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Universal Representation Learning from Multiple Domains
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Wei-Hong Li, Xialei Liu∗, and Hakan Bilen
VICO Group, University of Edinburgh, United Kingdom

groups.inf.ed.ac.uk/vico/research/URL

Abstract

In this paper, we look at the problem of few-shot image
classification that aims to learn a classifier for previously un-
seen classes and domains from few labeled samples. Recent
methods use various adaptation strategies for aligning their
visual representations to new domains or select the relevant
ones from multiple domain-specific feature extractors. In this
work, we present URL, which learns a single set of universal
visual representations by distilling knowledge of multiple
domain-specific networks after co-aligning their features
with the help of adapters and centered kernel alignment.
We show that the universal representations can be further
refined for previously unseen domains by an efficient adapta-
tion step in a similar spirit to distance learning methods. We
rigorously evaluate our model in the recent Meta-Dataset
benchmark and demonstrate that it significantly outperforms
the previous methods while being more efficient.

1. Introduction
As deep neural networks progress to dramatically im-

prove results in most of standard computer vision tasks,
there is a growing community interest for more ambitious
goals. One of them is to improve the data efficiency of the
standard supervised methods that rely on large amount of ex-
pensive and time-consuming hand-labeled data. Just like the
human intelligence is capable of learning concepts from few
labeled samples, few-shot learning [24, 33] aims at adapting
a classifier to accommodate new classes not seen in training,
given a few labeled samples from these classes.

Earlier works in few-shot learning focus on evaluating
their methods in homogeneous learning tasks, e.g. Omin-
glot [25], miniImageNet [53], tieredImageNet [43], where
both the meta-train and meta-test examples are sampled
from a single data distribution (or dataset). Recently, the
interest of the community has shifted to a more realistic
and challenging experimental setting, where the goal is to

∗Xialei Liu is the corresponding author.
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Figure 1. URL – Universal Representation Learning. Unlike the
previous methods [13, 29] (illustrated in (a)) that learn K feature
extractors {fϕ∗

τ
}Kτ , one for each domain, and retrieve or combine

their features for the target task during meta-test stage, our method
(illustrated in (b)) learns a single universal feature extractor fϕ
that is distilled from from multiple feature extractors {fϕ∗

τ
}Kτ . In

meta-test stage, we use a linear transformation Aϑ to further refine
the universal representations to unseen domains.

learn few-shot models that can generalize not only within
a single data distribution but also to previously unseen data
distributions. To this end, Triantafillou et al. [52] propose a
new heterogeneous benchmark, Meta-Dataset that consists
of ten datasets from different domains for meta-training and
meta-test. While, initially two domains were kept as unseen
domains, later three more unseen domains are included to
meta-test the generalization ability of learned models.

While the few-shot methods [14, 48, 49, 53], which were
proposed before Meta-Dataset was available, can be di-
rectly applied to this new benchmark with minor modifi-
cations, they fail to cope with domain gap between train and
test datasets and thus obtain subpar performance on Meta-
Dataset. Recently several few-shot learning methods are
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proposed to address this challenge, which can be coarsely
grouped into two categories, adaptation [2, 44] and feature
selection based methods [13, 29]. CNAPS [44] consists
of an adaptation network that modulates the parameters of
both a feature extractor and classifier for new categories
by encoding the data distribution of few training samples.
Simple CNAPS [2] extends CNAPS by replacing its para-
metric classifier with a non-parametric classifier based on
Mahalanobis distance and shows that adapting the classifier
from few samples is not necessary for good performance.
SUR [13] and URT [29] further show that adaptation for the
feature extractor can also be replaced by a feature selection
mechanism. In particular, both [13, 29] learn a separate deep
network for each training dataset in an offline stage, employ
them to extract multiple features for each image, and then
select the optimal set of features either based on a similarity
measure [13] or on an attention mechanism [29]. Despite
their good performance, SUR and URT are computation-
ally expensive and require multiple forward passes through
multiple networks during inference time.

In this work, we propose an efficient and high perfor-
mance few-shot method, called URL based on Universal
Representation Learning. Like [13, 29], our method builds
on multi-domain representations that are learned in an of-
fline stage. However, we learn a single set of universal
representations (a single feature extractor) over multiple do-
mains which has a fixed computational cost regardless of
the number of domains at inference unlike them. Similar to
the adaptation based techniques [2, 44], our method further
employs a simple adaptation strategy to learn the domain
specific representations from few samples (see Fig. 1).

In particular, we propose to distill knowledge from multi-
ple domains to a single model, which can efficiently leverage
useful information from multiple diverse domains. Learn-
ing multi-domain representations is a challenging task and
requires to leverage commonalities in the domains while
minimizing interference (negative transfer [8, 41, 56]) be-
tween them. To mitigate this, we align the intermediate
representations of our multi-domain network with the ones
of the domain-specific networks after carefully aligning each
space by using small task-specific adapters and Centered
Kernel Alignment (CKA) [22]. Finally, inspired from the
use of Mahalanobis distance in [2], we adapt the learned
multi-domain features into the new task by mapping them
into a task-specific space. However, unlike [2], we learn the
parameters of this mapping via adaptation in a discriminative
way. We rigorously evaluate our method in Meta-Dataset
benchmark and show that our method outperforms the state-
of-the-art methods significantly in both previously seen and
unseen domain generalization.

