Positive Set P(i): To con-
struct an anchor-positive set, we randomly pair task-

samples belonging to the same class with no sample occur-
ring in more than one pair. In each pair, if one is assigned to
be the anchor, the other acts as its positive. As an example,
in a b-way 4-shot task, our stochastic pair construction will
result in 10 pairs where each of the 5 classes has 2 pairs.
In the case when the number of shots is odd, we omit one
sample from each class to allow even pairing. The omission
is, however, not an issue in the overall scheme of finetun-
ing where multiple steps of gradient descent optimization
ensures that eventually each sample gets to participate with
equal chance. In the special case 1-shot learning, anchor-
positive sets are constructed similar to [6] using augmenta-
tion A.

3.3. Relative Importance of Anchor-Negatives

Given the loss formulation of (1), both task-specific
(few-shot) and task-exclusive (distractor) anchor-negatives
influence the loss proportionate to their respective batch
sizes. While the batch size of task-specific negatives N (7)
is upper bounded by the number of ways M and the num-
ber of shots K, the batch size of distractors can be made as
large as that of the domain itself, i.e., | D|. In standard con-
trastive learning paradigms with only task-specific and no
task-exclusive training examples, large batch sizes of neg-
atives are known to be beneficial for downstream task per-
formance. However, in our case where both types of neg-
atives exist, naively increasing distractor batch size can be



counterproductive (shown in the supplementary). We sus-
pect that too many distractors might overshadow the effect
of task-specific negatives that can be more crucial for gener-
alization. Also, the effect might vary according to the prox-
imity of distractors with respect to task samples in the rep-
resentation space. Nonetheless, there is a need to balance
the undue influence of distractors by adjusting the batch
sizes. To avoid an extensive search for an optimal batch
size specific to the distractor domain, we propose a domain-
agnostic weighting scheme for the anchor-negatives propor-
tional to their batch sizes as follows

lip =

exp(222)
eXp(Zi"YZP) + Z eXp(Z'i"YZn) + (2 _ Oé) Z eXp(z,’-ym
neN (i) dely
2)
_ | L
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We found that this simple weighting scheme makes the few-
shot performance robust to batch size variations and also
improves the overall performance (see the supplementary).

4. Prior Learning and Distractors

Thus far we have assumed the access to a distractor set,
Sg and a prior model My. In this section, we describe
how to obtain them and how distractors boost generaliza-
tion. Recall that our goal is to achieve few-shot general-
ization by finetuning a prior model over the few-shot task.
However, due to the scarcity of task-specific labelled exam-
ples, a reasonably strong prior encoded in the model param-
eters 0 is crucial for preventing overfitting, especially when
using high-capacity models like neural networks. We next
describe two different ways of learning such a prior that can
serve as a good initialization for subsequent finetuning.

4.1. Types of Prior Learning

Cross-Domain Learning: In the cross-domain setup,
we are provided a labelled dataset, D; = {(x;,y;)|z; €

X, Yi € ysc}L’jg' drawn from a source domain Xy, X Vi,
such that the categorical label set ). is disjoint from novel
categories ). The key characteristic of this setup is that the
distribution of M-way K-shot tasks, if constructed out of
D;, will be significantly different from novel tasks in the
target domain. Such distribution shift could arise due to
difference in task granularity (e.g., coarse-grained vs. fine-
grained) or shift in input distribution or both. In this work,
we consider the case where the shift in task granularity is
notably more than the input distribution. Towards the goal
of learning a reasonably strong prior, we adopt a simple
objective that minimizes cross-entropy loss over all cate-
gories in D;. During finetuning, the distractors are sampled

from Dy, thus, naturally satisfying the non-overlapping cat-

egories assumption with respect to novel tasks.
Unsupervised Prior Learning: For unsupervised

prior learning, we are given an unlabelled dataset, D, =

{v;} ‘l’j; | drawn from a source domain X X Yeu, such that
the corresponding labels in ), are unobserved. While there
are no explicit assumptions about the task distribution gap
in this setting, the strength of the learnt prior is likely to
be more reasonable when the distribution gap is small. To
learn a suitable prior using D,,, we use the SimCLR loss
[6] as a form of self-supervised objective. Our choice of
this objective over others [23] was based on its superior
performance found in our preliminary experiments. Pri-
ors learnt via self-supervised contrastive objectives on large
base datasets (like, ImageNet) have been shown to trans-
fer well to many-shot downstream tasks. In this work we
show that such objectives are effective even with smaller
base datasets and few-shot downstream tasks. In our exper-
iments, priors learnt in this way already outperform state-of-
the-art approaches [26,29,30] that are then further improved
by our proposed contrastive finetuning. In this setup, we
use D,, as the source for distractors where the assumption
of non-overlapping categories is satisfied with high proba-
bility, provided the base dataset is relatively large and en-
capsulates a wide variety of categorical concepts.

4.2. Distractor-Aware Generalization

The most important and perhaps surprising aspect of our
method is that distractors, despite being drawn from unre-
lated (to novel task) categories, can improve generalization.
To understand the underlying mechanism, we propose to
measure the change in quality of task-specific representa-
tion before and after finetuning. Particularly, given a few-
shot task with M classes, we define the subset of query
samples, IS C I, that share the same class' and two other
quantities — cluster spread ugpread and cluster-separation ul,,
that measure the degree of clustering in the representation
space. Specifically,

—_
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where 0; are the parameters of the representation model af-
ter ¢ finetuning epochs. For each of the above quantities,

Note that the query class labels are considered only for analysis pur-
poses. In practice, they are not observed.



we define the change, 61(t) = ul(0;) — ul(6y), and rel-
by

)
ative change, 65"%(t) = KZéz)) where, the subscript can be

sep or spread and division by a fixed value, k() ensures
scale invariance. Finally, to quantify generalization within a
given target domain, we define the average relative change,
I [6=9(¢)] over a large number of tasks sampled from that
domain. The average relative change can also be defined for
support examples by simply swapping superscript ‘q’ with
‘s”. Also, in practice, we use ug, (o) as the fixed value for
k(6p) irrespective of the superscript or subscript.

