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Abstract

We introduce Mixture-based Feature Space Learning
(MixtFSL) for obtaining a rich and robust feature representa-
tion in the context of few-shot image classification. Previous
works have proposed to model each base class either with
a single point or with a mixture model by relying on offline
clustering algorithms. In contrast, we propose to model
base classes with mixture models by simultaneously train-
ing the feature extractor and learning the mixture model
parameters in an online manner. This results in a richer
and more discriminative feature space which can be em-
ployed to classify novel examples from very few samples.
Two main stages are proposed to train the MixtFSL model.
First, the multimodal mixtures for each base class and the
feature extractor parameters are learned using a combina-
tion of two loss functions. Second, the resulting network and
mixture models are progressively refined through a leader-
follower learning procedure, which uses the current estimate
as a “target” network. This target network is used to make
a consistent assignment of instances to mixture components,
which increases performance and stabilizes training. The
effectiveness of our end-to-end feature space learning ap-
proach is demonstrated with extensive experiments on four
standard datasets and four backbones. Notably, we demon-
strate that when we combine our robust representation with
recent alignment-based approaches, we achieve new state-
of-the-art results in the inductive setting, with an absolute
accuracy for 5-shot classification of 82.45% on miniIma-
geNet, 88.20% with tieredImageNet, and 60.70% in FC100
using the ResNet-12 backbone.

1. Introduction
The goal of few-shot image classification is to transfer

knowledge gained on a set of “base” categories, containing a
large number of training examples, to a set of distinct “novel”
classes having very few examples [16, 47]. A hallmark of
successful approaches [18, 64, 73] is their ability to learn
rich and robust feature representations from base training
images, which can generalize to novel samples.

A common assumption in few-shot learning is that classes
can be represented with unimodal models. For example, Pro-
totypical Networks [64] (“ProtoNet” henceforth) assumed
each base class can be represented with a single prototype.
Others, favoring standard transfer learning [1, 8, 24], use a
classification layer which push each training sample towards
a single vector. While this strategy has successfully been
employed in “typical” image classification (e.g., ImageNet
challenge [58]), it is somewhat counterbalanced because the
learner is regularized by using validation examples that be-
long to the same training classes. Alas, this solution does not
transfer to few-shot classification since the base, validation,
and novel classes are disjoint. Indeed, Allen et al. [2] showed
that relying on that unimodal assumption limits adaptability
in few-shot image classification and is prone to underfitting
from a data representation perspective.

To alleviate this limitation, Infinite Mixture Prototypes [2]
(IMP) extends ProtoNet by representing each class with mul-
tiple centroids. This is accomplished by employing an of-
fline clustering (extension of DP-means [36]) where the non-
learnable centroids are recomputed at each iteration. This
approach however suffers from two main downsides. First,
it does not allow capturing the global distribution of base
classes since a small subset of the base samples are clustered
at any one time—clustering over all base samples at each
training iteration would be prohibitively expensive. Second,
relying on DP-means in an offline, post hoc manner implies
that feature learning and clustering are done independently.

In this paper, we propose “Mixture-based Feature Space
Learning” (MixtFSL) to learn a multimodal representation
for the base classes using a mixture of trainable components—
learned vectors that are iteratively refined during training.
The key idea is to learn both the representation (feature
space) and the mixture model jointly in an online manner,
which effectively unites these two tasks by allowing the gra-
dient to flow between them. This results in a discriminative
representation, which in turn yields superior performance
when training on the novel classes from few examples.

We propose a two-stage approach to train our MixtFSL.
In the first stage, the mixture components are initialized by
the combination of two losses that ensure that: 1) samples
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(a) without MixtFSL (b) our MixtFSL

Figure 1. t-SNE [44] visualization of a single base class embedding
(circles) (a) without, and (b) with our MixtFSL approach. MixtFSL
learns a representation for base samples (circles) and associated
mixture learned components (diamonds) that clusters a class into
several modes (different colors). This more flexible representa-
tion helps in training robust classifiers from few samples in the
novel domain compared to the monolithic representation of (a).
Embeddings are extracted from a miniImageNet with a ResNet-18.

are assigned to their nearest mixture component; while 2)
enforcing components of a same class mixture to be far
enough from each other, to prevent them from collapsing to a
single point. In the second stage, the learnable mixture model
is progressively refined through a leader-follower scheme,
which uses the current estimate of the learner as a fixed
“target” network, updated only on a few occasions during that
phase, and a progressively declining temperature strategy.
Our experiments demonstrate that this improves performance
and stabilizes the training. During training, the number of
components in the learned mixture model is automatically
adjusted from data. The resulting representation is flexible
and better adapts to the multi-modal nature of images (fig. 1),
which results in improved performance on the novel classes.

Our contributions are as follows. We introduce the idea
of MixtFSL for few-shot image classification, which learns a
flexible representation by modeling base classes as a mixture
of learnable components. We present a robust two-stage
scheme for training such a model. The training is done end-
to-end in a fully differentiable fashion, without the need for
an offline clustering method. We demonstrate, through an
extensive experiments on four standard datasets and using
four backbones, that our MixtFSL outperforms the state
of the art in most of the cases tested. We show that our
approach is flexible and can leverage other improvements in
the literature (we experiment with associative alignment [1]
and ODE [82]) to further boost performance. Finally, we
show that our approach does not suffer from forgetting (the
base classes).

2. Related work

Few-shot learning is now applied to problems such as
image-to-image translation [76], object detection [14, 50],

video classification [6], and 3D shape segmentation [75].
This paper instead focuses on the image classification prob-
lem [18, 64, 73], so the remainder of the discussion will
focus on relevant works in this area. In addition, unlike
transductive inference methods [4, 12, 30, 32, 33, 43, 90, 52]
which uses the structural information of the entire novel set,
our research focuses on inductive inference research area.