2. Related Work
Meta-learning based few-shot classification. Meta-
learning approaches for few-shot learning that allow for
end-to-end training of few-shot classifiers be broadly di-
vided into two groups, metric-based and optimization-based
approaches. The key idea in the former is to map raw images
to vector representations and use nearest neighbor classifiers
with different distance functions by learning discriminative
feature spaces with Siamese networks [21], producing a
weighted nearest neighbor classifier [53], representing each
class with the average of the samples in the support set [48].
The latter focuses on learning models that can quickly adapt
to new tasks from few samples in support. The successful
methods include MAML [14] that poses learning to learn
problem in a bi-level optimization where the weights of the
network are modeled as a function of the initial network
weights, Reptile [35] that alleviates the expensive second
order derivative computation in MAML by a first order ap-
proximation, MAML++ [1] that introduces multiple speed
and stability improvements over MAML.
Transfer learning based few-shot classification. There
are also simple yet effective methods [6, 7, 11] that first
learn a neural network on all the available training data and
transfer it to few-shot tasks in test time. Baseline++ [6] only
updates a parametric classifier with cosine distance, while
Meta-Baseline [7] fine-tunes entire network with a nearest-
centroid cosine similarity and a scale parameter. Dhillon et
al. [11] explore fine-tuning in a transductive setting, where
the query set is assumed to be available at the same time.
Cross-domain few-shot classification. Recent few-shot
techniques [5, 13, 29, 44] focus on few-shot learning that
generalizes to unseen domains at test time in the recently
proposed Meta-Dataset [52]. CNAPS [44] adapts the param-
eters of feature encoder and classifier by conditioning them
on current input task via FiLM layers [39] which is further
extended in Simple CNAPS [2] adopts a non-parametric clas-
sifier using a simple class-covariance-based distance metric,
namely the Mahalanobis distance. In contrast SUR [13]
stores the domain-specific knowledge by learning an inde-
pendent feature extractor for each domain, and automatically
selects the most relevant representations for a new task by
linearly combining features from domain-specific features.
URT [29] instead meta-learns the feature selection mecha-
nism for new tasks by using Transformer layers. Like SUR
and URT, our method uses multi-domain features but in a
more efficient way, by learning a single network over multi-
ple domains. Our method requires significantly less network
capacity and compute load than theirs. In addition, similar
to Simple CNAPS [2], we map our features to a task-specific
space before applying the nearest neighbor classifier but we
learn the parameters of this mapping from each support set.
Knowledge distillation. Our work is related to knowledge
distillation (KD) methods [17, 27, 30, 40, 45, 50] that dis-



tills the knowledge of an ensemble of large teacher models
to a small student neural network at the classifier [17] and
intermediate layers [45]. Born-Again Neural Networks [15]
uses KD proposes to consecutively distill knowledge from an
identical teacher network to a student network, which is fur-
ther applied to few-shot learning in [51] and multi-task learn-
ing in [10]. Most similar to our work, Li and Bilen [27] apply
knowledge distillation to align features of a student multi-
task network to multiple single-task learning networks by in-
troducing task-specific adapters. While we use task-specific
adapters to align the features across multiple networks like
[27], we apply the alignment to a more challenging setting
of multi-domain learning where there are substantial gap be-
tween different domains unlike their method that is shown to
work in multi-task learning where multiple tasks are sampled
from a single data distribution. To this end, we incorporate a
more effective feature matching loss inspired from [22] to
align features in presence of large domain gap.
Universal representation. A representation that works
equally well in multiple domain, termed universal represen-
tation, is introduced in [3]. To learn a universal representa-
tion in multiple domains, SUR [13] and URT [29] propose to
learn an independent model for each domain and learn to re-
trieve or blend appropriate models for a new task in few-shot
classification. Alternatively, [3, 41, 42] propose to learn a
single network to perform image classification on very differ-
ent domains by sharing a large majority of parameters across
domains and encoding domain-specific information via nor-
malization layers [3], light-weight residual adapters [41, 42],
Feature-wise Linear Modulate (FiLM) [39]. Our method is
inspired from these methods, thus we learn universal rep-
resentations without any domain-specific weights and use
them in few-shot learning.

3. Method
In this section, we describe the problem setting, introduce

our method in two parts, multi-domain feature learning and
feature adaptation.

3.1. Few-shot task formulation

Few-shot classification aims at learning to classify sam-
ples from a small training set with only few samples for each
class. The task contains two sets of images: a support set
S = {(xi, yi)}|S|

i=1 that contains |S| image and label pairs
respectively that define the classification task and a query set
Q = {(xj)}|Q|

i=1 that contains |Q| samples to be classified.
In words, we would like to learn a classifier on the support
set that can accurately predict the labels of the query set.

As in [13, 29], we solve this problem in two steps: i)
a meta-training step where a learning algorithm receives a
large dataset Db and outputs a general feature extractor f , ii)
a meta-test step where the target tasks (S,Q) are sampled

from another large dataset Dt by taking the subsets of the
dataset to build S and Q. Note that Db and Dt contain
mutually exclusive classes.