4.3. A Multitask Variant of ConFT

While our original objective (2) is agnostic to distractor
supervision, finetuning in the cross-domain setting can fur-
ther benefit from distractor labels. To that end, we introduce
an auxiliary loss Ly during finetuning that minimizes the
cross-entropy between predicted probabilities and one-hot
encodings of the ground-truth label averaged over the base
data, D;. This leads to a new multitask formulation

Eml—conft = £confl + )\Emtcea (5)

where we fix the relative weighting factor A = 1 in our
experiments and use a cosine classifier [7] for Lpee. We
found that this simple extension led to significant perfor-
mance gains in some domains while marginal in others, de-
pending on domain characteristics.

5. Experiments

Following sections first introduce some baselines (§5.1)
and present our main results for contrastive finetuning in
the cross-domain setup (§5.2). Then, §5.3 elucidates the
generalization mechanism of ConFT followed by ablations
in §5.4. Finally, §5.5 demonstrates the performance of our
approach in the unsupervised prior learning setup.

Datasets and Benchmarks: We evaluate our proposed
finetuning method in a variety of novel domains spanning
across two different paradigms for prior learning. For cross-
domain evaluations, we adopt the benchmark introduced by
[68] that comprises of Cars [35], CUB [77], Places [81], and
Plantae [72] as the novel domains and minilmageNet [50] as
the base domain. Each dataset is split into train, val and, test
categories (please refer to the supplementary for details),
where tasks sampled from the test split are used to evaluate
the few-shot performance in respective domains. We use
the val splits for cross-validating the hyperparameters and
the train split of minilmageNet as our base data. For ex-
periments in unsupervised prior learning, we use the same
train split of minilmageNet to learn a self-supervised repre-
sentation that is then evaluated for few-shot performance on
minilmageNet-test. We present additional results on Meta-
Dataset [67] in the supplementary.

Backbone (Representation Model): Following best
practices in cross-domain few-shot learning, we adopt a
ResNet10 [24] model for most of our experiments. In the
unsupervised learning case, we use a four-layer CNN con-
sistent with existing works except for a reduced filter size
from 64 to 20 in the final layer. This modification was found
to improve contrastive finetuning performance.

Optimization and Hyperparameters: In this work, we
evaluate few-shot performance over 5-way 1-shot and 5-
way b-shot tasks with 15 query samples, irrespective of
the prior learning setup. For the contrastive finetuning,
we use an ADAM [32] optimizer with a suitable learning
rate and early-stopping criteria. Our proposed method has
a few hyperparameters such as the temperature (y), learn-
ing rate, early-stopping criteria, and data augmentation (.A).
However, recent studies [43] have highlighted that exces-
sive hyperparameter tuning on large validation sets can lead
to overoptimistic results in limited-labelled data settings
like semi-supervised learning. Thus, we keep an extremely
small budget for hyperparameter tuning. Among the men-
tioned hyperparameter, the one with the most number of
parameters is the augmentation function A. In this work,
we do not tune A to any specific target domain. Instead, we
use a fixed augmentation scheme introduced by [7] for the
cross-domain setting and AutoAugment [9] for the unsuper-
vised prior learning case. Please refer to the supplementary
for a detailed summary of hyperparameters used in our ex-
periments.

5.1. Baseline Comparisons

We begin our evaluations by comparing various base-
lines for finetuning in Table 1. These include two simple
baselines (introduced in [7]) and two strong baselines (in-
troduced in [18]). While the simple baselines freeze the
backbones, the others allow finetuning over the entire em-
bedding model. Another key difference is that the sim-
ple baselines are evaluated using standard linear evalua-
tion [6, 7], whereas the rest are evaluated using nearest-
mean classifiers. We compare the performance of all these
baselines to our vanilla and multi-task (MT) versions of
ConFT. Following previous works, the learning rates for
the simple baselines are kept at 0.01, whereas for others
(including ours), we use smaller learning rates (0.005 or
0.0005). We observe that among the baselines, the cosine
classifier based baseline, FT-all (CC), outperforms the lin-
ear classifier based FT-all (LC). However, both versions of
our finetuning approach significantly outperform all base-
lines across various dataset and shot settings.

5.2. ConFT for Cross-Domain Prior Learning

In this section, we present our main results on cross-
domain few-shot learning (see Table 2). We compare our
approach with various prior works on the LFT benchmark



Finetuning Method CUB Cars Places Plantae

Loss FT Type 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot
Cross-Entropy fixed-BB (LC) [7] 39.77 £ 0.66 51.33 £0.70 33.99 £ 0.64 44.14 £ 0.70 4453 £0.75 55.94 £ 0.69 37.07 £ 0.70 46.58 £ 0.69
fixed-BB (CC) [7] 4326 £ 0.76 62.87 £ 0.74 2533+ 1.85 50.40 £ 0.74 4770 £ 0.76 69.48 £ 0.69 40.49 £ 0.77 56.64 £ 0.72
FT-all (LC) [18] 40.81 £ 0.75 61.82 £ 0.72 34.50 £ 0.67 55.63 £0.75 4591 £ 0.77 68.73 £ 0.73 37.51 £ 0.71 58.33 £ 0.68
FT-all (CC) [18] 44.30 £ 0.73 67.05 £ 0.69 36.79 &+ 0.76 57.65 £ 0.76 49.10 £ 0.78 70.32 £ 0.72 40.31 £ 0.76 61.30 £ 0.75
Contrastive - 43.42 £0.75 62.80 £ 0.76 35.19 £ 0.66 51.41 £0.72 49.56 £ 0.80 70.71 £ 0.68 40.39 £ 0.79 55.54 £ 0.69
ConFT (ours) 45.57 £ 0.76 70.53 £ 0.75 39.11 £ 0.77 61.53 £0.75 49.97 £ 0.86 72.09 £ 0.68 43.09 £ 0.78 62.54 £ 0.76
MT-ConFT (ours) 49.25 + 0.83 74.45 £ 0.71 37.36 £ 0.69 62.54 £ 0.72 49.94 £ 0.81 72.71 £ 0.69 41.82 £0.75 63.01 £ 0.74

