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Abstract

Predicting the future frames of a video is a challenging
task, in part due to the underlying stochastic real-world
phenomena. Prior approaches to solve this task typically
estimate a latent prior characterizing this stochasticity, how-
ever do not account for the predictive uncertainty of the
(deep learning) model. Such approaches often derive the
training signal from the mean-squared error (MSE) between
the generated frame and the ground truth, which can lead
to sub-optimal training, especially when the predictive un-
certainty is high. Towards this end, we introduce Neural
Uncertainty Quantifier (NUQ) - a stochastic quantification
of the model’s predictive uncertainty, and use it to weigh
the MSE loss. We propose a hierarchical, variational frame-
work to derive NUQ in a principled manner using a deep,
Bayesian graphical model. Our experiments on four bench-
mark stochastic video prediction datasets show that our
proposed framework trains more effectively compared to the
state-of-the-art models (especially when the training sets are
small), while demonstrating better video generation quality
and diversity against several evaluation metrics.

1. Introduction

Extrapolating the present into the future is a task essential
to predictive reasoning and planning. When artificial intel-
ligence systems are deployed to work side-by-side with hu-
mans, it is critical that they reason about their visual context
and generate plausible futures so that they can anticipate the
potential needs of humans or catastrophic risks and be better
equipped. Such a visual future generation framework could
also benefit applications such as video surveillance [59], hu-
man action recognition and forecasting [51, 57] as well as
simulation of real-world scenarios to train robot learning
algorithms, including autonomous driving [28]. However,
such applications have a high element of stochasticity, which
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Figure 1. Qualitative results vis-4-vis state-of-the-art video predic-
tion baselines using the proposed NUQ framework on the BAIR
Push dataset [15], trained using only 2,000 samples (rather than
the full 40K samples). Regions with high motion are shown by a
red box. Also shown is an estimate of the per-frame scaled uncer-
tainty estimated by our model. Note that the robotic arm changes
direction at t = 8, which is reflected in the predicted uncertainty.

makes this prediction task challenging.

The resurgence of deep neural networks, especially the ad-
vent of generative adversarial networks [20], has enabled sig-
nificant progress in the development of frameworks for gen-
erating visual data, such as images [30]. While, temporally-
evolving extensions of such image generation techniques
have shown benefits in artificially producing video sequences
for deterministic visual contexts [56, 58, 19, 37, 29], they
usually fail to model real-world sequences that are often
highly stochastic.

Several recent works in video generation, thus design
modules to factor in data stochasticity while making pre-
dictions [39, 2, 13, 8]. Specifically, such methods assume
a latent stochastic prior, from which random samples are
drawn, in order to generate future frames. In Babaeizadeh et
al. [2], this stochastic prior is assumed to follow a fixed nor-
mal distribution, which is sampled at every time step, while
Denton and Fergus [13], learn this prior from data. The
latter’s key insight is to use a variational posterior to guide
the learning of the prior to produce the sufficient statistics of
the normal distribution governing the prior. Such stochastic



methods typically employ a deterministic decoder (a neural
network) that combines an embedding of the visual context
and a random sample from the stochastic prior to generate
a future video frame. The variance in this prior accounts
for the stochasticity underlying the data. To train such mod-
els, the mean-squared error (MSE) is then minimized by
comparing the predictions against the true video frames.

Nonetheless existing stochastic methods have largely ig-
nored the predictive uncertainty (aleatoric uncertainty) [31]
of the models, which might adversarially impact downstream
tasks that leverage these predictions. From a machine learn-
ing stand point, ignoring the predictive uncertainty might
lead to the model being unnecessarily penalized (via the
MSE), even if it makes a very uncertain prediction that ends
up being different from the ground-truth. This can destabi-
lize the training of the underlying neural networks, leading
to slower convergence or requiring larger training data. This
is of importance because such data might be expensive or
sometimes even difficult to collect (e.g., predicting the next
human actions in instruction videos, or a rare traffic incident),
and thus effective training with limited data is essential.

In this work, we rise up to these challenges by quantifying
the predictive uncertainty of a stochastic frame prediction
model and using it to calibrate its training objective. In par-
ticular a stochastic estimate of the predictive uncertainty,
derived from the latent space of the model, is used to weigh
the MSE. That is, when the uncertainty is high, the MSE
is down-weighted proportionately, and vice versa; thereby
regularizing the backpropagation gradients to train the frame
generation module. Moreover, this uncertainty estimate can
be used for downstream tasks, such as for example, regulat-
ing the manuevers in autonomous driving [28, 57]. We call
our scheme, Neural Uncertainty Quantifier (NUQ).