Meta learning In meta learning [12, 18, 55, 59, 63, 64,
65, 72, 79, 83], approaches imitate the few-shot scenario by
repeatedly sampling similar scenarios (episodes) from the
base classes during the pre-training phase. Here, distance-
based approaches [3, 21, 34, 39, 40, 49, 64, 67, 70, 73, 80,
84, 87] aim at transferring the reduced intra-class variation
from base to novel classes, while initialization-based ap-
proaches [18, 19, 35] are designed to carry the best starting
model configuration for novel class training. Our MixtFSL
benefits from the best of both worlds, by reducing the within-
class distance with the learnable mixture component and
increasing the adaptivity of the network obtained after initial
training by representing each class with mixture components.

Standard transfer learning Batch form training makes
use of a standard transfer learning modus operandi instead of
episodic training. Although batch learning with a naive opti-
mization criteria is prone to overfitting, several recent stud-
ies [1, 8, 24, 51, 69] have shown a metric-learning (margin-
based) criteria can offer good performance. For example,
Bin et al. [41] present a negative margin based feature space
learning. Our proposed MixtFSL also uses transfer learn-
ing but innovates by simultaneously clustering base class
features into multi-modal mixtures in an online manner.

Data augmentation Data augmentation [9, 10, 20, 23, 25,
27, 42, 45, 57, 60, 77, 78, 85, 86, 88] for few-shot image
classification aims at training a well-generalized algorithm.
Here, the data can be augmented using a generator function.
For example, [27] proposed Feature Hallucination (FH) us-
ing an auxiliary generator. Later, [77] extends FH to generate
new data using generative models. In contrast, our MixtFSL
does not generate any data and achieves state-of-the-art. [1]
makes use of “related base” samples in combination with an
alignment technique to improve performance. We demon-
strate (in sec. 6) that we can leverage this approach in our
framework since our contribution is orthogonal.

Mixture modeling Similar to classical mixture-based
works [17, 22] outside few-shot learning, infinite mixture
model [29] explores Bayesian methods [54, 81] to infer the
number of mixture components. Recently, IMP [2] relies
on the DP-means [36] algorithm which is computed inside
the episodic training loop in few-shot learning context. As
in [29], our MixtFSL automatically learns the number of
mixture components, but differs from [2] by learning the
mixture model simultaneously with representation learning
in an online manner, without the need for a separate, post
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Figure 2. Initial training stage. The network f(·|θ) embeds a batch
(left) from the base classes to feature space. A feature vector zi
(middle) belonging to the k-th class is assigned to the most similar
component u∗i in class mixture Pk ∈ P . Vectors are color-coded
by class. Here, two losses interact for representation learning: La

which maximizes the similarity between zi and u∗i ; and Ld keeps
zi close to the centroid ck of all mixture components for class k.
The backpropagated gradient is shown with red dashed lines. While
f(·|θ) is updated by Lit (eq. 5), P is updated by La only to prevent
collapsing of the components in Pk to a single point.

hoc clustering algorithm. From the learnable component
perspective, our MixtFSL is related to VQ-VAE [56, 71]
which learns quantized feature vectors for image generation,
and SwAV [7] for self-supervised learning. Here, we tackle
supervised few-shot learning by using mixture modeling to
increase the adaptivity of the learned representation. This
also contrasts with variational few-shot learning [34, 87],
which aims to reduce noise with variational estimates of the
distribution. Our MixtFSL is also related to MM-Net [5]
in that they both works store information during training.
Unlike MM-Net, which contains read/write controllers plus
a contextual learner to build an attention-based inference,
our MixtFSL aims at modeling the multi-modality of the
base classes with only a set of learned components.

3. Problem definition
In few-shot image classification, we assume there exists a

“base” set X b = {(xi, yi)}N
b

i=1, where xi ∈ RD and yi ∈ Yb
are respectively the i-th input image and its corresponding
class label. There is also a “novel” set Xn = {(xi, yi)}N

n

i=1,
where yi ∈ Yn, and a “validation” set X v = {(xi, yi)}N

v

i=1,
where yi ∈ Yv . None of these sets overlap and Nn � N b.

In this paper, we follow the standard transfer learning
training strategy (as in, for example, [1, 8]). A network
z = f(x|θ), parameterized by θ, is pre-trained to project
input image x to a feature vector z ∈ RM using the base
categoriesX b, validated onX v . The key idea behind our pro-
posed MixtFSL model is to simultaneously train a learnable
mixture model, along with f(·|θ), in order to capture the dis-
tribution of each base class inX b. This mixture is guiding the
representation learning for a better handling of multimodal
class distributions, while allowing to extract information on
the base class components that can be useful to stabilize the

Algorithm 1: Initial training.
Data: feature extractor f(·|θ), mixture P , base dataset

X b, validation dataset X v , maximum epoch α0,
patience α1, and error evaluation function E(·)

Result: Model f(·|θbest) and mixture Pbest learned
θbest ← θ; Pbest ← P ; t← 0; s← 0
while s < α0 and t < α1 do

for (xi, yi) ∈ X b do
Evaluate zi ← f(xi|θ), and u∗i by eq. 2
Update weights θ and mixture P with Lit (eq. 5);

end
Evaluate f(·|θ) on X v with episodic training
if E(θ,P|X v) < E(θbest,Pbest|X v) then

θbest ← θ; Pbest ← P ; t← 0
else

t← t+ 1
end
s← s+ 1

end

training. We denote the mixture model across all base classes
as the set P = {(Pk, yk)}N

b

k=1, where each Pk = {uj}N
k

j=1

is the set of all Nk components uj ∈ RM assigned to the
k-th base class. After training on the base categories, fine-
tuning the classifier on the novel samples is very simple
and follows [8]: the weights θ are fixed, and a single linear
classification layer W is trained as in c(·|W) ≡W>f(·|θ),
followed by softmax. The key observation is that the mixture
model, trained only on the base classes, makes the learned
feature space more discriminative—only a simple classifica-
tion layer can thus be trained on the novel classes.