Table 1: Baseline Comparisons. Results on 1-shot and 5-shot tasks on the LFT benchmark [68]. These results are obtained
by averaging over 600 novel tasks, each consisting of 5 classes and 15 queries per class. We also present 95% confidence
intervals. The train split of the minilmageNet dataset is used as base data. Here, FT-all denotes the case where the entire
embedding model is finetuned. Other abbreviations — BB: Backbone model (ResNet-10), LC: Linear Classifier, CC: Cosine

Classifier with a multiplication factor of 10.

Method 1-shot
Prior Learning Task Specific Finetuning Backbone CUB Cars Places Plantae
AAL [1] arcmax ResNetl8 47.25 +£0.76 - - -
MN [73] - ResNet10 35.89 £ 0.51 30.77 £ 0.47 49.86 4+ 0.79 32.70 £ 0.60
MN w/ featTx [68] - ResNet10 36.61 £ 0.53 29.82 £ 0.44 51.07 £ 0.68 34.48 £+ 0.50
RN [64] - ResNet10 4244 +0.77 29.11 £ 0.60 48.64 +0.85 33.17 £ 0.64
RN w/ featTx [68] - ResNet10 44.07 £ 0.77 28.63 £+ 0.59 50.68 + 0.87 33.14 £ 0.62
GNN [59] - ResNet10+  45.69 4 0.68 31.79 £ 0.51 53.10 £ 0.80 35.60 £ 0.56
GNN w/ featTx [68] - ResNetl0+  47.47 4+ 0.75 31.61 £ 0.53 55.77 + 0.79 35.95 £+ 0.58
MAML [13] - Conv4 40.51 4+ 0.08 33.57 £ 0.14 - -
ANIL [49] - Conv4 41.12 £0.15 3477 + 0.31 - -
BOIL [42] - Conv4 44.20 £ 0.15 36.12 £+ 0.29 - -
CE Training - ResNet10 4342 +0.75 35.19 £ 0.66 49.56 £+ 0.80 40.39 +£0.79
CE Training ConFT (ours) ResNetl10 45.57 £ 0.76 39.11 £+ 0.77 49.97 + 0.86 43.09 + 0.78
CE Training MT-ConFT (ours) ResNet10 49.25 + 0.83 37.36 + 0.69 49.94 4+ 0.81 41.82 +£0.75
Method 5-shot
Prior Learning Task Specific Finetuning Backbone CUB Cars Places Plantae
Baseline [7] - ResNet18 65.5740.70
Baseline ++ [7] - ResNet18 62.04+0.76
DiversityNCoop [12] - ResNet18 66.1740.55 - - -
AAL [1] arcmax ResNet18 72.37 £ 0.89 - - -
BOIL [42] - ResNet12 - 4971 +0.28 - -
MN [73] - ResNet10 51.37 £ 0.77 38.99 + 0.64 63.16 £ 0.77 46.53 £+ 0.68
MN w/ featTx [68] - ResNet10 5523 £0.83 41.24 £+ 0.65 64.55 £ 0.75 41.69 4 0.63
RN [64] - ResNet10 57.77 £ 0.69 37.33 £+ 0.68 63.32 £ 0.76 44.00 £ 0.60
RN w/ featTx [68] - ResNet10 59.46 £ 0.71 39.91 £ 0.69 66.28 £+ 0.72 45.08 £+ 0.59
GNN [59] [59] - ResNet10+ 62.25 £ 0.65 4428 £+ 0.63 70.84 £ 0.65 52.53 £0.59
GNN w/ featTx [68] - ResNet10+ 66.98 £ 0.68 4490 £ 0.64 73.94 £ 0.67 53.85 £ 0.62
MAML [13] - Conv4 53.09 £ 0.16 44.56 £ 0.21 - -
ANIL [49] - Conv4 55.82 £0.21 46.55 £ 0.29 - -
BOIL [42] - Conv4 60.92 £ 0.11 50.64 £ 0.22 - -
CE Training - ResNet10 62.80 £ 0.76 51.41 £0.72 70.71 4 0.68 55.54 £ 0.69
CE Training ConFT (ours) ResNet10 70.53 £ 0.75 61.53 £0.75 72.09 £ 0.68 62.54 £ 0.76
CE Training MT-ConFT (ours) ResNet10 74.45 £+ 0.71 62.54 + 0.72 72.71 £ 0.69 63.01 + 0.74)

Table 2: Cross-Domain Few-Shot Classification Results. We present the results with 95% confidence intervals and high-
light the best performing methods. The results are an average over 600 tasks. Here, ‘-’ denotes numbers not reported by

previous works.