We observe that the weight on the MSE that NUQ in-
troduces, basically amounts to the variance of the normal
distribution governing the generated output. Thus, an obvi-
ous consideration would be to estimate the variance directly
from the output. However, this may be cumbersome due to
the very high dimensionality of the output space (order of
the number of pixels). We instead, choose to derive it from
the variance of the latent space prior, which has far fewer
dimensions. Specifically, NUQ leverages a variational, deep,
hierarchical, graphical model to bridge the variance of the
latent space prior and that of the output. Our framework is
trained end-to-end. Sample generations by our framework
is shown in Figure 1. In addition, inspired by the recent
successes of generative adversarial networks [20, 37, 39],
we propose a variant of our framework that uses a novel
sequence discriminator, in an adversarial setting. This dis-
criminator module helps to constrain the space of possible
output frames, while enforcing motion regularities in the
generated videos.

To empirically verify our intuitions, we present experi-

ments on a synthetic (Stochastic Moving MNIST [13]) and
three challenging real world datasets: KTH-Action [48],
BAIR push [15], and UCF-101 [49] for the task of future
frame generation. Our results show that our framework con-
verges faster than prior stochastic video generation methods,
and leads to state-of-the-art video generation quality, even
when the dataset size is small, while exhibiting generative
diversity in the predicted frames.

Below, we summarize the main contributions of this pa-
per:

1. We present Neural Uncertainty Quantifier (NUQ), a
deep, Bayesian network that learns to estimate the pre-
dictive uncertainty of stochastic frame generation mod-
els, which can be leveraged to control the training up-
dates, for faster and improved convergence of predictive
models.

2. We propose a novel, hierarchical, variational training
scheme that allows for incorporating problem-specific
knowledge into the predictions via hyperpriors on the
uncertainty estimate.

3. Experimental results demonstrate our framework’s bet-
ter video generation and faster training capabilities,
even with small training sets compared to recent state-
of-the-art methods on stochastic video generation tasks,
across multiple datasets.

2. Related Work

Early works in video frame prediction mostly resorted
to end-to-end deterministic architectures [44, 50, 17]. Ran-
zato et al. [44] proposed to divide frames into patches and
extrapolate their evolution in time. Srivastava et al. [50]
use image encoders with pre-trained weights to encode the
frames. ContextVP [7] and PredNet [41] leverage Convo-
lutional LSTMs [62] for video prediction. Fragkiadaki et
al. [19] proposes pose extrapolation using LSTMs. More
recent approaches [37, 64] seek to predict frames bidirec-
tionally (future and past), during training. However, the
inherent deterministic nature of such models [29] often be-
comes a bottleneck to their performance. Instead, we seek to
investigate approaches that allow modeling of the underlying
stochasticity in the data while generating an assessment of
the model’s predictive uncertainty.

Stochastic approaches constitute a recently emerging and
one of the most promising classes of video prediction meth-
ods [39, 2, 13]. These approaches model the data stochastic-
ity using a latent prior distribution and are thus readily gen-
eralizable to real-world scenarios. Popular among them are
STORNSs [5], VRNNs [11], SRNNs [18], and DMMs [35].
SV2P [2] is a more recent method that uses a single set of
stochastic latent variables that are assumed to follow a fixed
prior distribution. Denton and Fergus [13] improve upon



SV2P [2] by allowing the prior distribution to be adapted at
every time step by casting the prior as a trainable neural net-
work. Their method is shown to achieve superior empirical
performance, thus underlining the importance of learning to
model data stochasticity. We also note that generative models
have recently been adapted to incorporate stochastic infor-
mation through a hierarchical latent space [53, 54]. Such
networks have also been applied to frame prediction tasks [8].
None of these approaches however, explore the effectiveness
of modeling the predictive uncertainty. While, technically it
might be possible that the stochastic modules in these prior
approaches can learn to quantify this uncertainty implicitly,
it may need longer training periods or larger datasets. In-
stead we show that explicitly incorporating the predictive
uncertainty into the learning objective, via a hierarchical,
variational framework improves training and inference.