4. Mixture-based Feature Space Learning
Training our MixtFSL on the base classes is done in two

main stages: initial training and progressive following.

4.1. Initial training

The initial training of the feature extractor f(·|θ) and the
learnable mixture model P from the base class set X b is
detailed in algorithm 1 and illustrated in fig. 2. In this stage,
model parameters are updated using two losses: the “assign-
ment” loss La, which updates both the feature extractor and
the mixture model such that feature vectors are assigned to
their nearest mixture component; and the “diversity” loss Ld,
which updates the feature extractor to diversify the selection
of components for a given class. Let us define the following
angular margin-based softmax function [11], modified with
a temperature variable τ :

pθ(vj |zi,P) = (1)

ecos((∠(zi,uj)+m))/τ

ecos((∠(zi,uj)+m))/τ +
∑

ul∈{P\uj}
ecos(∠(zi,ul))/τ

,



training time (epoch)

… … …

… … …

… …

Figure 3. Progressive following training stage. f(·|θ) is adapted
using loss functionLpf (eq. 7) and supervised by a fixed copy of the
best target model f(·|θ′) (in blue) and the corresponding mixture
P ′ after the initial training stage. The gradient (dashed red line)
is backpropagated only through f(·|θ) and P , while f(·|θ′) and
P ′ are kept fixed. The target network and mixture f(·|θ′) and P ′
are replaced by the best validated f(·|θ) and P after α3 number of
training steps with no improvement in validation. The temperature
factor τ (eq. 1) decreases each time the target network is updated
to create progressively more discriminative clusters.

where, m is a margin; vj is the pseudo-label associated to
uj ; and, ∠(zi,uj) = arccos

(
z>i ui/(||zi||||uj ||)

)
1.

Given a training image xi from base class yi = k and
its associated feature vector zi = f(xi|θ), the closest com-
ponent u∗i is found amongst all elements of mixture Pk
associated to the same class according to cosine similarity:

u∗i = argmax
uj∈Pk

zi · uj
‖zi‖‖uj‖

, (2)

where · denotes the dot product. Based on this, the “assign-
ment” loss function La updates both f(·|θ) and P such that
zi is assigned to its most similar component u∗i :

La = − 1

N

N∑
i=1

log pθ(v
∗
i |zi,P) , (3)

where N is the batch size and v∗i is the one-hot pseudo-
label corresponding to u∗i . The gradient of eq. 3 is back-
propagated to both f(·|θ) and the learned components P .

As verified later (sec. 5.3), training solely on the as-
signment loss La generally results in a single component
ui ∈ Pk to be assigned to all training instances for class
k, thereby effectively degrading the learned mixtures to a
single mode. We compensate for this by adding a second
loss function to encourage a diversity of components to be
selected by enforcing f(·|θ) to push the zi values towards
the centroid of the components corresponding to their asso-
ciated labels yi. For the centroid ck = (1/|Pk|)

∑
uj∈Pk

uj

for base class k, and the set C = {ck}N
b

k=1 of the centroids

1As per [11], we avoid computing the arccos (which is undefined outside
the [−1, 1] interval) and directly compute the cos(∠(zi,uj) +m).

Algorithm 2: Progressive following.
Data: pre-trained f(·|θ), pre-trained P , base set X b,

validation set X v , patience α2, number of
repetitions α3, temperature τ , decreasing ratio γ,
and error evaluation function E(·)

Result: Refined model f(·|θbest) and mixture Pbest

θ′ ← θ; P ′ ← P ; θbest ← θ; Pbest ← P ; s← 0
for t = 1, 2, . . . , α3 do

while s < α2 do
for (xi,yi) ∈ X b do

Evaluate zi ← f(xi|θ′) , and u∗i
′ by eq. 6

Update weights θ and mixture P by
backward error propagation from Lpf (eq. 7)

end
if E(θ,P|X v) < E(θbest,Pbest|X v) then

θbest ← θ; Pbest ← P ; s← 0
else

s← s+ 1
end

end
Update target θ′ ← θbest and mixture P ′ ← Pbest

Decrease temperature τ of eq. 1 as τ ← γτ
end

for base classes, we define the diversity loss as:

Ld = − 1

N

N∑
i=1

log pθ(yi|zi, sg[C]) , (4)

where sg stands for stopgradient, which blocks backpropa-
gation over the variables it protects. The sg operator in eq. 4
prevents the collapsing of all components of the k-th class
Pk into a single point. Overall, the loss in this initial stage
is the combination of eqs 3 and 4:

Lit = La + Ld . (5)

4.2. Progressive following

After the initial training of the feature extractor f(·|θ) and
mixture P , an intense competition is likely to arise for the
assignment of the nearest components to each instance zi.
To illustrate this, suppose u̇ is assigned to z at iteration t. At
the following iteration t+1, the simultaneous weight update
to both f(·|θ) and P could cause another ü, in the vicinity
of u̇ and z, to be assigned as the nearest component of z.
Given the margin-based softmax (eq. 1), z is pulled toward
u̇ and pushed away from ü at iteration t, and contradictorily
steered in the opposite direction at the following iteration.
As a result, this “pull-push” behavior stalls the improvement
of f(·|θ), preventing it from making further progress.

To tackle this problem, we propose a progressive follow-
ing stage that aim to break the complex dynamic of simul-
taneously determining nearest components while training



the representation f(·|θ) and mixture P . The approach is
detailed in algorithm 2 and shown in fig. 3. Using the “prime”
notation (θ′ and P ′ to specify the best feature extractor pa-
rameters and mixture component so far, resp.), the approach
starts by taking a copy of f(·|θ′) and P ′, and by using them
to determine the nearest component of each training instance:

u∗i
′ = argmax

u′
j∈P′

k

z′i · u′j
‖z′i‖‖u′j‖

, (6)

where z′i = f(xi|θ′). Since determining the labels does not
depend on the learned parameters θ anymore, consistency in
the assignment of nearest components is preserved, and the
“push-pull” problem mentioned above is eliminated.