[68]. We observe that overall our proposed approaches,
ConFT and MT-ConFT, significantly outperform the best
previous results in Cars (by 3 to 12 points), Plantae (by
7 to 9 points) and CUB (by 1.7 to 2 points) domains. We
also observe higher gains in the 5-shot setting than the 1-
shot case, since more labelled examples can improve few-
shot generalization. Further, we find that using the auxiliary
loss (MT-ConFT) is more beneficial in the 5-shot case. In
fact, it performs worse than ConFT in the 1-shot cases for
Cars, Places, and Plantae. Such a degradation could be due
to a misalignment between the self-supervised objective (to

which ConFT boils down in the 1-shot case) and the aux-
iliary cross-entropy loss. In the Places domain, “GNN w/
featTx” yields the best performance, whereas our approach
outperforms the rest for the 5-shot case. We suspect that
the use of a more sophisticated model in“GNN w/ featTx”,
namely, graph neural net [59] built on top of a ResNet-10
model, leads to a better cross-domain generalization when
the domain gap is smaller.
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Figure 3: Understanding Generalization in ConFT.
Top: Average relative change in cluster-spread and cluster-
separation of support and query samples as a function of
finetuning epochs. Bottom: Comparing the average rela-
tive change in cluster-spread and cluster-separation of only
query samples under the presence and absence of distrac-
tors. The spread and separation quantities are averaged over
600 tasks for both fop and bottom.

5.3. Effect of Distractors on Generalization

In this section, we investigate the central question — How
do distractors improve generalization? We present two sets
of plots in Figure 3 that track the change in cluster-spread
and cluster-separation as the finetuning progresses. In the

first set, we plot the average relative change, E[0%5,.,q4(t)]

and [0 (t)] (see §4.2) as a function of finetuning epochs,
t for both support and query samples in 2 different set-
tings, namely, CUB (5-shot) and Cars (5-shot). We observe
that for support examples (yellow lines), cluster-spread de-
creases with increasing epochs while the cluster-separation
increases. This is indeed what is expected for training
datapoints (here, support examples) and serves as a san-
ity check. For query samples (green plot), on the other
hand, both cluster-spread and separation increase with the
progress in finetuning epochs. The key observation, how-
ever, is that cluster-separation increases to a much greater
extent than the cluster-spread, thus improving overall dis-
criminability between classes represented by these clusters.
While the increase in cluster-separation hints towards the
possible reason behind improved generalization, it is not
clear how much of the improvement, if any, is a conse-
quence of incorporating distractors. To delineate the effects
of distractors from the contrastive loss itself, we present
the second set of plots that compare the average relative
change in query cluster spread and separation under the
presence (red line) and absence (blue line) of distractors
for the same data settings. We observe that with increas-

Anchor-Positives Anchor-Negatives Accuracy
SPC T-Pos T-Neg D-Neg W CUB, 5-shot Cars, 5-shot
v v v v 69.6140.68 61.0140.74
v v 70.16+0.70 57.4210.80
v v 67.4440.71 59.0040.73
v v v 70.2640.68 60.5840.77
v v v v 70.53+0.75 61.5310.75

Table 3: Ablation 1. Novel task performance with various
types of anchor-positives and anchor-negatives. Here, SPC:
Stochastic Pair Construction, T: Task, D: Distractor, W: rel-
ative weighting.

Distractor Domain Size Accuracy
512 1024 2048 38400 | CUB 5-shot Cars 5-shot
v 7034 +£0.71  61.16 £0.76
v 70.28 £0.70 61.11 £0.77
v 7092 +£0.69 61.31+0.76
v 70.53 £ 0.75 61.53 £0.75

Table 4: Ablation 2. Novel task performance with vary-
ing sizes of the distractor domain, i.e., minilmageNet-train.
Note that this is different from distractor batch size | Sg|.

ing finetuning epochs the gap between cluster-separation
and cluster-spread widens to a larger extent in the presence
of distractors than in their absence. This leads to our con-
clusion that distractors help generalization by increasing
task-specific cluster separation.

5.4. Ablations

In this section, we introduce a few important ablations
that help deconstruct the ConFT and MT-ConFT objec-
tives. In Table 3, we compare our stochastic anchor-positive
construction with naive inclusion of all positives for every
anchor. We also, ablate the contribution of each type of
anchor-negatives: task-specific and distractors and compare
that to relative weighting of the two. In Table 4, we stud-
ied the importance of distractor domain size and found that
novel task performance is fairly robust to the size of the dis-
tractor domain. This is particularly encouraging since we
need not store the entire base data during finetuning.

5.5. ConFT for Unsupervised Prior Learning

In Table 5, we demonstrate the generality of contrastive
finetuning by evaluating on the unsupervised prior learning
benchmark minilmageNet. The key distinction from cross-
domain settings is that we do not have labelled base data
to learn from. So, we leverage self-supervised contrastive
learning [6] on the unlabelled base data and show that it
outperforms state of the art by 1 to 2 points. Finetuning
the resultant representation with our ConFT objective fur-
ther improves the accuracy by 2to 4 points. This is particu-
larly significant, as the results come very close to supervised
baselines that serve as performance upper bound in this set-



Method 5-way minilmageNet

Prior Learning Finetuning BB 1-shot 5-shot
SLIp. MML MFT Conv4 46.81i0_77 62.13i0_72
Sup. PN - Conv4 46.5640.76 62.2940.71
- RandInit Conv4 27.5940.59 38.48410.66
BG-MML [26] MFT Conv4 36.2440.74 51.2840.6
BG-PN [26] - Conv4 36.6240.70 50.1640.7
DC-MML [26] MFT Conv4 39.90+0.74 53.97+0.70
DC-PN [26] - Conv4 39.1840.71 53.36+0.70
U-MML [29] MFT Conv4 39.93 50.73
LG-MML [30] MFT Conv4 40.1940.58 54.5640.55
LG-PN [30] - Conv4 40.05+0.60 52.5340.51
SimCLR [6] - Conv4 41.5440.61 56.57+0.59
SimCLR ConFT Conv4  43.45410.60 60.0240.57

Table 5: Unsupervised Prior Learning. The results are
averaged over 1000 novel tasks and are presented with 95%
confidence intervals. Here, MFT refers to meta-style fin-
tuning [13]. MML:Maml, PN: ProtoNet, DC: DeepCluster,
U: Umtra, LG: Lasium-Gan, BG: BiGAN, Sup.:Supervised,
BB: Backbone.

ting [30].