3.2. Learning universal representations

Our focus is to learn few-shot image classification that
generalizes not only within previously seen visual domains
but also to unseen ones. As it is challenging to obtain the
domain-specific knowledge from only few samples in a pre-
viously unseen domain, inspired by [3, 41], we hypothesize
that using multi-domain (or universal) representations is the
key to the success of cross-domain generalization. To this
end, we propose learning a multi-domain network that works
well for all the domain-specific tasks simultaneously and use
this network as a feature extractor for the target tasks.

Let assume that Db consists of K subdatasets, each sam-
pled from a different domain. One potential solution is train
a multi-domain network by jointly optimizing its parameters
over the images from all K domains (subdatasets):

min
ϕ,ψτ

K∑
τ=1

1

|Dτ |
∑

x,y∈Dτ

ℓ(hψτ
◦ fϕ(x), y), (1)

where ℓ is cross-entropy loss, f is a multi-domain feature
extractor that takes an image as input and outputs a d di-
mensional feature and is parameterized by a single set of
parameters ϕ which is shared across K domains. h is a
domain-specific classifier that takes in fϕ(x) and outputs
a probability vector over the target categories and it is pa-
rameterized by ψτ . While minimizing Eq. (1) results in a
multi-domain feature extractor f , several previous works
report that this optimization is problematic due to the inter-
ference between the different tasks [8, 56], varying dataset
sizes and difficulty [20, 27] and often leads to subpar results
compared to individual single-domain networks.

Motivated by these challenges, we propose a two stage
procedure to learn multi-domain representations, inspired
by the previous distillation methods [17, 27]. To this end,
we first train domain-specific deep networks where each
consists of a specific feature extractor fϕ∗

τ
and classifier hψ∗

τ

with parameters ϕ∗τ and ψ∗
τ respectively, similarly to [13,

29]. However, instead of using K domain-specific feature
extractors and selecting the most relevant ones like them,
we propose to learn a single multi-domain network that
performs well in K domains by distilling the knowledge of
K pretrained feature extractors. This has two key advantages
over [13, 29]. First using a single feature extractor, which
has the same capacity with each domain-specific one, is
significantly more efficient in terms of run-time and number
of parameters in the meta-test stage. Second learning to find
the most relevant features for a given support and query set
in [29] is not trivial and may also suffer from overfitting to
the small number of datasets in the training set, while the
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Figure 2. Training pipeline for universal representation learning. Given training images from K different domains, we first train
K domain-specific networks fϕ∗

1
, . . . , fϕ∗

K
and their classifiers hψ∗

1
, . . . , hψ∗

K
, freeze their weights and distill their knowledge to our

multi-domain network by matching their features and predictions through two loss functions ℓf and ℓp respectively. As matching multiple
features is challenging, we co-align all the features by using light-weight adaptors Aθ1 , Aθ2 , . . . , AθK and centered kernel alignment.

multi-domain representations, by definition, automatically
contain the required information from the relevant domains.

In the second stage, we freeze the pretrained weights of
the domain-specific feature extractors fϕ∗

τ
and transfer their

knowledge into the multi-domain model at train time. Knowl-
edge distillation can be performed at the prediction [17] and
feature level [27, 45] by minimizing the distance between
(i) the predictions of the multi-domain and corresponding
single-domain network, and also between (ii) the multi-
domain and single-domain features respectively for given
training samples. While Kullback-Leibler (KL) divergence
is the standard choice for the predictions in [17], matching
the multi-domain features to multiple single-domain ones
simultaneously is an ill-posed problem, as the features from
different domain-specific extractors for a given image x are
not necessarily aligned and can vary significantly. To this
end, as in [27], we propose to map each domain specific
feature into a common space by using adaptors Aθτ ∈ Rd×d
with parameters θτ and jointly train them along with the
parameters of the multi-domain network:

min
ϕ,ψτ ,θτ

K∑
τ=1

1

|Dτ |
∑

x,y∈Dτ

(
ℓ(hψτ ◦ fϕ(x), y)+

λpτ ℓ
p(hψτ ◦ fϕ(x), hψ∗

τ
◦ fϕ∗

τ
(x)) + λfτ ℓ

f (Aθτ ◦ fϕ(x), fϕ∗
τ
(x))

)
(2)

where ℓp is KL divergence, ℓf is a distance function in the
feature space, λpτ and λfτ are their domain-specific weights
for task τ . We illustrate this key idea in Fig. 2. In words,
the multi-domain network is optimized to match the domain-
specific features up to a transformation (i.e. Aθτ ) and predict
the ground-truth classes yτ .

While Li and Bilen [27] show that L2 distance is effec-
tive to match the features across multi-task and task-specific
networks, which are trained for different tasks on a sin-
gle domain, here we argue that learning to match features
that are trained on substantially diverse domains require a
more complex distance function to model non-linear correla-
tions between the representations. To this end, inspired by
[22], we propose to adopt the Centered Kernel Alignment
(CKA) [22] similarity index with the Radial Basis Func-
tion (RBF) kernel that is shown to be capable of encoding
meaningful non-linear similarities between representations
of higher dimension than the number of data points.