Since label assignments are fixed, the diversity loss (eq. 4)
is not needed anymore. Therefore, we can reformulate the
progressive assignment loss function as:

Lpf = −
1

N

N∑
i=1

log pθ(v
∗
i
′|zi,P) , (7)

whereN is the batch size and v∗i
′ the pseudo-label associated

to the nearest component u∗i
′ found by eq. 6.

After α2 updates to the representation with no decrease of
the validation set error (function E(·) in algorithms 1 and 2),
the best network f(·|θ′) and mixture P ′ are then replaced
with the new best ones found on validation set, the temper-
ature τ is decreased by a factor γ < 1 to push the z more
steeply towards their closest mixture component, and the
entire procedure is repeated as shown in algorithm 2. After a
maximum number of α3 iterations is reached, the global best
possible model θbest and mixture Pbest are obtained. Compo-
nents that have no base class samples associated (i.e. never
selected by eq. 6) are simply discarded. This effectively
adapts the mixture models to each base class distribution.

In summary, the progressive following aims at solving
the discussed pull-push behavior observed (see sec. 5.3).
This stage applies a similar approach than in initial stage,
with two significant differences: 1) the diversity loss Ld is
removed; and 2) label assignments are provided by a copy
of the best model so far f(·|θ′) to stabilize the training.

5. Experimental validation
The following section presents the experimental vali-

dations of our novel mixture-based feature space learning
(MixtFSL). We begin by introducing the datasets, backbones
and implementation details. We then present experiments on
object recognition, fine-grained and cross-domain classifica-
tion. Finally, an ablative analysis is presented to evaluate the
impact of decisions made in the design of MixtFSL.

5.1. Datasets and implementation details

Datasets Object recognition is evaluated using the mini-
ImageNet [73] and tieredImageNet [57], which are subsets

Table 1. Evaluation on miniImageNet in 5-way. Bold/blue is
best/second, and± is the 95% confidence intervals in 600 episodes.

Method Backbone 1-shot 5-shot

ProtoNet [64] Conv4 49.42± 0.78 68.20± 0.66

MAML [19] Conv4 48.07± 1.75 63.15± 0.91

RelationNet [67] Conv4 50.44± 0.82 65.32± 0.70

Baseline++ [8] Conv4 48.24± 0.75 66.43± 0.63

IMP [2] Conv4 49.60± 0.80 68.10± 0.80

MemoryNetwork [5] Conv4 53.37± 0.48 66.97± 0.35

Arcmax [1] Conv4 51.90±0.79 69.07± 0.59

Neg-Margin [41] Conv4 52.84±0.76 70.41±0.66

MixtFSL (ours) Conv4 52.82±0.63 70.67±0.57

DNS [62] RN-12 62.64±0.66 78.83±0.45

Var.FSL [87] RN-12 61.23±0.26 77.69±0.17

MTL [66] RN-12 61.20±1.80 75.50±0.80

SNAIL [46] RN-12 55.71±0.99 68.88±0.92

AdaResNet [48] RN-12 56.88±0.62 71.94±0.57

TADAM [49] RN-12 58.50±0.30 76.70±0.30

MetaOptNet [37] RN-12 62.64±0.61 78.63±0.46

Simple [69] RN-12 62.02±0.63 79.64±0.44

TapNet [83] RN-12 61.65±0.15 76.36±0.10

Neg-Margin [41] RN-12 63.85±0.76 81.57±0.56

MixtFSL (ours) RN-12 63.98±0.79 82.04±0.49

MAML‡ [18] RN-18 49.61±0.92 65.72±0.77

RelationNet‡ [67] RN-18 52.48±0.86 69.83±0.68

MatchingNet‡ [73] RN-18 52.91±0.88 68.88±0.69

ProtoNet‡ [64] RN-18 54.16±0.82 73.68±0.65

Arcmax [1] RN-18 58.70±0.82 77.72±0.51

Neg-Margin [41] RN-18 59.02±0.81 78.80±0.54

MixtFSL (ours) RN-18 60.11±0.73 77.76±0.58

Act. to Param. [53] RN-50 59.60±0.41 73.74±0.19

SIB-inductive§[31] WRN 60.12 78.17
SIB+IFSL [68] WRN 63.14±3.02 80.05±1.88

LEO [59] WRN 61.76±0.08 77.59±0.12

wDAE [25] WRN 61.07±0.15 76.75±0.11

CC+rot [23] WRN 62.93±0.45 79.87±0.33

Robust dist++ [13] WRN 63.28±0.62 81.17±0.43

Arcmax [1] WRN 62.68±0.76 80.54±0.50

Neg-Margin [41] WRN 61.72±0.90 81.79±0.49

MixtFSL (ours) WRN 64.31±0.79 81.66±0.60

‡taken from [8] §confidence interval not provided

of the ILSVRC-12 dataset [58]. miniImageNet contains
64/16/20 base/validation/novel classes respectively with
600 examples per class, and tieredImageNet [57] contains
351/97/160 base/validation/novel classes. For fine-grained
classification, we employ CUB-200-2011 (CUB) [74] which
contains 100/50/50 base/validation/novel classes. For cross-
domain, we train on the base and validation classes of mini-
ImageNet, and evaluate on the novel classes of CUB.



Table 2. Evaluation on tieredImageNet and FC100 in 5-way clas-
sification. Bold/blue is best/second best, and ± indicates the 95%
confidence intervals over 600 episodes.