6. Conclusion

We introduce a novel contrastive finetuning approach to
few-shot classification. Specifically, our method leverages
distractors to improve generalization by encouraging clus-
ter separation of the novel task samples. We show that our
method leads to significant performance gains in both cross-
domain and unsupervised prior learning setups.
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A. Overview of ConFT

Algorithm | provides an overview of our distractor-
aware contrastive finetuning approach ConFT.

B. Additional Experimental Details

B.1. Data Domains

Problem Setup
(Prior Learning) Domain Dataset # categories per split
train  val test

Base minilmageNet 64 16 20
Novel CUB 100 50 50

Cross-Domain Novel Cars 98 49 49
Novel Places 183 91 91
Novel Plantae 100 50 50
Base

Unsupervised and minilmageNet 64 16 20
Novel

Table 6: Dataset statistics for both cross-domain [68] and
unsupervised prior learning settings [26]. Each dataset
is split into train, val, and test categories. For the cross-
domain setup, the frain split of minilmageNet is always
used as the base domain whereas the fest splits of other
datasets are used as the novel domain on which few-shot
evaluation is performed. For the unsupervised prior learn-
ing setup, train split of minilmageNet is stripped off its la-
bels to emulate an unlabelled base domain, whereas the test
split is used as the novel domain. In both setups, val splits
are used to cross-validate hyperparameters specific to the
associated novel domain.

In the main paper, we evaluated our finetuning method
on various datasets that serve as base or novel domains in
cross-domain as well as unsupervised prior learning set-
tings. Here, in Table 6, we summarize the statistics of these
datasets along with their specific use as base or novel do-
main. Additionally, in Table 7, we visualize these domains,
both qualitatively and quantitatively, to provide a reference
to their relative proximity in the representation space. This
proximity provides a rough estimate of how related two do-
mains are and consequently, the degree of knowledge trans-
fer across domains for cross-domain few-shot classification.

For the qualitative visualization in Table 7, we use t-SNE
[71] to embed features of randomly sampled datapoints
from each domain onto a 2-dimensional space. These fea-
tures are obtained from the pretrained ResNet10 model (see
§B.2 for training details) and are used for our cross-domain
experiments. For quantitative visualization, we compute
Proxy A-distance [3,14], or PAD, between the base domain
(here, minilmageNet) and a novel domain as a measure of
their closeness in the representation space. To compute
PAD, we train a binary classifier over the same ResNet10

. Cars

Base Novel  Proximity
Domain Domain Rank PAD
Places 1 1.06
minilmageNet CUB 2 1.57
Plantae 3 1.76
Cars 4 1.86

Table 7: Qualitative and quantitative visualization of the
base and novel domains in the cross-domain benchmark
[68]. We use t-SNE to visualize the base and novel domains
in our cross-domain benchmark. The domain names are
presented in boxes with colors that match the correspond-
ing domains in the scatter plot. Here, “minilm” refers to
the minilmageNet domain. We also compute the Proxy A-
distance (PAD) [3,14] between the base domain and a novel
domain as a measure of their relatedness in the represen-
tation space. Smaller the PAD value, closer is the novel
domain to the base and hence, more related. The PAD val-
ues are also used to rank the novel domains according to
their proximity to the base domain with the closest domain
ranked the highest.

model used for t-SNE but with frozen embedding weights.
The classifier distinguishes between randomly drawn sam-
ples of the base and novel domains. Denoting € as the gen-
eralization error of this classifier, the PAD € [0, 2] is calcu-
lated as 2(1 — 2¢). Thus, a lower PAD value implies higher
generalization error which, in turn, signifies that the base
and novel domains are too similar to be distinguished well
enough. Finally, the PAD values are used to rank each novel
domain, such that the highest rank is assigned to the one
closest to the base domain i.e., minilmageNet. These ranks
correlate well with the t-SNE visualization as well. For in-
stance, CUB and Places, which are ranked higher than Cars
and Plantae, are also closer to minilmageNet in the t-SNE
plot.



Algorithm 1 Distractor-Aware Contrastive Finetuning

Input: Distractor Dataset (D), Prior Model (Mg, ), few-shot task (7), Number of Finetuning Epochs (J), Augmentation
Function (A), Temperature Coefficient (), Learning Rate (1)

Output: Finetuned Model Parameters (6,-)
1: shuffle D
2: forj< 1to Ji do

3: From D, randomly sample a fixed size batch Sy without replacement
4: Using A augment each support sample x;, Vi € Igpp
5 For each augmented support sample, define i) anchor-positive index set P(%); ii) anchor-negative index set N (i)

specific to 7; and iii) distractor index set [y

6: For all samples, compute z; = Hf?ﬁ’ where h = Mg (A(x;)), Vi € Iypp and h = Mg(x;), Vi € Iy
7 Evaluate Lconi () using the quantities computed in previous steps

8: Update model parameters 6 < 6 — nV Leons(6)

9: if j = |D| then

10 shuffle D

11: end if

12: end for

B.2. Prior Learning

As described in the main paper, we use a ResNetl0
model [24] as our prior embedding for cross-domain few-
shot classification. To avoid specialized hyperparameter
tuning while training the prior model, we simply use the
pretrained weights® made available by [68]. This model was
originally trained on all 64 categories of the minilmageNet
train split.

