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Abstract

Faces manifest large variations in many aspects, such as
identity, expression, pose, and face styling. Therefore, it is
a great challenge to disentangle and extract these charac-
teristics from facial images, especially in an unsupervised
manner. In this work, we introduce cycle-consistency in fa-
cial characteristics as free supervisory signal to learn facial
representations from unlabeled facial images. The learn-
ing is realized by superimposing the facial motion cycle-
consistency and identity cycle-consistency constraints. The
main idea of the facial motion cycle-consistency is that,
given a face with expression, we can perform de-expression
to a neutral face via the removal of facial motion and fur-
ther perform re-expression to reconstruct back to the origi-
nal face. The main idea of the identity cycle-consistency is
to exploit both de-identity into mean face by depriving the
given neutral face of its identity via feature re-normalization
and re-identity into neutral face by adding the personal at-
tributes to the mean face. At training time, our model learns
to disentangle two distinct facial representations to be use-
ful for performing cycle-consistent face reconstruction. At
test time, we use the linear protocol scheme for evaluat-
ing facial representations on various tasks, including facial
expression recognition and head pose regression. We also
can directly apply the learnt facial representations to per-
son recognition, frontalization and image-to-image transla-
tion. Our experiments show that the results of our approach
is competitive with those of existing methods, demonstrat-
ing the rich and unique information embedded in the dis-
entangled representations. Code is available at https:
//github.com/JiaRenChang/FaceCycle.

1. Introduction
Face perception is vital for human beings and is also es-

sential in the field of computer vision. Neuroimaging stud-
ies of both human and monkey [13, 15, 43] reveal the neu-
roanatomical dissociation between expression and identity
representations in face perception. Their findings suggest
that these facial characteristics are processed in different
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Figure 1. We propose an unsupervised framework based on cycle-
consistency for learning face disentanglement. We define that all
the variations between a face and its corresponding neutral face of
the same identity as expression. Similarly, all the variations be-
tween a neutral face and the global mean face are defined as iden-
tity. The input face is sequentially deprived of expression (Rexp)
and identity (Rid) representations by networks to become the neu-
tral face and mean face, respectively, which can be transformed
back to the original face in reverse order.

brain areas. With the renaissance of deep learning in recent
years, computer vision research field follows this thread of
thinking and progresses in the direction of disentangling the
face characteristics into separated low-dimensional latent
representations, such as identity [40], expression [45, 48],
shape/appearance [35, 44], intrinsic images [36], and fine-
grained attributes (age, gender, wearing glasses, etc.) [34].

Several supervised methods have been proposed to dis-
entangle face characteristics for image manipulation by
conditioning generative models on a pre-specified face rep-
resentations, including landmarks [47], action units [32],
or facial attributes [27]. Particularly, these methods are
able to manipulate faces while preserving the identity.
Other studies incorporate head pose information to dis-
entangle pose-invariant representations for robust iden-
tity [40]/expression [48] recognition. Provided with neutral
face, moreover, de-expression residue learning [45] can fa-
cilitate the model to learn identity-invariant expression rep-
resentations for performing facial expression recognition.

The 3D Morphable Model (3DMM) [2, 4] for face shape
modeling incorporates a similar thinking of dissociation
for expression and identity. The most widely-used form
of 3DMM is that a face shape S is a linear combina-
tion of mean shape S̄ and identity and expression vectors
(zid, zexp): S = S̄ + Aidzid + Aexpzexp, where Aid and
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Aexp are the identity and expression PCA bases, respec-
tively. Jiang et al. [20] introduce a variational autoencoder
approach for learning latent representations of expression
mesh and identity mesh in the framework of 3DMM. How-
ever, they provided strong supervision for the disentangle-
ment of identity and expression representations, including
ground truths of shape meshes for expression, identity, and
the mean face [20]. It is difficult to generalize such methods
to 2D facial images without being given any ground truth.