Next we briefly describe CKA. Given a set of im-
ages {x1, . . . ,xn}, let M = [Aθτ ◦ fϕ(x1), . . . , Aθτ ◦
fϕ(xn)]

⊤ ∈ Rn×d and Y = [fϕ∗
τ
(x1), . . . , fϕ∗

τ
(xn)]

⊤ ∈
Rn×d denote the features that are computed by the multi-
domain network adapted by Aθτ and domain-specific net-
works respectively for a given set of images {x1, . . . ,xn}.
We first compute the RBF kernel matrices P and T of M
and Y respectively and then use two kernel matrices P and
T to measure CKA similarity between M and Y:

CKA(M,Y) = tr(PHTH)/
√

tr(PHPH)tr(THTH),
(3)

where tr(·) and H denote the trace of a matrix and centering
matrix Hn = In − 1

n11
⊤ respectively. The loss ℓf (M,Y)

can be derived as ℓf (M,Y) = 1 − CKA(M,Y) as dis-
similarity between the multi-domain and domain-specific
features. As the original CKA similarity requires the compu-
tation of the kernel matrices over the whole datasets, which
is not scalable to large datasets, we follow [34] and com-



pute them over each minibatch in our training. We refer to
[22, 34] for more details.

3.3. Adapting multi-domain features

During meta-test, given a support set S = {(xi, yi)}|S|
i=1

of a new learning task, we use the multi-domain model to
extract features {fϕ(xi)}|S|

i=1 and adapt them to the target
task. To this end, we apply a linear transformation Aϑ :
Rd → Rd with learnable parameters ϑ to the computed
features, i.e. {zi}|S|

i=1 = {Aϑ ◦fϕ(xi)}|S|
i=1 where ϑ ∈ Rd×d.

Then we follow a similar pipeline to the one in [13, 32, 48]
to build a centroid classifier by averaging the embeddings
belonging to this class:

cj =
1

|Sj |
∑

zi∈Sj

zi,Sj = {zk : yk = j}, j = 1, . . . , C

(4)
where C is the number of classes in the support set. Next we
estimate the likelihood of a support sample z by:

p(y = l|z) = exp(−d(z, cl))∑C
j=1 exp(−d(z, cj))

, (5)

where d(z, cl) is the negative cosine similarity. We then op-
timize ϑ to minimize the following objective on the support
set S:

min
ϑ

1

|S|
∑

xi,yi∈S
log(p(y = yi|xi)). (6)

Solving Eq. (6) for ϑ results in high intra-class and low inter-
class similarity in the adapted space. We then use ϑ and
Eq. (5) to predict the label of the query sample from Q by
picking the closest centroid cj . Our meta-test pipeline is
illustrated Fig. 3.
Discussion. Simple CNAPS [2] uses the (squared) Maha-
lanobis distance between the features of class centroid and
a query image, d(z, c) = 1

2 (fϕ(x)− c′)⊤Q−1(fϕ(x)− c′)
where Q is a covariance matrix specific to the task and class
and c′ is the class centroid in the feature space (before the
adaptation). The authors show that considering the class
covariance enables better adaptation of the feature extractor
to the target task. Our adaptation strategy can be seen as
a generalization of the Mahalanobis distance computation.
Assuming that Q−1 can be decomposed into a product of
a lower triangular matrix and its conjugate transpose, i.e.
Q−1 = LL⊤, one can first pre-transform the features by
multiplication, i.e. z = L⊤fϕ(x) and then compute the dis-
tance between these features and centroids. Similarly, we
apply a linear transformation to the features but unlike [2],
we learn its parameters ϑ by optimizing Eq. (6).

4. Experiments
Here we first describe the benchmarks, implementation

details and competing methods. Then we rigorously compare

prediction

Support Set

Query Set

cos

Features Class centroids

Features

Figure 3. Feature adaptation procedure in meta-test. Given a
support set and query image, our method learns to map their fea-
tures to a task-specific space through a linear transformation Aϑ
and assign the query image to the nearest class center.

our method to the state-of-the-art few-shot classification
methods, study each proposed component in an ablation and
also analyze our method qualitatively. Finally we evaluate
our method in a global retrieval task to further evaluate
the learned feature representations in few-shot classification
task.