For the unsupervised prior learning, we train a modified
four-layer convolution neural network (CNN), using the re-
cently proposed self-supervised contrastive learning objec-
tive [6]. As proposed in [6], we use a 128-dimensional lin-
ear projection head on top of the CNN for better generaliz-
ability of learnt representations. We train the model with a
batch size of 512, temperature coefficient 0.1, and the same
augmentation scheme introduced in [6]. Further, we use
ADAM optimizer with initial learning rate of 1le — 3, and a
weight decay of le — 5.

B.3. Hyperparameter Details

Our proposed contrastive finetuning involves a few hy-
perparameters such as temperature, learning rate, early-
stopping criteria, distractor batch size, and data augmenta-
tion scheme. For early-stopping criteria, we set a predeter-
mined range of epochs up to which the pretrained embed-
ding model is finetuned. Here, one finetuning epoch refers
to one pass through all the samples of the few-shot task (ex-
clusive of distractors). The range of these epochs along with
other hyperparameters are summarized in Table § and Ta-
ble 9. Additionally, we also show the final hyperparameter
values used for finetuning in the cross-domain and unsuper-

Zhttps://github.com/hytseng0509/
CrossDomainFewShot

vised prior learning settings (the corresponding experiments
were reported in the main paper).

C. Additional Ablations
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Figure 4: Comparing the effect of distractor batch size,
| Sat|, on the weighted and unweighted versions of Lonf;.
The red and blue bars represent weighted and unweighted
versions of Lonft, Tespectively, where « represents the pa-
rameter used to relatively weigh task-specific and task-
exclusive (distractors) anchor-negative terms. For each
novel domain and shot setting per domain, we compare
the performance of two versions in terms of the classifica-
tion accuracy of unseen samples given a novel task at vari-
ous distractor batch sizes. These accuracies, as in all other
cross-domain experiments, are averaged over 600 randomly
chosen novel tasks.
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CUB Cars Places Plantae
Hyperparameter Range l-shot  5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot
learning rate {5e-4, 5e-3} 5e-3 5e-3  5e-3  S5e-3 Se-4  Se4  Se-3 5e-3
temperature, -y {0.05,0.1,0.5} 0.1 0.1 0.05 0.05 0.1 0.05 0.1 0.1
distractor batch size, | Sy {64, 128} 64 128 128 128 64 64 128 128

early stopping epoch {50, 100, 200, 300, 400} 100

100 400 300 200 50 100 100

Table 8: Hyperparameter details for ConFT with cross-domain prior learning. This table summarizes the range of
various hyperparameters used for finetuning. Additionally, we report the cross-validated values used for the cross-domain
prior learning setup. The input image resolution used in this setup is 224 x 224.

minilmageNet

Hyperparameter Range 1-shot  5-shot
learning rate {5e-4, 5e-3} Se-4  Se-4
temperature, y {0.05,0.1,0.5} 0.05 0.05
distractor batch size, | S| {64, 128} 64 64

early-stopping epoch {50, 100, 200, 300, 400, 500} 400 400

Table 9: Hyperparameter details for ConFT with unsu-
pervised prior learning. This table summarizes the range
of various hyperparameters used for finetuning. Addition-
ally, we report the cross-validated values used for the un-
supervised prior learning setup. The input image resolution
used in this setup is 84 x 84.

Similarity-Pair Construction Cars
1-shot 5-shot
Standard 37.09 £0.76  60.72 £ 0.74
Assymetric (ours) 39.11 £ 0.77 61.53 + 0.75

Table 10: Comparing our proposed assymetric construc-
tion of similarity pairs against standard construction:.
Results are shown for both 1-shot and 5-shot tasks sampled
from the Cars domain with minilmagenet as the base do-
main. These results are averaged over 600 random novel
tasks and are reported with (+) 95% confidence intervals.
Despite using more supervision in the form of distractor la-
bels, the standard pair construction under-performs our (dis-
tractor) label-agnostic asymmetric pair construction.

In this section we elucidate the importance of two modi-
fications introduced to the standard contrastive loss, namely,
asymmetric construction of similarity pairs and relative
weighting of anchor-negative terms.

C.1. Asymmetric Construction of Similarity Pairs

Our proposed finetuning approach is a general con-
trastive learning framework for incorporating additional un-
labelled data in the form of distractors. While construc-
tion of positive distractor pairs (that share the same class)
is difficult in the absence of distractor labels, constructing
anchor-negatives, with anchors being task-specific samples,
is much easier following the non-overlapping assumption
of task and distractor categories. This results in an asym-

metric construction of similarity pairs where distractors,
unlike task-specific samples, can meaningfully participate
only as anchor-negatives. In fact, this asymmetry is criti-
cal in the unsupervised prior learning setup, where distrac-
tors are sampled from an unlabelled base domain. In the
case of cross-domain prior learning, however, we have a
labelled base data as a source for distractors. To motivate
our asymmetric pair construction in this case, we compare
it to a standard construction that allows distractors to ad-
ditionally participate as anchor-positives. To form such an
anchor-positive, a distractor is paired with another distractor
sharing the same class. Here, anchor-negatives with respect
to a distractor include all the datapoints that do not share
the class with it. This includes samples from both the novel
few-shot task and other distractors. Overall, the resulting
form of the contrastive loss can be viewed as applying su-
pervised contrastive objective [31] (without augmentation-
based positives) to the union set of task samples and distrac-
tors within a training batch. In Table 10, we evaluate these
two types of pair constructions on the cross-domain setting,
minilmageNet — Cars. Interestingly enough, our formula-
tion of the contrastive loss with asymmetric pair construc-
tion yields superior performance despite using less supervi-
sion than the supervised contrastive loss.