In addition to the aforementioned works which are
mostly based on supervised learning, recently a few stud-
ies begin to exploit the unsupervised learning framework
to disentangle facial characteristics [26, 41, 42, 44]. These
methods focus on extracting a part of facial characteristics.
For example, FAb-Net [41] learns representations that en-
code information about pose and expression, [26, 41] intro-
duce frameworks to learn representations for action unit de-
tection, and Zhang et al. [49] propose an autoencoder to lo-
cate facial landmarks. Some unsupervised methods [35, 44]
attempt to separate two independent representations of face
images, including shape and appearance. However, these
unsupervised methods can only disentangle a part of infor-
mation of facial images, but not yet investigate a more gen-
eral generative procedure of a human face, that is, simulta-
neous disentanglement of expression and identity represen-
tations for a wider usage.

In this paper, we propose a novel framework that is able
to simultaneously disentangle expression and identity repre-
sentations from 2D facial images in an unsupervised man-
ner. Particularly, the definition of the expression factor in
our proposed method contains all the variations between an
arbitrary face image and its corresponding neutral face of
the same identity, including the facial expression and head
pose. While for the identity factor, we define it to contain
all the variations between a neutral face and the global mean
face, including the facial identity and other subject-specific
features such as hair style, age, gender, beard, glasses, etc.
Based on these definitions, we propose two novel cycle-
consistency constraints to drive our model learning, as il-
lustrated in Figure 1.

The first cycle-consistency constraint stems from the
idea of action unit [9] in which the head poses and facial
expressions are the results of the combined and coordinated
action of facial muscles. Therefore, the head poses and ex-
pression can be treated as the optical flow [28] between a
neutral face and any face of the same identity. To this end,
a decoder is trained to learn the optical flow field of the
input face without the ground truth neutral face. This is
achieved by applying the proposed idea called facial mo-
tion cycle-consistency, which is able to perform both the
de-expression and re-expression operations.

The second cycle-consistency constraint originates from
Eigenfaces [38], in which a facial image is represented by

adding a linear combination of eigenfaces to the mean face,
suggesting that the face identity is embedded in the lin-
ear combination of eigenfaces. Instead of representing the
identity as the residue of neutral facial image relative to
the mean face [38], we model the adding and depriving of
identity as a renormalization procedure, analogues to the
feed-forward style transfer tasks [18]. To this end, decoders
are trained to learn the renormalized features without the
ground truth mean face. This is achieved by applying the
proposed idea called identity cycle-consistency, which is
able to perform identity deprivation as de-identity and the
identity styling as re-identity.

The main contributions of our work are summarized as
follows:

• We propose a novel framework for unsupervised learn-
ing of facial representations from a single facial im-
age, based on the novel ideas of facial motion cycle-
consistency and identity cycle-consistency.

• The disentangled expression and identity features ob-
tained by our proposed method can be easily utilized
for various downstream tasks, such as facial expression
recognition, head pose regression, person recognition,
frontalization, and image-to-image translation.

• We demonstrate that the performance of the learned
representations in different downstream tasks is com-
petitive with the state-of-the-art methods.

2. Unsupervised Learning of Facial Represen-
tations

As motivated previously, in this paper we aim at disen-
tangling the identity and expression representations from a
single facial image. Our proposed method is mainly based
on an important assumption that: a facial image F , from
high-level perspective, can be decomposed as follows:

F = F̄ + id + exp = F̂ + exp , (1)

where F̄ is the global mean face shared among all the faces,
id and exp are the identity and expression factors respec-
tively, and F̂ is the neutral face of a particular identity speci-
fied by id. Therefore, our proposed model is trained to learn
the expression and identity representations, denoted as Rexp
and Rid respectively, for indicating the facial characteris-
tics of facial images. We introduce four processes based
on cycle-consistency for learning these representations, as
shown in Figure 1:

• de-expression. We define the de-expression as remov-
ing Rexp from the input facial image F , in which we
can obtain the neutral face F̂ accordingly.
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Figure 2. Overall architecture of the proposed model. The Eexp and Eid are trained to extract expression and identity representations respec-
tively by using our unsupervised disentangling method. By exploring the disentangled representations, networks Dflow, Dexp, MLPs and Did

are trained to generate the representation-removed images, the neutral face F̂ and the mean face F̄ , and to reconstruct the representation-
added images, the input face F

′
and the neutral face F̂

′
. Please note that the proposed method needs two images to train the model as

described in Sec. 2.2 and 2.4, and we only show a single image forwarding here for simplicity.