4.1. Experimental setup

Dataset. Meta-Dataset [52] is a few-shot classification
benchmark that initially consisted of ten image datasets:
ILSVRC 2012 [46] (ImageNet), Omniglot [25], FGVC-
Aircraft [31] (Aircraft), CUB-200-2011 [54] (Birds), De-
scribable Textures [9] (DTD), QuickDraw [19], FGVCx
Fungi [4] (Fungi), VGG Flower [36] (Flower), Traffic
Signs [18] and MSCOCO [28] then further expanded with
MNIST [26], CIFAR-10 [23] and CIFAR-100 [23]. We fol-
low the standard procedure and use the first eight datasets
for meta-training, in which each dataset is further divided
into train, validation and test set with disjoint classes. The
evaluation within these datasets is used to measure the gen-
eralization ability in the seen domains. The rest five datasets
are reserved as unseen domain for meta-test for measuring
the cross-domain generalization ability.
Implementation details. We use PyTorch [38] library to
implement our method. In all experiments we build our
method on ResNet-18 [16] backbone for both single-domain
and multi-domain networks. In the multi-domain network,
we share all the layers but the last classifier across the do-
mains. For training single-domain models, we strictly follow
the training protocol in [13], use a SGD optimizer with a
momentum and the cosine annealing learning scheduler with
the same hyperparameters. For our multi-domain network,
we use the same optimizer and scheduler as before, train
it for 240,000 iterations. We set λf and λp to 4 for Ima-
geNet and 1 for other datasets and use early-stopping based
on cross-validation over the validations sets of 8 training



Test Dataset Proto-MAML [52] BOHB-E [47] CNAPS [44] Simple CNAPS [2] SUR [13] URT [29] Best SDL MDL Ours

ImageNet 46.5± 1.1 51.9± 1.1 50.8± 1.1 58.4± 1.1 56.2± 1.0 56.8± 1.1 55.8± 1.0 53.4± 1.1 58.8± 1.1
Omniglot 82.7± 1.0 67.6± 1.2 91.7± 0.5 91.6± 0.6 94.1± 0.4 94.2± 0.4 93.2± 0.5 93.8± 0.4 94.5± 0.4
Aircraft 75.2± 0.8 54.1± 0.9 83.7± 0.6 82.0± 0.7 85.5± 0.5 85.8± 0.5 85.7± 0.5 86.6± 0.5 89.4± 0.4
Birds 69.9± 1.0 70.7± 0.9 73.6± 0.9 74.8± 0.9 71.0± 1.0 76.2± 0.8 71.2± 0.9 78.5± 0.8 80.7± 0.8

Textures 68.2± 0.8 68.3± 0.8 59.5± 0.7 68.8± 0.9 71.0± 0.8 71.6± 0.7 73.0± 0.6 71.4± 0.7 77.2± 0.7
Quick Draw 66.8± 0.9 50.3± 1.0 74.7± 0.8 76.5± 0.8 81.8± 0.6 82.4± 0.6 82.8± 0.6 81.5± 0.6 82.5± 0.6

Fungi 42.0± 1.2 41.4± 1.1 50.2± 1.1 46.6± 1.0 64.3± 0.9 64.0± 1.0 65.8± 0.9 61.9± 1.0 68.1± 0.9
VGG Flower 88.7± 0.7 87.3± 0.6 88.9± 0.5 90.5± 0.5 82.9± 0.8 87.9± 0.6 87.0± 0.6 88.7± 0.6 92.0± 0.5
Traffic Sign 52.4± 1.1 51.8± 1.0 56.5± 1.1 57.2± 1.0 51.0± 1.1 48.2± 1.1 47.4± 1.1 51.0± 1.0 63.3± 1.1
MSCOCO 41.7± 1.1 48.0± 1.0 39.4± 1.0 48.9± 1.1 52.0± 1.1 51.5± 1.1 53.5± 1.0 49.6± 1.1 57.3± 1.0

MNIST - - - 94.6± 0.4 94.3± 0.4 90.6± 0.5 89.8± 0.5 94.4± 0.3 94.7± 0.4
CIFAR-10 - - - 74.9± 0.7 66.5± 0.9 67.0± 0.8 67.3± 0.8 66.7± 0.8 74.2± 0.8
CIFAR-100 - - - 61.3± 1.1 56.9± 1.1 57.3± 1.0 56.6± 0.9 53.6± 1.0 63.5± 1.0

Average Rank 7.8 8.1 6.6 5.2 5.0 4.4 4.8 4.6 1.3

Table 1. Comparison to baselines and state-of-the-art methods on Meta-Dataset. Mean accuracy, 95% confidence interval are reported.
The first eight datasets are seen during training and the last five datasets are unseen and used for test only. Average rank is computed
according to first 10 datasets as some methods do not report results on last three datasets.

datasets. We refer to supplementary for more details.

Baselines and compared methods. First we compare our
method to our own baselines, i) the best single-domain model
(Best SDL) where we use each single-domain network as
the feature extractor and test it for few-shot classification
in each dataset and pick the best performing model (see
supplementary for the complete results). This involves eval-
uating 8 single-domain networks on 13 datasets, serves a
very competitive baseline, ii) the vanilla multi-domain learn-
ing baseline (MDL) that is learning by optimizing Eq. (1)
without the proposed distillation method. As an additional
baseline, we include the best performing method in [52], i.e.
Proto-MAML [52], and as well as the state-of-the-art meth-
ods, OHB-E [47], CNAPS [44], SUR [13], URT [29], and
the Simple CNAPS [2]1. For evaluation, we follow the stan-
dard protocol in [52], randomly sample 600 tasks for each
dataset, and report average accuracy and 95% confidence
score in all experiments. We reproduce results by training
and evaluating SUR [13], URT [29], and Simple CNAPS [2]
using their code for fair comparison as recommended by
Meta-Dataset.