C.2. Importance of Weighted Negatives

Another important component of our loss is the rel-
ative weighting parameter « that balances the effect of
task-specific and task-exclusive (distractor based) anchor-
negative terms. To validate the utility of such a weight-
ing scheme, we compare the weighted version of Long to
its unweighted version i.e., « = 1. Following the re-
sults for various novel domains and shot settings in Fig-
ure 4, we make the following observations. The weighted
loss (red bars) performance improves with larger distrac-
tor batch sizes in most cases (5 out of 8). The improve-
ment is more pronounced for domains like Cars and Plantae
that are farther away from the base dataset - minilmageNet
(see Table 7). For closer domains like CUB or Places, we
sometimes notice a sweet spot at batch size = 64. In con-
trast, the unweighted version (blue bars) experiences a per-
formance drop with increasing batch sizes, when the novel



domains are farther from the base domain. In other cases,
the trends are inconclusive. The most important observa-
tion, however, comes from comparing the two versions of
the loss. Specifically, the weighted version not only out-
performs the unweighted loss at higher batch sizes but also
results in the best performance in almost every setting. The
only exception is Places, 5-shot where the unweighted loss
yields the best performance. A possible explanation is as
follows: due to the similarity of Places (novel domain) and
minilmageNet (base domain) in the embedding space (see
Table 7), distractor samples from Places may serve as hard
negatives that are important for effective contrastive learn-
ing [53]. Thus, down-weighting their contribution at higher
batch sizes would degrade the final performance.

C.3. Data Augmentation

Augmentation CUB Cars
Task Samples  Distractors 5-shot 5-shot
69.90 £0.75 58.64 +0.88
70.53 £0.75 61.53£0.75

v -

Table 11: In this ablation we compare the few-shot perfor-
mance when a prior embedding is finetuned (using ConFT)
with or without augmentation to task-specific samples.
Note that, we never use augmentation for distractors in our
experiments.

Yet another important component of our contrastive fine-
tuning objective is the data augmentation function A. To
avoid extensive tuning of large hyperparameter space asso-
ciated with A, we adopt a fixed augmentation strategy intro-
duced in [7]. In Table 11, we show the benefit of using this
strategy to augment samples specific to the novel task. Fol-
lowing preliminary investigations, we found that augment-
ing distractors did not make much difference. Hence, we
never apply data augmentation to distractors in our experi-
ments.

C.4. Loss Type

In Table 12, we compare contrastive and cross-entropy
finetuning in conjunction with the auxiliary cross-entropy
objective (MT). While the two objectives yield similar per-
formance for the CUB case, contrastive finetuning outper-
forms cross-entropy loss based finetuning in Cars. These re-
sults show that the contrastive loss could be a better choice
for few-shot classification.

D. ConFT as a General Finetuning Approach

In Table 13, we validate the complementary effect of our
finetuning approach to a variety of prior learning schemes.
Specifically, we compare our simple cross-entropy objec-
tive with ProtoNet [61] and ProtoNet with auxiliary self-

Method CUB Cars

Prior Learning ~ Task Specific Finetuning 5-shot 5-shot

CE Training MT-ceFT (8 = 1) 7135 +0.70  58.97 £0.76
CE Training MT-ceFT (8 = 10) 7432 4+0.69  60.01 £ 0.74
CE Training MT-ConFT (8 = 1) 71.65 £0.74  61.25£0.70
CE Training MT-ConFT (8 = 10) 7445+ 0.71  62.54 +0.72

Table 12: Ablation. Cross-entropy/contrastive finetuning
with a multi-task (MT) cross entropy objective. Here, all
cross entropy objectives are based on cosine classifier with
a multiplying factor, 3

supervision [63]. Both of these approaches are based on
meta-learning, and were originally proposed for in-domain
few-shot classification where base and novel tasks follow
the same distribution. Nevertheless, the embeddings thus
learnt are readily applicable to cross-domain tasks as well.
For the auxiliary self-supervision, we use image rotation as
our pretext task. While previous work [63] has demon-
strated the improvement in in-domain few-shot general-
ization resulting from rotation based self-supervision, we
found that the improvement is marginal in our cross-domain
setting (see ProtoNet without finetuning vs. ProtoNet +
Rot. without finetuning in Table 13), except for when the
novel domain is Cars. To obtain these results, we use the
official implementation® of [63] with the same hyperparam-
eters (such as loss weighting term) but different backbone.
As our pretrained embedding, we trained a ProtoNet model
(with auxiliary self-supervision) based on ResNet10 [24] ar-
chitecture. Our main observation from Table 13 is as fol-
lows: while better prior learning objectives such as those
with auxiliary self-supervision can improve few-shot clas-
sification in the novel domains, finetuning with ConFT con-
sistently leads to large improvements over the prior embed-
dings.