• re-expression. The re-expression is defined as assign-
ing Rexp to the neutral face F̂ for reconstructing face
with expressions F

′
.

• de-identity. We define de-identity as an operation for
removing Rid from the input neutral face F̂ in order to
obtain the mean face F̄ .

• re-identity. The re-identity is defined as the process
of recovering the neutral face F̂

′
back from the mean

face F̄ according to Rid.

As illustrated in Figure 2, the overall architecture of our
proposed model consists of two encoders (Eexp and Eid) for
extracting expression and identity representations respec-
tively, and two decoders (Dexp, Did) for learning nonlinear
mapping functions of the aforementioned four processes. In
the following, we detail the proposed unsupervised learning
method to disentangle expression and identity representa-
tions.

2.1. Expression Representation

We start with the introduction of facial motion cycle-
consistency in the following. We denote that the expression
representations Rexp are learned by an encoder Eexp from
the input face image F :

Rexp = Eexp(F ) . (2)

As the idea described in the previous section, we model a
facial expression as the optical flow field between the neu-
tral face and the face with expression. Therefore, the for-
ward (F → F̂ ) optical flow field flowfw ∈ R2×H×W ,
where H and W is the height and width of the input image,
is learned by the decoder Dflow from expression represen-
tations. Moreover, according to the well-known forward-
backward flow consistency [1, 19], we can compute the

backward (F̂ → F ) optical flow field flowbw according to
flowfw, which basically is inverse flowfw by a warp func-
tion W:

flowfw =Dflow(Rexp) ,

f lowbw =−W(flowfw, f lowfw) .
(3)

We use bilinear interpolation to implement the warping op-
eration W as in [39]. By using the forward optical flow
field flowfw we can warp F pixel-wisely to obtain an inter-
mediate facial image, denoted as F̃ . Followed by using the
corresponding backward optical flow field flowbw, we are
able to warp back from F̃ to reconstruct F . This procedure
straightforwardly lead to a reconstruction loss Lflow which
is defined as:

Lflow = |F −W(W(F, flowfw), f lowbw)| . (4)

Furthermore, we exploit a general image feature ex-
traction to represent a face image, that is, the coarse-to-
fine feature maps featF obtained from layers conv2 1,
and conv3 1 of VGG19 network pre-trained on Ima-
geNet [37]. Given a forward flow field flowfw, we sim-
ply use the bilinear interpolation function ds(·) to obtain
ds(flow

fw) of the size equal to featF . The de-expression
is then achieved by first warping featF with ds(flow

fw)
and then adopting a decoder Dexp to generate neutral face
image F̂ :

F̂ = Dexp(W(featF , ds(flow
fw))) . (5)

Moreover, we argue that the image features featF̂ of a neu-
tral face obtained by VGG19 could be warped back via the
downsampled backward flow ds(flow

bw) and then be fed
into the decoder Dexp for reconstructing a face with expres-
sion, denoted as F

′
, which ideally should be identical to the
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Figure 3. Illustration of (a) facial motion cycle-consistency for learning expression representations, and (b) identity cycle-consistency for
learning identity representations.

original face F . This process is exactly the re-expression:

F
′
= Dexp(W(featF̂ , ds(flow

bw))) . (6)