4.2. Results

As in Meta-Dataset [52], we sample each task with vary-
ing number of ways and shots and report the results in Ta-
ble 1. Our method outperforms the state-of-the-art methods
in seven out of eight seen datasets and four out of five unseen
datasets. We also compute average rank as recommended
in [52], our method ranks 1.3 in average and the state-of-the-
art methods SUR and URT rank 5.0 and 4.4, respectively.
More specifically, we obtain significantly better results than
the second best approach on Aircraft (+2.8), Birds (+2.1),
Texture (+4.2), and VGG Flower (+1.5) for seen domains

1Results of Proto-MAML [52], BOHB-E [47], and CNAPS [44] are
obtained from Meta-Dataset.

and Traffic Sign (+6.1)2 and MSCOCO (+3.8). The results
show that jointly learning a single set of representations pro-
vides better generalization ability than fusing the ones from
multiple single-domain feature extractors as done in SUR
and URT. Notably, our method requires less parameters and
computations to run during inference than SUR and URT, as
it runs only one universal network to extract features, while
both SUR and URT need to pass the query set to multiple
single-domain network.

We also see that our method outperforms two strong base-
lines, Best SDL and MDL in all datasets except in Quick-
Draw. This indicates that i) universal representations are
superior to the single-domain ones while generalizing to
new tasks in both seen and unseen domains, while requiring
significantly less number of parameters (1 vs 8 neural net-
works), ii) our distillation strategy is essential to obtain good
multi-domain representations. While MDL outperforms the
best SDL in certain domains by transferring representations
across them, its performance is lower in other domains than
SDL, possibly due to negative transfer across the signifi-
cantly diverse domains. Surprisingly, MDL achieves the
third best in average rank, indicating the benefit of multi-
domain representations.

4.3. Further results

Varying-way five-shot setting. After reporting results in
a broad range of varying shots (e.g. up to 100 shots in some
extreme cases), we further analyze our method for 5-shot
setting with varying number of categories. We follow the
procedure in [12], sample a varying number of ways in
Meta-Dataset as in the standard setting but a fixed number of

2The accuracy of all methods on Traffic Sign is different from the
one in the original papers as one bug has been fixed in Meta-Dataset
repository. See https://github.com/google-research/
meta-dataset/issues/54 for more details. As mentioned in the
Meta-Dataset repository, we further update the evaluation protocol and
report the updated results of all methods in the supplementary.

https://github.com/google-research/meta-dataset
https://github.com/google-research/meta-dataset
https://github.com/google-research/meta-dataset/issues/54
https://github.com/google-research/meta-dataset/issues/54


Varying-Way Five-Shot Five-Way One-Shot

Test Dataset Simple SUR URT Ours Simple SUR URT OursCNAPS [2] [13] [29] CNAPS [2] [13] [29]

ImageNet 47.2 46.7 48.6 49.4 42.6 40.7 47.4 49.6
Omniglot 95.1 95.8 96.0 96.0 93.1 93.0 95.6 95.8
Aircraft 74.6 82.0 81.2 84.8 65.8 67.1 77.9 79.6
Birds 69.6 62.8 71.2 76.0 67.9 59.2 70.9 74.9

Textures 57.5 60.2 65.2 69.1 42.2 42.5 49.4 53.6
Quick Draw 70.9 79.0 79.2 78.2 70.5 79.8 79.6 79.0

Fungi 50.3 66.5 66.8 70.0 58.3 64.8 71.0 75.2
VGG Flower 86.5 76.9 82.4 89.3 79.9 65.0 72.7 79.9
Traffic Sign 55.2 44.9 45.1 57.5 55.3 44.6 52.6 57.9
MSCOCO 49.2 48.1 52.3 56.1 48.8 47.8 56.9 59.1

MNIST 88.9 90.1 86.5 89.7 80.1 77.0 75.6 78.7
CIFAR-10 66.1 50.3 61.4 66.0 50.3 35.8 47.3 54.7

CIFAR-100 53.8 46.4 52.5 57.0 53.8 42.9 54.9 61.8

Average Rank 3.1 3.0 2.5 1.3 2.8 3.5 2.4 1.2

Table 2. Results for varying-Way five-Shot and five-Way one-
Shot settings. Mean accuracies are reported and the results with
confidence interval are shown in the supplementary.

Test Dataset L2 COSINE CKA KL CKA + KL

ImageNet 55.7± 1.1 57.0± 1.1 59.0± 1.0 57.0± 1.1 58.8± 1.1
Omniglot 94.0± 0.4 94.1± 0.4 94.7± 0.4 94.5± 0.4 94.5± 0.4
Aircraft 87.4± 0.5 88.3± 0.5 88.9± 0.5 89.3± 0.4 89.4± 0.4
Birds 78.5± 0.7 77.5± 0.8 80.4± 0.7 78.6± 0.8 80.7± 0.8

Textures 72.8± 0.6 73.2± 0.7 74.5± 0.7 73.3± 0.7 77.2± 0.7
Quick Draw 81.2± 0.6 80.8± 0.6 81.9± 0.6 81.6± 0.6 82.5± 0.6