Method Backbone 1-shot 5-shot

tie
re

dI
m

ag
eN

et

DNS [62] RN-12 66.22±0.75 82.79±0.48

MetaOptNet [37] RN-12 65.99±0.72 81.56±0.53

Simple [69] RN-12 69.74±0.72 84.41±0.55

TapNet [83] RN-12 63.08±0.15 80.26±0.12

Arcmax∗ [1] RN-12 68.02±0.61 83.99±0.62

MixtFSL (ours) RN-12 70.97±1.03 86.16±0.67

Arcmax [1] RN-18 65.08±0.19 83.67±0.51

ProtoNet [64] RN-18 61.23±0.77 80.00±0.55

MixtFSL (ours) RN-18 68.61±0.91 84.08±0.55

FC
10

0

TADAM [49] RN-12 40.1± 0.40 56.1± 0.40

MetaOptNet [37] RN-12 41.1± 0.60 55.5± 0.60

ProtoNet† [64] RN-12 37.5± 0.60 52.5± 0.60

MTL [66] RN-12 43.6± 1.80 55.4± 0.90

MixtFSL (ours) RN-12 44.89±0.63 60.70±0.67

Arcmax [1] RN-18 40.84± 0.71 57.02± 0.63

MixtFSL (ours) RN-18 41.50±0.67 58.39±0.62

∗our implementation †taken from [37]

Backbones and implementation details We conduct ex-
periments using four different backbones: 1) Conv4, 2)
ResNet-18 [28], 3) ResNet-12 [28], and 4) 28-layer Wide-
ResNet (“WRN”) [61]. We used Adam [49] and SGD with
a learning rate of 10−3 to train Conv4 and ResNets and
WRN, respectively. In SGD case, we used Nesterov with
an initial rate of 0.001, and the weight decay is fixed as
5e-4 and momentum as 0.9. In all cases, batch size is fixed
to 128. The starting temperature variable τ and margin m
(eq. 1 in sec. 4) were found using the validation set (see supp.
material). Components in P are initialized with Xavier uni-
form [26] (gain = 1), and their number Nk = 15 (sec. 3),
except for tieredImageNet where Nk = 5 since there is a
much larger number of bases classes (351). A temperature
factor of γ = 0.8 is used in the progressive following stage.
The early stopping thresholds of algorithms 1 and 2 are set
to α0 = 400, α1 = 20, α2 = 15 and α3 = 3.

5.2. Mixture-based feature space evaluations

We first evaluate our proposed MixtFSL model on all four
datasets using a variety of backbones.
miniImageNet Table 1 compares our MixtFSL with sev-
eral recent method on miniImageNet, with four backbones.
MixtFSL provides accuracy improvements in all but three
cases. In the most of these exceptions, the method with best
accuracy is Neg-Margin [41], which is explored in more
details in sec. 5.3. Of note, MixtFSL outperforms IMP [2]
(sec. 1 and 2) by 3.22% and 2.57% on 1- and 5-shot respec-

Table 3. Fine-grained and on cross-domain from miniImageNet
to CUB evaluation in 5-way using ResNet-18. Bold/blue is
best/second, and± is the 95% confidence intervals on 600 episodes.

CUB miniIN−→CUB
Method 1-shot 5-shot 5-shot

GNN-LFT� [70] 51.51±0.8 73.11±0.7 –
Robust-20 [13] 58.67±0.7 75.62±0.5 –
RelationNet‡ [67] 67.59±1.0 82.75±0.6 57.71±0.7

MAML‡ [18] 68.42±1.0 83.47±0.6 51.34±0.7

ProtoNet‡ [64] 71.88±0.9 86.64±0.5 62.02±0.7

Baseline++ [8] 67.02±0.9 83.58±0.5 64.38±0.9

Arcmax [1] 71.37±0.9 85.74±0.5 64.93±1.0

Neg-Margin [41] 72.66±0.9 89.40±0.4 67.03±0.8

MixtFSL (ours) 73.94±1.1 86.01±0.5 68.77±0.9

‡taken from [68] �backbone is ResNet-10

(a) without Ld (b) Ld without sg (c) Ld with sg
Figure 4. t-SNE of mixture components (RN-12, miniImageNet).

tively, thereby validating the impact of jointly learning the
feature representation together with the mixture model.
tieredImageNet and FC100 Table 2 presents similar
comparisons, this time on tieredImageNet and FC100. On
both datasets and in both 1- and 5-shot scenarios, our method
yields state-of-the-art results. In particular, MixtFSL results
in classification gains of 3.53% over Arcmax [1] in 1-shot
using RN-18, and 1.75% over Simple [69] in 5-shot using
ResNet-12 for tieredImageNet, and 1.29% and 4.60% over
MTL [66] for FC100 in 1- and 5-shot, respectively.
CUB Table 3 evaluates our approach on CUB, both for
fine-grained classification in 1- and 5-shot, and in cross-
domain from miniImageNet to CUB for 5-shot using the
ResNet-18. Here, previous work [41] outperforms MixtFSL
in the 5-shot scenario. We hypothesize this is due to the
fact that either CUB classes are more unimodal than mini-
ImageNet or that less examples per-class are in the dataset,
which could be mitigated with self-supervised methods.

5.3. Ablative analysis

Here, we perform ablative experiments to evaluate the
impact of two design decisions in our approach.
Initial training vs progressive following Fig. 4 illus-
trates the impact of loss functions qualitatively. Using only
La causes a single component to dominate while the others
are pushed far away (big clump in fig. 4a) and is equivalent
to the baseline (table 4, rows 1–2). Adding Ld without the sg
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Figure 5. t-SNE [44] visualization of the learned feature embedding
(circles) and mixture components (diamonds), after the (a) initial
training and (b) progressive following stages. Results are obtained
with the ResNet-12 and points are color-coded by base class.