2.2. Facial Motion Cycle-Consistency: Invariance
for Learning Expression Representation

The change on a face image F caused by a facial motion
can be expressed in terms of a spatial image transformation
T , where we denote the corresponding face image with dif-
ferent motion but the same identity as FT . As both F and
FT are with the same identity, their corresponding neutral
faces should be also identical. That is, their decoded neutral
faces after performing de-expression are invariant to each
other, which leads to the constraint:

F̂ = F̂T . (7)

Following the concept of this invariance, we should be able
to apply the re-expression operation on featF̂T

(the fea-
tures for the decoded neutral face of FT ) via the down-
sampled backward flow ds(flow

bw
F ) of F (related to the

expression of F ) to reconstruct a face image denoted as
F

′′
= Dexp(W(featF̂T

, ds(flow
bw
F ))), which ideally is

quite similar to the original F due to the hypothesis that
featF̂ = featF̂T

as F̂ = F̂T . The similar story holds for
performing re-expression on featF̂ by ds(flow

bw
FT

) to re-
construct F

′′

T = Dexp(W(featF̂ , ds(flow
bw
FT

))), which is
almost identical to FT . The illustration of this invariance,
also named as facial motion cycle-consistency, is shown in
Figure 3(a).

The reconstruction derived from the invariance (that is
F

′′
versus F and F

′′

T versus FT ) builds up the objectives
Lexp for learning the expression representations Rexp, where
we utilize both the L1 loss and the perceptual loss [11, 21]
to evaluate the error of reconstruction:

Lexp(F, FT ) =|F − F
′′
|+ |FT − F

′′

T |

+λ(Φ(F, F
′′
) + Φ(FT , F

′′

T )) ,
(8)

where λ is set to 0.05 to balance the L1 and perceptual
losses. The perceptual loss is defined as Φ(F, F

′′
) =

∑
l∥ϕl(F ) − ϕl(F

′′
)∥2 +

∑
l∥G(ϕl(F )) − G(ϕl(F

′′
))∥2.

The function ϕl(·) extracts VGG19 features from layer l, in
which the conv2 1, conv3 1, and conv4 1 layers are
used here. The function G(·) calculates the Gram matrix of
the feature map.

2.3. Identity Representation

In terms of identity representation Rid, we utilize the en-
coder Eid to extract Rid from the input face image F :

Rid = Eid(F ) . (9)

Based on the idea described previously, we argue that the
identity representation could be deprived from the neutral
face to obtain the mean face. To implement the de-identity
operation, we design a decoder Did to generate the mean
face F̄ from the modulated VGG features featF̂ of a neutral
face F̂ , which is similar to the idea of feature modulation
idea proposed in the AdaIN paper [18]:

F̄ = Did(
featF̂ − µ(featF̂ )

σ(featF̂ )
σm + µm) , (10)

where µ(·) and σ(·) are used to compute the mean and stan-
dard deviation respectively, and µm and σm are learned from
Rid by the multi-layer perceptron MLPde:

µm, σm = MLPde(Rid) . (11)

Furthermore, the re-identity can be achieved in a similar
manner but reversely with the decoder Did:

F̂ ′ = Did(
featF̄ − µ(featF̄ )

σ(featF̄ )
σid + µid) , (12)

where the µid and σid are also learned from Rid but by an-
other multi-layer perceptron MLPre.

2.4. Identity Cycle-Consistency: Invariance for
Learning Identity Representation

We hypothesize that the mean face is global for all the
faces. In other words, no matter starting from which neu-
ral face of any identity, we should always obtain the same
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mean face after performing de-identity operation. Given the
neutral faces F̂1 and F̂2 of different identities, we can derive
the invariance related to identity as:

F̄1 = F̄2 . (13)

Therefore, we should be able to reconstruct F̂1 by using its
corresponding {µid

1 , σ
id
1 } to apply the re-identity operation

on the mean face obtained from F̂2. The result of this re-
construction is denoted as F̂

′′

1 :

F̂
′′

1 = Did(
featF̄2

− µ(featF̄2
)

σ(featF̄2
)

σid
1 + µid

1 ) . (14)

Again, similar story holds to perform re-identity operation
(with {µid

2 , σ
id
2 }) on the mean face obtained from F̂1 to re-

construct F̂2. We denote the reconstruction result as F̂
′′

2 :

F̂
′′

2 = Did(
featF̄1

− µ(featF̄1
)

σ(featF̄1
)

σid
2 + µid

2 ) . (15)

The illustration of this invariance related to identity rep-
resentations, also named as identity cycle-consistency, is
shown in Figure 3(b).