Fungi 65.7± 0.9 65.9± 0.9 66.4± 0.9 67.6± 0.9 68.1± 0.9
VGG Flower 87.5± 0.6 85.0± 0.6 91.3± 0.5 89.6± 0.5 92.0± 0.5

Traffic Sign 61.6± 1.1 59.5± 1.1 63.2± 1.1 62.5± 1.2 63.3± 1.2
MSCOCO 53.4± 1.0 53.8± 1.1 56.6± 1.0 55.6± 1.1 57.3± 1.0

MNIST 94.7± 0.3 93.2± 0.5 94.7± 0.4 95.3± 0.4 94.7± 0.4
CIFAR-10 71.1± 0.8 68.1± 0.8 73.8± 0.7 72.9± 0.8 74.2± 0.8

CIFAR-100 59.1± 1.0 58.1± 1.0 62.1± 1.0 60.8± 1.0 63.6± 1.0

Table 3. Quantitative analysis of knowledge distillation loss
functions. Mean accuracy, 95% confidence interval are reported.
COSINE and KL denote negative cosine similarity and KL diver-
gence respectively. All the loss functions are applied to measure the
difference between intermediate representations of neural networks
except KL, which is applied to network predictions. All results are
obtained with feature adaptation during meta-test stage.

shots to form balanced support and query sets and compare
our method to the top three performing methods, Simple
CNAPS, SUR and URT. As depicted in Table 2, overall
performance for all methods decreases in most datasets com-
pared to results in Table 1, as five-shot setting samples much
less support images than the standard setting. The ranking of
different methods change slightly. The top-2 methods remain
the same, while both Simple CNAPS and SUR obtain 3.1
and 3.0 average rank, respectively. SUR performs the best
on MNIST, Simple CNAPS outperforms others on CIFAR-
10 and URT is top-1 on Quick Draw. Ours still achieves
significantly better performance than other methods on the
rest ten datasets.

Results in five-way one-shot setting. Next we test an
extremely challenging five-way one-shot setting on Meta-
Dataset. For each task, only one image per class is provided
in support set. This setting is often used in evaluating differ-
ent methods in a single domain [25, 43, 53], here we adopt
it for multiple domains and report the results in Table 2. Our

Test Dataset NCC NCC+MD LR SVM Ours

ImageNet 57.0± 1.1 53.9± 1.0 56.0± 1.1 54.5± 1.1 58.8± 1.1
Omniglot 94.4± 0.4 93.8± 0.5 93.7± 0.5 94.3± 0.5 94.5± 0.4
Aircraft 88.0± 0.5 87.6± 0.5 88.3± 0.6 87.7± 0.5 89.4± 0.4
Birds 80.3± 0.7 78.3± 0.7 79.7± 0.8 78.1± 0.8 80.7± 0.8

Textures 74.6± 0.7 73.7± 0.7 74.7± 0.7 73.8± 0.8 77.2± 0.7
Quick Draw 81.8± 0.6 80.9± 0.7 80.0± 0.7 80.0± 0.6 82.5± 0.6

Fungi 66.2± 0.9 57.7± 0.9 62.1± 0.8 58.5± 0.9 68.1± 0.9
VGG Flower 91.5± 0.5 89.7± 0.6 91.1± 0.5 91.4± 0.6 92.0± 0.5

Traffic Sign 49.8± 1.1 62.2± 1.1 59.7± 1.1 65.7± 1.2 63.3± 1.2
MSCOCO 54.1± 1.0 48.5± 1.0 51.2± 1.1 50.5± 1.0 57.3± 1.0

MNIST 91.1± 0.4 95.1± 0.4 93.5± 0.5 95.4± 0.4 94.7± 0.4
CIFAR-10 70.6± 0.7 68.9± 0.8 73.1± 0.8 72.0± 0.8 74.2± 0.8

CIFAR-100 59.1± 1.0 60.0± 0.9 60.1± 1.1 60.5± 1.1 63.6± 1.0

Table 4. Quantitative analysis of several classifiers that are in-
corporated to our method during meta-test stage. NCC, MD,
LR, SVM denote nearest center classifier, Mahalanobis distance,
logistic regression, support vector machines respectively.

method outperforms the prior work consistently as observed
in previous two settings, which validates the importance of
good universal representations when limited labeled sam-
ples are available in meta-test. Interestingly, Simple CNAPS
achieves better rank than SUR in this setting unlike the pre-
vious settings.