Table 4. Validation set accuracy of miniImageNet on 150 epochs.
RN-12 RN-18

Method 1-shot 5-shot 1-shot 5-shot

Baseline 56.55 72.68 55.38 72.81
Only La 56.52 72.78 55.55 72.67
Init. tr. (La + Ld) 57.88 73.94 56.18 69.43
Prog. fol. (La + Ld + Lpf ) 58.60 76.09 57.91 73.00

operator minimizes the distance between the zi’s to the cen-
troids, resulting in the collapse of all components in Pk into
a single point (fig. 4b). sg prevents the components (through
their centroids) from being updated (fig. 4c), which results
in improved performance in the novel domain (t. 4, row 3).
Finally, Lpf further improves performance while bringing
stability to the training (t. 4, row 4). Beside, Fig. 5 presents
a t-SNE [44] visualization of base examples and their associ-
ated mixture components. Compared to initial training, the
network at the end of progressive following stage results in
an informative feature space with the separated base classes.
Diversity loss Ld Fig. 6 presents the impact of our di-
versity loss Ld (eq. 4) by showing the number of remain-
ing components after optimization (recall from sec. 4.2 that
components assigned to no base sample are discarded after
training). Without Ld (fig. 6a), most classes are represented
by a single component. Activating Ld results in a large num-
ber of components having non-zero base samples, thereby
results in the desired mixture modeling (fig. 6b).
Margin in eq. 1 As in [1] and [41], our loss function
(eq. 1) uses a margin-based softmax function modulated
by a temperature variable τ . In particular, [41] suggested
that a negative margin m < 0 improves accuracy. Here,
we evaluate the impact of the margin m, and demonstrate
in table 5 that MixtFSL does not appear to be significantly
affected by its sign.

6. Extensions
We present extensions of our approach that make use of

two recent works: the associative alignment of Afrasiyabi et
al. [1], and Ordinary Differential Equation (ODE) of Xu et
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Figure 6. Number of remaining components after training for each
of the miniImageNet base classes (a) without and (b) with the
diversity loss Ld (eq. 4) using ResNet-12 and ResNet-18. The loss
is critical to model the multimodality of base classes.

Table 5. Margin ablation using miniImageNet in 5-way classifi-
cation. Bold/blue is best/second best, and ± indicates the 95%
confidence intervals over 600 episodes.

Method Backbone 1-shot 5-shot

MixtFSL-Neg-Margin RN-12 63.98±0.79 82.04±0.49

MixtFSL-Pos-Margin RN-12 63.57±0.00 81.70±0.49

MixtFSL-Neg-Margin RN-18 60.11±0.73 77.76±0.58

MixtFSL-Pos-Margin RN-18 59.71±0.76 77.59±0.58

Table 6. Comparison of our MixtFSL with alignment (MixtFSL-
Align) in 5-way classification. Here, bold is the best performance.

Method Backbone 1-shot 5-shot

m
in

iI
N

Cent. Align.∗ [1] RN-12 63.44±0.67 80.96±0.61

MixtFSL-Align. (ours) RN-12 64.38±0.73 82.45±0.62

Cent. Align.∗ [1] RN-18 59.85±0.67 80.62±0.72

MixtFSL-Align. (ours) RN-18 60.44±1.02 81.76±0.74

tie
re

dI
N

Cent. Align.∗ [1] RN-12 71.08±0.93 86.32±0.66

MixtFSL-Align. (ours) RN-12 71.83±0.99 88.20±0.55

Cent. Align.∗ [1] RN-18 69.18±0.86 85.97±0.51

MixtFSL-Align. (ours) RN-18 69.82±0.81 85.57±0.60
∗ our implementation

al. [82]. In both cases, employing their strategies within our
framework yields further improvements, demonstrating the
flexibility of our MixtFSL.

6.1. Associative alignment [1]

Two changes are necessary to adapt our MixtFSL to ex-
ploit the “centroid alignment” of Afrasiyabi et al. [1]. First,
we employ the learned mixture model P to find the related
base classes. This is both faster and more robust than [1] who
rely on the base samples themselves. Second, they used a
classification layer W in c(x|W) ≡W>f(x|θ) (followed
by softmax). Here, we use two heads (Wb and Wn), to
handle base and novel classes separately.



Evaluation We evaluate our adapted alignment algorithm
on the miniImageNet and tieredImageNet using the RN-18
and RN-12. Table 6 presents our MixtFSL and MixtFSL-
alignment (MixtFSL-Align.) compared to [1] for the 1- and
5-shot (5-way) classification problems. Employing MixtFSL
improves over the alignment method of [1] in all cases except
in 5-shot (RN-18) on tieredImageNet, which yields slightly
worse results. However, our MixtFSL results in gain up
to 1.49% on miniImageNet and 1.88% on tieredImageNet
(5-shot, RN-12). To ensure a fair comparison, we reimple-
mented the approach proposed in [1] using our framework.

Forgetting Aligning base and novel examples improves
classification accuracy, but may come at the cost of forgetting
the base classes. Here, we make a comparative evaluation of
this “remembering” capacity between our approach and that
of Afrasiyabi et al. [1]. To do so, we first reserve 25% of
the base examples from the dataset, and perform the entire
training on the remaining 75%. After alignment, we then go
back to the reserved classes and evaluate whether the trained
models can still classify them accurately. Table 7 presents
the results on miniImageNet. It appears that Afrasiyabi et
al. [1] suffers from catastrophic forgetting with a loss of
performance ranging from 22.1–33.5% in classification ac-
curacy. Our approach, in contrast, effectively remembers the
base classes with a loss of only 0.5%, approximately.

6.2. Combination with recent and concurrent works

Several recent and concurrent works [38, 89, 82, 15]
present methods which achieves competitive—or even
superior—performance to that of MixtFSL presented in ta-
ble 1. They achieve this through improvements in neural
network architectures: [38] adds a stack of 3 convolutional
layers as a pre-backbone to train other modules (SElayer,
CSEI and TSFM), [89] uses a pre-trained RN-12 to train a
“Cross Non-local Network”, and [15] adds an attention mod-
ule with 1.64M parameters to the RN-12 backbone. Xu et
al. [82] also modify the RN-12 and train an adapted Neu-
ral Ordinary Differential Equation (ODE), which consists
of a dynamic meta-filter and adaptive alignment modules.
The aim of the extra alignment module in [82] is to perform
channel-wise adjustment besides the spatial-level adaptation.
In contrast to these methods, we emphasize that as opposed
to these works, all MixtFSL results presented throughout the
paper have been obtained with standard backbones without
additional architectural changes.