As the way that Lexp is defined, the reconstruction de-
rived from the invariance (that is, F̂

′′

1 versus F̂1 and F̂
′′

2

versus F̂2) leads to the objectives Lid for learning the iden-
tity representations Rid:

Lid(F̂1, F̂2) =|F̂1 − F̂
′′

1 |+ |F̂2 − F̂
′′

2 |

+λ(Φ(F̂1, F̂
′′

1 ) + Φ(F̂2, F̂
′′

2 )) .
(16)

Moreover, we additionally introduce a margin loss Lm to
constrain the mean face:

Lm(F̄ , F̂ ) = max(
∥∥∥F̄ − F̂

∥∥∥− α, 0) , (17)

where we set α = 0.1 in all experiments. The main moti-
vation behind this margin loss is that we would like to con-
strain the difference between the mean face and the neutral
face to be within a margin. Otherwise the obtained mean
face could potentially become an arbitrary image far from a
face image.

3. Experiments
We report experimental results for a model trained on

the combination of VoxCeleb1 [29] and VoxCeleb2 [5] from
scratch. The trained representations are evaluated on several
tasks, including facial expression recognition, head pose re-
gression, person recognition, frontalization, and image-to-
image translation. Through various experiments, we show
that the acquired representation generalizes to a range of
facial image processing tasks.

3.1. Training Procedures

The facial motion cycle-consistency described in Sec-
tion 2.2 involves an image pair of faces with different ex-
pressions/poses but of the same identity. Fortunately, this
type of data can be easily available from the video record-
ing of human faces, for instance, the video of interview or
talk-show, which exists widely on the Internet nowadays.
Given any two frames in this type of video clip of a per-
son, we can easily obtain a pair of facial images showing
different expressions. Therefore, we can take the advantage
of this type of video sequences (as the dataset described in
the following) and collect training data for learning both the
expression and identity representations in an unsupervised
manner.

Dataset. The proposed model is trained on the combi-
nation of VoxCeleb1 [29] and VoxCeleb2 [5] datasets, in
which both datasets are built upon videos of interviews.
VoxCeleb1 has in total 153,516 video clips of 1,251 speak-
ers, while VoxCeleb2 has 145,569 video clips of 5,994
speakers. Video frames were extracted at 6 fps, cropped
to have faces shown in the center of frames, and then re-
sized to the resolution of 64×64. We adopted VoxCeleb2
test dataset for visualizing the intermediate results of our
disentanglement process.

Stage-wise Training Procedure. We introduce a stage-
wise training procedure for our model learning. There are
two main stages for sequentially training different parts of
the proposed model, in order to disentangle the expression
and identity representations.
– Stage 1: training of Eexp, Dflow and Dexp
For training the subnetworks related to the de-expression
and re-expression parts, as the green-shaded components
shown in Figure 2, the objectives of Lflow and Lexp are uti-
lized to update {Eexp, Dflow, Dexp}. The transformation T
needed for the use of Lexp can be simply obtained by hav-
ing the horizontal flipping (that is, FT is the horizontally
flipped version of F ) or taking any arbitrary pair of faces
from different frames (that is, two faces of the same person
shown at different times in a video). We provide an ablation
study in the supplementary materials.
– Stage 2: training of Eid, Did, MLPre, and MLPde
For training the subnetworks related to the de-identity and
re-identity parts, as the orange-shaded components shown
in Figure 2, both the objectives of Lid and Lm are applied to
update all of these subnetworks.