E. Additional Comparison with Prior Work

In Table 14, we report additional comparison with a con-
current work SCL [44] that introduces attention-based spa-
tial contrastive objective in the prior-learning phase. For
a fair comparison to SCL, we adopt the same backbone
based on the ResNetl2 architecture which was originally
proposed in [66]. While the spatial contrastive objective
benefits from larger image resolution (224 x 224), we found
it significantly increases the time for finetuning in our case,
especially given the larger backbone. So, in this case,
we conduct our experiments with a smaller resolution of
84 x84 . Despite the drop in resolution, our finetuning based
approach over simple cross-entropy prior learning outper-
forms the more sophisticated SCL by significant margins
in CUB (7 points) and Cars (13 points). While we attain
similar performance in the case of Plantae, we underper-
form in Places domain. This gap can be understood as a

3https ://github.com/cvl-umass/fsl_ssl
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Method 5-shot

Prior Learning Task Specific Finetuning Backbone CUB Cars Places Plantae
ProtoNet [61] - ResNetl0  58.80+0.77 44.07+0.69 71.03+0.72 51.33 £0.72
ProtoNet [61] ConFT (ours) ResNetl0  66.63 + 0.69  59.27 £0.73 72.05+0.71 58.83 £ 0.76
ProtoNet + Rot. [63] - ResNetl0  58.68 £0.75 4648 £0.71 71.20+£0.75 51.93 £0.67
ProtoNet + Rot. [63] ConFT (ours) ResNetl0  66.75 +0.71 61.67 +£0.75 73.91+£0.70 60.38 £ 0.75
CE Training - ResNetl0 62.80+0.76 51.414+0.72 70.71 £0.68  55.54 &+ 0.69
CE Training ConFT (ours) ResNetl0 70.53 +0.75 61.53 +£0.75 72.09 £ 0.68 62.54 + 0.76

Table 13: Combining ConFT with different pretraining schemes for cross-domain prior learning. We present the
results for 5-way 5-shot tasks averaged over 600 such tasks with (£) 95% confidence intervals. The highlighted numbers
demonstrate that ConFT consistently improves the few-shot performance of prior embeddings across data domains.

Method 1-shot
Prior Learning  Task Specific Finetuning Backbone CUB Cars Places Plantae
SCL [44] - ResNet12  50.09 0.7 3493 +£06  60.32+0.8 4023+ 0.6
CE Training - ResNet12  50.00 +0.77 34.88£0.64 55.62+091 38.47+0.72
CE Training ConFT (ours) ResNet12 52.01 £0.82  39.54 £ 0.68 56.66 +0.85 40.90 + 0.73
Method 5-shot
Prior Learning  Task Specific Finetuning Backbone CUB Cars Places Plantae
SCL [44] - ResNetl2  68.81 £0.6 52224+0.7  76.51+ 0.6 59.91 £+ 0.6
CE Training - ResNetl2  69.75+0.73  49.92+£0.74 73.79 £0.67 54.66 +0.77
CE Training ConFT (ours) ResNet12  76.49 +0.63 64.87 £0.70 7422 +0.71 59.23 +0.77

Table 14: Additional Prior Work Comparison. SCL introduces a novel attention-based spatial contrastive objective for
prior learning. While we employ a much simpler cross-entropy objective for prior learning (see CE training without ConFT),
finetuning the prior embedding with ConFT outperforms SCL significantly in two (CUB and Cars) out of four domains. Our
approach yields competitive results for Plantae as well. Further, due to the complementary nature of finetuning, the best
performance might be achieved by combining SCL with our ConFT.

consequence of a stronger SCL based prior embedding for
minilmageNet and greater similarity of the minilmageNet
domain to Places as opposed to other novel domains (see
Table 7). Nonetheless, our finetuning is complimentary to
SCL, and hence we suspect that the best performance could
be achieved by combining it with our ConFT.

F. Meta-Dataset Results

In this section, we present the results of our ConFT ap-
proach on Meta-Dataset (see Table 15). Here, we use an off-
the-shelf ResNet18 model* pretrained on ImageNet-train-
split of Meta-Dataset using just cross-entropy objective. In
order to maintain consistency with pretraining, our finetun-
ing operates at a small image resolution of 84 x 84. In this
experiments, we keep most of the hyperparameters fixed
across all datasets. In particular, we use a temperature of
0.1, a distractor batch size of 128, and a learning rate of
5e — 5. The early stopping epoch is cross-validated using
the meta-validation splits of respective datasets. We obe-
serve that our approach outperforms the state of the art in
7 out of 10 datasets and sometimes by a significant margin.

4https://qithub.com/peymanbateni/simplefcnaps

This is despite the fact that our input resolution is much
smaller compared to 224 x 224 in the state of the art and
our approach does not benefit from a tansductive setting.
Finally, our results reinforce the superiority of simple fine-
tuning over more complex meta-learning frameworks (e.g.
cross-attention based) even when the domain gap is large.
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Method Target Datasets
ILSVRC Omni Aircraft Birds DTD
PN [11] 41874089  61.33+1.13  39.4010.78 65.57+0.73 99.06+0.60
CTX [11] 91.7040.90 84.244079 62294073 79.381054 65861058
CTX+SC [11] 51.291080 86.141074 69.74:067 74851062  63.844062
CTX+SC+Aug [11] 52.5640.86 87.534+0.61 64.28 1 0.71 73.274+0.63 64.7240.63
ConFT (OHTS) 72.07i0_71 98~22i0.17 68.44i0.70 74-93i0.67 63-11i0.70
Method Target Dataset
QDraw Fungi Flower Sign COCO
PN [11] 47861080 41641100 83881045 44841088 Al.14d10g0
CTX [11] 63.3610.73 49.4310098  92.744029 68.31i0.71 48.63+0.79
CTX+SC [11] 64115067 48871001  93.001030  70.621068  48.45103
CTX+SC+Aug [l l] 66.90i0_65 48.22i0_94 93~23i0.28 78-45i0.60 56.61i0_78
ConFT (ours) 80.02:‘:0.6 50-]—6:I:0.80 94-52:I:0.29 88.22:|:0_59 70.73:|:0_79

Table 15: Meta-Dataset Results (5-shot). Cross-domain results of our distractor-aware contrastive finetuning (ConFT) on
transfer from ImageNet-only are presented here. The accuracies are averaged over 600 evaluation tasks with 95% confidence

intervals. PN: Prototypical Net, SC: SimCLR Episodes.