Since this work focuses on representation learning, our ap-
proach is thus orthogonal—and can be combined—to other
methods which contain additional modules. To support this
point, table 8 combines MixtFSL with the ODE approach of
Xu et al. [82] (MixtFSL-ODE) and shows that the resulting
combination results in a gain of 0.85% and 1.48% over [82]
in 1- and 5-shot respectively.

Table 7. Evaluation of the capacity to remember base classes before
and after alignment. Evaluation performed on miniImageNet in
5-way image classification. Numbers in () indicate the change in
absolute classification accuracy compared to before alignment.

Method Backbone 1-shot 5-shot

[1] before align. RN-12 96.17 97.49
[1] after align. RN-12 65.47 (-30.7) 75.37 (-22.12)

ours before align. RN-12 96.83 98.06
ours after align. RN-12 96.27 (-0.6) 98.11 (+0.1)

[1] before align. RN-18 91.56 90.72
[1] after align. RN-18 58.02 (-33.5) 62.97 (-27.8)

ours before align. RN-18 97.46 98.16
ours after align. RN-18 97.20 (-0.3) 97.65 (-0.5)

Table 8. Combining MixtFSL with the ODE appraoch of Xu et
al. [82] (MixtFSL-ODE) in 5-way on miniImageNet using RN-12.

Method 1-shot 5-shot

ODE [82] 67.76±0.46 82.71±0.31

MixtFSL-ODE 68.61±0.73 84.19±0.44

7. Discussion

This paper presents the idea of Mixture-based Feature
Space Learning (MixtFSL) for improved representation
learning in few-shot image classification. It proposes to
simultaneously learn a feature extractor along with a per-
class mixture component in an online, two-phase fashion.
This results in a more discriminative feature representation
yielding to superior performance when applied to the few-
shot image classification scenario. Experiments demonstrate
that our approach achieves state-of-the-art results with no
ancillary data used. In addition, combining our MixtFSL
with [1] and [82] results in significant improvements over
the state of the art for inductive few-shot image classification.
A limitation of our MixtFSL is the use of a two-stage train-
ing, requiring a choreography of steps for achieving strong
results while possibly increasing training time. A future line
of work would be to revise it into a single stage training pro-
cedure to marry representation and mixture learning, with
stable instance assignment to components, hopefully giving
rise to a faster and simpler mixture model learning. Another
limitation is observed with small datasets where the within-
class diversity is low such that the need for mixtures is less
acute (cf. CUB dataset in fig. 3). Again, with a single-stage
training, dealing with such a unimodal dataset may be better,
allowing to activate multimodal mixtures only as required.
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Mixture-based Feature Space Learning for Few-shot Image Classification
Supplementary Material

In this supplementary material, the following items are provided:

1. Ablation on the number of components Nk in the mixture model P (sec. 8)

2. Dynamic of the training (sec. 9);

3. More ways ablation (sec. 10);

4. Ablation of the margin m (sec. 11);

5. Ablation of the temperature τ (sec. 12);

6. Visualization: from MixtFSL to MixtFSL-Alignment (sec. 13);



8. Ablation on the number of components Nk in the mixture model P
Although our proposed MixtFSL automatically infers the number of per-class mixture components from data, we also ablate the initial size of mixture

model Nk for each class to evaluate whether it has an impact on the final results. Table 9 presents 1- and 5-shot classification results on miniImageNet using
ResNet-12 and ResNet-18 by initializing Nk to 5, 10, 15, and 20 components per class.

Initializing Nk = 5 results in lower classification accuracy compared to the higher Nk . We think this is possible due to the insufficient capacity of
small mixture model P size. However, as long as Nk is sufficiently large (10, 15, 20), our approach is robust to this parameter and results do not change
significantly as a function of Nk . Note that Nk cannot be set to an arbitrary high number due to memory limitations.

Table 9. Classification results on mini-ImageNet using ResNet-12 and ResNet-18 backbones as a function of the initial value for the number
of components per class Nk. ± denotes the 95% confidence intervals over 300 episodes.

Nk 1-shot 5-shot

5 62.29±1.08 78.85±0.61

10 64.01±0.79 81.87±0.49

15 63.98±0.79 82.04±0.49

20 63.91±0.80 82.05±0.49

Nk 1-shot 5-shot

5 58.57±1.09 76.44±0.61

10 60.15±0.80 77.71±0.61

15 60.11±0.73 77.76±0.58

20 58.99±0.81 77.77±0.58

(a) ResNet-12 (b) ResNet-18
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(a) ResNet-12 (b) ResNet-18
Figure 7. Validation accuracy of the first 150 epochs using ResNet-12 and ResNet-18 on miniImageNet. 1- and 5-shot scenarios are plotted
using blue and red colors with their confidence intervals over 300 testing episodes of the validation set, respectively. The dashed vertical line
is starting point of progressive following stage. The circles are the points when we update the best model.

9. Dynamic of the training
Fig. 7 evaluates the necessity of the two training stages (sec. 4 from the main paper) by showing the (episodic) validation accuracy during 150 epochs. The

vertical dashed line indicates the transition between training stages. In most cases, the progressive following stage results in a validation accuracy gain.



10. More ways ablation
Table 10 presents more-way 5-shot comparison of our MixtFSL on miniImageNet using ResNet-18 and ResNet-12. Our MixtFSL gains 1.14% and 1.23%

over the Pos-Margin [1] in 5-way and 20-way, respectively. Besides, MixtFSL gains 0.78% over Baseline++ [8] in 10-way.
We could not find “more-ways” results with the ResNet-12 backbone in the literature, but we provide our results here for potential future literature

comparisons.