Implementation Details. Our proposed model is imple-
mented based on PyTorch framework and trained with the
Adam optimizer (β1 = 0.5, and β2 = 0.999). The batch
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size is set to 32 for all the training stages. The initial learn-
ing rate is 0.00005 in the Stage 1 and 0.0001 in the Stage 2.
The Stage 1 and Stage 2 are trained for 40 and 20 epochs
respectively. The learning rate is decreased by a factor of
10 at half of total epochs. Moreover, both representation
encoders (i.e. Eexp and Eid) adopt the same network archi-
tecture which is a 16-layer CNN. We leverage a VGG-19
[37] for the general feature extraction (denoted as VGG19
component in the Figure 2), where the VGG-19 encoded
facial features can be further passed through our decoders
(i.e. Dexp or Did) to generate new facial images. The model
architectures are detailed in the supplementary materials.

Baselines. We adopt the following baselines for making
evaluations and comparisons in terms of the quality and rep-
resentativeness of the extracted facial features:
– HoG descriptor [6]: We follow the same setting as
in [23], where the facial images are first rescaled to the size
of 100×100, then the HoG feature of 3,240 dimensions is
extracted for each image.
– LBP descriptor [30]: Similar to the HoG descriptor, we
follow the same setting as in [23] to extract 1,450 dimen-
sional LBP feature vector from each of the facial images
which are resized to 100×100.
– MoCo [16]: We adopt the state-of-the-art self-supervised
representation learning method, MoCo, as a strong baseline
for us to compare with. We follow the MoCo algorithm to
train the feature extractor (in which its network architec-
ture is the same as our encoders) based on the same training
dataset as ours (i.e. VoxCeleb1 and VoxCeleb2). The train-
ing runs for 40 epochs with SGD optimizer, batch size of
128, momentum 0.999, and 65,536 negative keys.
– Self-supervisely learnt facial representations: Three
state-of-the-art self-supervised frameworks of facial repre-
sentation learning [24, 26, 41] are utilized to compare with
our work. We directly adopt the models officially released
by their authors (which are all pretrained on the Voxceleb
dataset) for experimenting the downstream tasks of expres-
sion classification and head pose regression. Please note
that we apply a linear protocol on their learnt features to
have a fair comparison.

3.2. Intermediate Results of Our Model

Figure 4 illustrates several examples of the intermediate
results obtained from our model, including the input faces,
forward flow fields, neutral faces, backward flow fields,
mean faces, and the faces reconstructed from their neutral
ones. We demonstrate that the proposed method can handle
face images with large variation in poses and can preserve
facial attributes such as wearing glasses or beard.

Visualization of the facial motion flows presents both the
head motion and the movement of facial muscles. The neu-
tral faces are deprived of facial motions in comparison to

Face
Forward

Flow

Neutral

Face

Backward

Flow

Mean

Face

Reconstructed

Face

Figure 4. Visualization of intermediate results of our model. Input
images are from the test set of the VoxCeleb2 dataset [5]. From left
to right, the columns sequentially show the input faces, forward
flow fields, neutral faces, backward flow fields, mean faces, and
the faces reconstructed from the corresponding neutral ones.

their original facial images. Moreover, the mean faces ob-
tained from different input images are almost identical to
each other, which is in line with our assumption of identity
invariance.

3.3. Evaluation for Expression Representation

Given the trained model, we investigate the learnt ex-
pression representation by evaluating the performance of its
applications on expression recognition and head pose re-
gression. The goal is to verify whether the expression rep-
resentation successfully encodes the information related to
the facial motions and poses as our definition (i.e. the ex-
pression factor contains all the variations between a face
image and its corresponding neutral face of the same iden-
tity, including facial motions and head poses). We conduct
linear-protocol evaluation scheme for demonstrating the ef-
fectiveness of our method.