4.4. Further analysis

Here we conduct ablation studies on different compo-
nents in our framework by varying the loss function for the
distillation, classifier type in meta-test.
Different distillation loss functions. First we study dif-
ferent distillation loss functions, including L2 loss, cosine
distance, KL divergence and CKA for learning the multi-
domain networks and report their performances in Table 3.
While KL divergence is applied to match the logits of sin-
gle and multi-domain networks as in [17], the other loss
functions are used to match the intermediate representations
(features that are fed into classifiers) between those mod-
els. Among the individual loss functions, the best results
are obtained either with CKA or KL divergence loss, while
CKA outperforms KL divergence in the most domains. Al-
though the features are first aligned with an adapter, L2 and
cosine loss functions are not sufficient to match features
from very diverse domains and further aligning features with
CKA is crucial. Note that here L2 baselines corresponds
to the method of [27]. Finally, combining CKA with KL
divergence gives the best performance over the multi-domain
models that are trained with the individual loss functions.
Different classifiers in meta-test. Next we evaluate the
proposed adaptation strategy with nearest centroid classi-
fier (NCC), described in Section 3.3, to different parametric
including Support Vector Machines (SVM), Logistic Re-
gression (LR) as in [51] and non-parametric classifiers in-
cluding NCC without the adaptive mapping and NCC with
Mahalanobis Distance (NCC+MD) in [2] in Table 4. For
non-parametric classifiers, NCC performs best in unseen do-



Test Dataset ImageNet Omniglot Aircraft Birds Textures Quick Draw Fungi VGG Flower Traffic Sign MSCOCO MNIST CIFAR-10 CIFAR-100

Recall@k 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

Sum 22.1 30.3 84.7 91.8 69.7 80.7 45.9 59.7 66.3 78.2 77.4 84.3 31.9 42.9 85.1 92.1 94.6 97.2 62.6 71.2 98.3 99.2 54.0 68.9 27.8 37.4
Concate 20.2 28.0 84.4 91.5 44.3 58.1 35.5 48.8 68.8 78.2 73.0 80.8 30.7 40.4 83.4 91.3 95.1 97.3 60.7 69.8 98.7 99.3 49.7 65.3 25.4 34.6

MDL 29.8 39.6 89.8 94.3 80.3 87.1 63.2 75.9 67.0 77.1 79.5 85.4 40.2 51.7 86.9 93.3 89.5 94.1 63.6 72.6 97.6 98.8 58.9 72.9 31.6 42.0
Simple CNAPS [2] 34.0 43.8 84.9 91.6 70.5 82.5 55.9 70.5 64.8 76.9 75.3 83.0 29.1 39.0 88.1 94.1 79.9 86.9 65.2 73.8 97.5 98.8 66.2 79.3 33.2 44.2

Ours 36.1 46.2 89.7 94.3 83.3 90.4 66.7 78.9 70.2 80.8 79.9 86.5 44.5 56.2 90.0 94.6 87.9 93.0 67.4 76.3 97.0 98.4 62.1 76.5 35.1 46.1

Table 5. Global retrieval performance on Meta-Dataset. Here we evaluate our method in a non-episodic retrieval task to further compare
the generalization ability of our universal representations.

( a )  Birds

( c )  CIFAR-10

( b )  VGG Flower

( d )  CIFAR-100

Query Nearest Neighbors Query Nearest Neighbors

URT

URT

Ours

Ours

Figure 4. Qualitative analysis of our method in four datasets. Green and red colors indicate correct and false predictions respectively.

mains when used with Mahalanobis distance. The parametric
classifiers, SVM and LR that are trained on the limited sup-
port set obtain very competitive results and outperform the
non-parametric ones in most domains. Our method, which
combines the benefit of parametric and non-parametric clas-
sifiers, outperforms SVM, LR and NCC+MD in most seen
datasets, while achieves worse in some unseen domains like
Traffic Sign and MNIST.
Qualitative results. We also qualitatively analyze our
method and compare it to URT [29] in Fig. 4 by illustrat-
ing the nearest neighbors in four different datasets given a
query image (see supplementary for more examples). While
URT retrieves images with more similar colors, shapes and
backgrounds, while our method is able to retrieve semanti-
cally similar images and finds more correct neighbors than
URT. It again suggests that our method is able to learn more
semantically meaningful and general representations.

4.5. Global retrieval

Here we go beyond the few-shot classification experi-
ments and evaluate the generalization ability of our represen-
tations that are learned in the multi-domain network in a re-
trieval task, inspired from metric learning literature [37, 55].
To this end, for each test image, we find the nearest images
in entire test set in the feature space and test whether they
correspond to the same category. For evaluation metric, we
use Recall@k which considers the predictions with one of
the k closest neighbors with the same label as positive. In
Table 5, we compare our method with Simple CNAPS in Re-

call@1 and Recall@2 (see supplementary for more results).
URT and SUR require adaptation using support set and no
such adaptation in retrieval task is possible, we replace them
with two baselines that concatenate or sum features from
multiple domain-specific networks. Our method achieves
the best performance in ten out of thirteen domains with
significant gains in Aircraft, Birds, Textures and Fungi. This
strongly suggests that our multi-domain representations are
the key to the success of our method in the previous few-shot
classification tasks.

5. Conclusion

In this work, we demonstrate that learning a single set
of universal representations integrated with a feature refin-
ing step achieves state-of-the-art performance in the recent
Meta-Dataset benchmark. To this end, we propose to opti-
mize the weights of a deep neural network simultaneously
over multiple domains by aligning its features with mul-
tiple single-domain networks through linear adapters and
a loss function that is inspired from CKA. We show that
the universal features can be further refined from few ex-
amples to unseen tasks by learning a transformation in a
similar spirit to distance learning. Our method outperforms
the state-of-the-art techniques while using less number of
parameters and being more computationally efficient than
other multi-domain techniques.
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