Table 10. N -way 5-shot classification results on mini-ImageNet using ResNet-18 and ResNet-12 backbones. ± denotes the 95% confidence
intervals over 600 episodes. The best results prior this work is highlighted in blue, and the best results are presented in boldfaced.

Method Backbone 5-way 10-way 20-way

MatchingNet‡ [73] RN-18 68.88±0.69 52.27±0.46 36.78±0.25

ProtoNet‡ [64] RN-18 73.68±0.65 59.22±0.44 44.96±0.26

RelationNet‡ [67] RN-18 69.83±0.68 53.88±0.48 39.17±0.25

Baseline [8] RN-18 74.27±0.63 55.00±0.46 42.03±0.25

Baseline++ [8] RN-18 75.68±0.63 63.40±0.44 50.85±0.25

Pos-Margin [1] RN-18 76.62±0.58 62.95±0.83 51.92±1.02

MixtFSL (ours) RN-18 77.76±0.58 64.18±0.76 53.15±0.71

MixtFSL (ours) RN-12 82.04±0.49 68.26±0.71 55.41±0.71

‡ implementation from [8]



Table 11. Margin evaluation using miniImageNet in 5-way classification. Bold/blue is best/second best, and ± indicates the 95% confidence
intervals over 600 episodes.

Method Backbone 1-shot 5-shot

Neg-Margin∗ [41] Conv4 51.81±0.81 69.24±0.59

ArcMax∗ [1] Conv4 51.95±0.80 69.05± 0.58

MixtFSL-Neg-Margin Conv4 52.76±0.67 70.67±0.57

MixtFSL-Pos-Margin Conv4 52.82±0.63 70.30±0.59

Neg-Margin∗ [41] RN-12 61.90±0.74 78.86±0.53

ArcMax∗ [1] RN-12 61.86±0.71 78.55±0.55

MixtFSL-Neg-Margin RN-12 63.98±0.79 82.04±0.49

MixtFSL-Pos-Margin RN-12 63.57±0.00 81.70±0.49

Neg-Margin∗ [41] RN-18 59.15±0.81 78.41±0.54

ArcMax∗ [1] RN-18 58.42±0.84 77.72±0.51

MixtFSL-Neg-Margin RN-18 60.11±0.73 77.76±0.58

MixtFSL-Pos-Margin RN-18 59.71±0.76 77.59±0.58

Neg-Margin∗ [41] WRN 62.27±0.90 80.52±0.49

ArcMax∗ [1] WRN 62.68±0.76 80.54±0.50

MixtFSL-Neg-Margin WRN 63.18±1.02 81.66±0.60

MixtFSL-Pos-Margin WRN 64.31±0.79 81.63±0.56
∗ our implementation

11. Ablation of the margin
As table 11 shows, a negative margin provides slightly better results than using a positive one, thus replicating the findings from Liu et al. [41], albeit

with a more modest improvement than reported in their paper. We theorize that the differences between our results (in table 11) and theirs are due to slight
differences in training setup (e.g., learning rate scheduling, same optimizer for base and novel classes). Nevertheless, the impact of the margin on our proposed
MixtFSL approach is similar. We also note that in all cases except 5-shot on ResNet-18, our proposed MixtFSL yields significant improvements. Notably,
MixtFSL provides classification improvements of 2.08% and 3.18% in 1-shot and 5-shot using ResNet-12.

The margin m in eq.1 (sec. 4.1) is ablated in Table 12 using the validation set of the miniImagNet dataset using ResNet-12 and ResNet-18. We experiment
with both m = 0.01 to match Afrasiyabi et al. [1], and m = −0.02 to match Bin et al. [41].

Table 12. Margin m ablation on the miniImageNet using ResNet-12 and ResNet-18 backbones.

ResNet-12 ResNet-18
m 1-shot 5-shot 1-shot 5-shot

-0.02 61.85 80.38 60.57 79.04
+0.01 60.97 77.43 60.27 78.12



12. Ablation of the temperature τ
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Figure 8. Effect of temperature τ on MixtFSL using ResNet-12 and -18 in 1- and 5-shot scenarios in miniImageNet’s validation set. The
orange bars are the classification results without temperature variable (τ = 1), and the blue colored bars are the amount of classification gain
by training the backbone with temperature variable (τ = 0.05).

We ablate the effect of having a temperature variable τ in the initial training stage using the validation set. As fig. 8 presents, the validation set accuracy
increases with the use of τ variable across the RN-12 and RN-18. Here, “without τ” corresponds to setting τ = 1, and “with τ” to τ = 0.05 (found on the
validation set).



13. Visualization: from MixtFSL to MixtFSL-Alignment
Fig. 9 summarizes the visualization of embedding space from our mixture-based feature space learning (MixtFSL) to its centroid alignment extension

(sec. 6.1 from the main paper). Fig. 9-(a) is a visualization of 200 base examples per class (circles) and the learned class mixture components (diamonds) after
the progressive following training stage. Fig. 9-(b) presents the t-SNE visualization of novel class examples (stars) and related base detection (diamonds of the
same color) using our proposed MixtFSL. Fig. 9-(c) presents the visualization of fine-tuning the centroid alignment of [1]. Here, the novel examples align to
the center of their related bases.
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Figure 9. t-SNE [44] applied to the ResNet-12 base feature embedding. (a) learned base categories feature embedding (circles) and mixture
components (diamonds) after the progressive following stages. (b) using 5-way (coded by color) novel example shown by stars to detect
their related base classes with the learned mixture components shown by diamonds. (b) aligning the novel examples to the center of their
related base classes without forgetting the base classes. Points are color-coded by related base and novel examples.