3.3.1 Expression Recognition

Two datasets are used in the experiments of expression
recognition, i.e. FER-2013 [12] and RAF-DB [23]. FER-
2013 dataset [12] consists of 28,709 training and 3,589 test-
ing images, while RAF-DB dataset consists of around 30K
diverse facial images downloaded from the Internet. Please
note that for the RAF-DB dataset, we follow the experimen-
tal setup as [23] to particularly use the basic emotion subset
of RAF-DB, which includes 12,271 training and 3,068 test-
ing images. For the evaluation scheme of linear-protocol, in
order to directly verify the capacity of the expression fea-
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FER-2013 RAF-DB
Method Accuracy (%) Accuracy (%)
Fully supervised
FSN [50] 67.60 81.10
ALT [10] 69.85 84.50
Linear classification protocol
LBP 37.89 52.17
HoG 45.47 63.53
FAb-Net [41] 46.98 66.72
TCAE [24] 45.05 65.32
BMVC’20 [26] 47.61 58.86
MoCo 47.24 68.32
Ours 48.76 71.01

Table 1. Evaluation on the task of expression classification based
on the FER-2013 dataset [12] and RAF-DB dataset [23].

tures extracted by different models, we construct the linear
classifier upon the frozen expression representations to per-
form the expression recognition, as in [16]. We follow the
same procedure as [16] to train the linear layer (as the clas-
sifier) for 300 epochs, where the learning rate starts from
30 and decreases by a factor of 10 for every 80 epochs.
The classifiers are trained by the SGD optimizer with cross-
entropy objective and 256 batch size.

The quantitative results shown in Table 1 demonstrate
that the expression representation extracted from our pro-
posed method is able to provide superior performance with
respect to all the baselines. These results suggest that our
proposed method can be used as a pretext task for expres-
sion recognition, where the rich information of facial ex-
pression is well learnt in a self-supervised manner.

3.3.2 Regression of Head Pose

Our definition indicates that the information of head poses
would be also encoded into the expression representations.
Obviously the calculated flow fields using the proposed
method contain not only the local facial motion but also
the global head motion, suggesting that our expression rep-
resentation can also be used in the task of head pose re-
gression. We adopt the 300W-LP [33] dataset and the
AFLW2000 [52] dataset as the training and testing sets re-
spectively, for experimenting the head pose regression. For
the evaluation scheme of linear-protocol, we construct a lin-
ear regressor on top of the frozen expression representations
Eexp. The training runs for 300 epochs for the inear-protocol
with SGD optimizer and batch size set to 16.

As shown in Table 2, for the linear-protocol evalua-
tion scheme, the regressor based on our expression repre-
sentations achieves 12.47 in terms of mean absolute error
(MAE), which outperforms all the baselines. These results
demonstrate the effectiveness of our proposed method for
well capturing the head pose information into expression

Method Yaw Pitch Roll MAE
Fully supervised
FAN [3] 6.36 12.3 8.71 9.12
FSA-Net [46] 5.27 6.71 5.28 5.75
Linear regression protocol
Dlib (68 points) [22] 23.10 13.60 10.50 15.80
LBP 23.58 14.86 16.36 18.27
HoG 13.94 13.17 14.92 14.00
FAb-Net [41] 13.92 13.25 14.51 13.89
TCAE [24] 21.75 14.57 14.83 17.39
BMVC’20 [26] 22.06 13.50 15.14 16.90
MoCo 28.49 16.29 15.55 20.11
Ours 11.70 12.76 12.94 12.47

Table 2. Evaluation on the task of head pose regression, where
MAE stands for the mean absolute error.

representations.

3.4. Evaluating Identity Representations

We also investigate the applications of identity represen-
tations learned by using the proposed method on the Vox-
Celeb dataset. Good performance of person recognition
demonstrates that our identity representations do contain
rich information related to identities.

3.4.1 Person Recognition

In this work we adopt LFW [17] and CPLFW [51] dataset
for the evaluation of person recognition, particularly on per-
son verification. The LFW dataset comprises of 13,233 face
images from 5,749 identities and has 6,000 face pairs for
evaluating person verification. The CPLFW dataset is sim-
ilar to LFW but includes larger head pose variation. We
directly extract the identity representations for all of the im-
ages in the face pairs from two datasets by using the en-
coder Eid and then compute the cosine similarity between
identity representations of each pair of face images. Please
note that, the features from baselines (i.e. LBP, HoG, and
MoCo) are also directly applied to perform verification for
a fair comparison. As shown in Table 3, our identity repre-
sentations can achieve 73.72% in accuracy on LFW, which
outperforms the unsupervised state-of-the-art method [7].

3.5. Frontalization

Frontalization is the process of synthesizing the frontal
facing view of a single facial image. In this work, there
are two ways to obtain the neutral face in the frontal view:
de-expression and re-identity. The de-expression operation
removes the head motion and facial expressions from fa-
cial images and thus generates the neutral faces with frontal
view. On the other hand, the re-identity operation recov-
ers the neutral face by adding the identity to the mean
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LFW CPLFW
Method Accuracy(%) Accuracy(%)
Fully supervised
VGG-Face [31] 98.95 84.00
SphereFace [25] 99.42 81.40
ArcFace [8] 99.53 92.08
Unsupervised or hand-crafted features
VGG [7] 71.48 -
LBP 56.90 51.50
HoG 62.73 51.73
MoCo 65.88 55.12
Ours 73.72 58.52

Table 3. Evaluation on the task of person recognition based on the
LFW [17] and CPLFW [51] dataset. We compare the performance
of state-of-the-art methods in both supervised and unsupervised
categories.

(a)

(b)

Input

image

Figure 5. The frontalization results from (a) the proposed method
and (b) the method in [14]. These results clearly demonstrates the
capacity of frontalization for facial images with various poses by
using our method.

face which is already in frontal view. As shown in Fig-
ure 5(a), the proposed method is able to synthesize the neu-
tral faces from the facial images with various poses by the
de-expression operation. The input images are from the
LFW dataset [17] which are never seen during the training
of our model. We also show a state-of-the-art approach in
Figure 5(b) which additionally uses facial landmarks [14]
for qualitative comparison.

We notice that the synthesized images from the proposed
method are a little bit blurry, we hypothesize that it might
be caused by the plenty blurry training images in the Vox-
celeb dataset. We believe that further improvements can be
obtained by using other high-quality datasets.

3.6. Image-to-image Translation

The proposed model can naturally be used to perform
image-to-image translation by transferring the facial mo-
tion of the source image into the target one. To this end,
we simply calculate and then apply the backward flow field
of the source image to warp the neutral face of the target im-
age via the re-expression operation. As shown in Figure 6,

Target Source

X2Face

Ours

X2Face

Ours

Figure 6. Example results of the proposed method on image-
to-image translation in comparison to the X2Face [42] baseline.
X2Face shows artifacts when performing large pose transfer. No-
tice that the proposed method does not include adversarial training
to disentangle facial motion and to improve image quality.

our method can transfer the head pose and expression from
the source to the target without noticeable artifacts. On the
other hand, the results of X2Face method [42] reveal visi-
ble artifacts when the pose difference between source and
target is large.

4. Conclusions

In this work, we propose novel cycle-consistency con-
straints for disentangling of identity and expression repre-
sentations from a single facial image, that is, facial motion
cycle-consistency and the identity cycle-consistency. The
proposed model can be trained in an unsupervised man-
ner by superimposing the proposed cycle-consistency con-
straints. We perform extensive qualitative and quantitative
evaluations on multiple datasets to demonstrate the efficacy
of our proposed method on learning disentangled facial rep-
resentations. These representations contain rich and distinct
information of identity and expression, and can be used to
facilitate a variety of applications, such as facial expres-
sion recognition, head pose estimation, person recognition,
frontalization, and the image-to-image translation.
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