Another line of work in frame prediction seeks to decou-
ple the video into static and moving components [55, 14,

, 20, 61, 21]. Some of these approaches are determinis-
tic, others stochastic. Denton er al. [14] extracts content
and pose information for this purpose. Villegas et al. [55]
adopt a multiscale approach towards frame prediction which
works by building a model of object motion, however they
require supervisory information, such as annotated pose, dur-
ing training. Ye et al. [63] propose a compositional approach
to video prediction by stitching the motion of individual
entities. While promising, their approach relies on auxiliary
information such as spatial locations of the entities, and as a
result, is difficult to generalize. Jin et al. [29] investigates de-
coupling in the frequency space, however they do not model
the data stochasticity explicitly. Hsieh et al. [27] describes a
similar approach by modeling the motion and appearance of
each object in the video, but without requiring any auxiliary
information. Different from these set of approaches, our
proposed framework models frames holistically and is thus
agnostic to the video content.

Modeling the predictive uncertainty in deep networks has
garnered significant attention lately [0, 12, 36,42, 52]. Some
of these works [1, 36, 42] investigate it in a classification
setting, while some others [0, 24] in the context of regression.
Uncertainty has also recently been explored in the context
of generative models [38, 43, 60]. However, predictive un-
certainty modeling in the context of frame prediction has
remained largely unexplored. NUQ attempts to fill this gap.

3. Background

Suppose x1.1 := (1, X2, - ,xr) denotes a sequence
of random variables, each x; representing a video frame
at time step t. Assuming we have access to a few initial
frames x1.p, to set the visual context (where 1 < F < T),
our goal is to generate the rest of the frames 41 onwards
autoregressively, i.e., conditioned on the seen frames and
what has been generated hitherto. This task amounts to

finding a prediction model py(-), parameterized by 6, that
minimizes the expected negative log-likelihood.

When unknown factors of variation are involved in the
data generation process, a determinstic predictive model
is insufficient. A standard way to incorporate stochastic-
ity is by assuming the generated frames are in turn condi-
tioned on a latent prior model p(z;); i.e., z; ~ p(2z¢), Tt ~
po(Te|x1.4—1, 2¢). Specifically, the stochasticity in the gen-
erative process is characterized by the variance in p(z;), that
produces diversity in z; ~ p(z;). Diversity among predicted
frames emerges as a result of this variance.

A well-known problem with the use of such latent stochas-
tic priors is the intractability that it brings into the estimation
of the evidence or the log-partition function: p(x¢|x1.4—1) =
IZt po(@e|®1.4—1, 2¢)p(2¢)dz;. This problem is typically
avoided by casting this estimation in an encoder-decoder
setup, where the encoder embeds 1., as z; ~ p(z¢|T1.t),
while the decoder outputs x; ~ pg(x|®1.4—1,2¢). In or-
der to train efficiently, access to a variational posterior
¢4 (Z¢|x1:¢) — that approximates the true posterior p(2¢|®1.¢)
of the encoder — is assumed. Using this approximate pos-
terior, learning the model parameters 6 and ¢ amounts to
maximizing the variational lower bound, Lg ¢ [33]:

log p(x¢|@1:4—1) > Lo,4, Where

Lo,s :=/ q¢(z¢|@1:¢) log po(@e|@1:4—1, 2¢)d2e
z¢

n
_ / de (Zt‘$14t) log Mdzt
zt ’ p(zt)
From the definition, this amounts to:
Lo = Egy(zilm.e) log po(xt|T1:t—1, 2¢)— o

KL (g4 (2¢|®1:t)||p(2t)) , for t > F.

Leveraging the re-parametrization trick ([33]) allows effi-
cient optimization of the likelihood loss in Eq. 2, permitting
us to learn the parameters 6 and ¢. Note that the expectation
term in Eq. 2 boils down to a standard MSE over all predicted
frames @ g4 1.7 in the training set when the py(-) term is as-
sumed to follow a Gaussian distribution with an isotropic
constant variance. In this setting, the KL divergence in Eq. 2
acts as a regularizer on g(-) so that this posterior does not
just copy an encoding of x; available to it as z;, instead
captures the density of a latent distribution that is useful to
the prediction model in maximizing the first term in Eq. 2.
In conditional variational autoencoders [2, 33], the la-
tent prior p(z;) is typically assumed to be A (0,1) - a
choice that can be sub-optimal. A better approach is per-
haps to learn this prior so that the stochasticity of the fu-
ture frame can be guided by the data itself. To this end,
Denton and Fergus [13] suggests a learned stochastic prior
model p(z¢) = py(2¢) = py(2¢|®1.4—1), parametrized by
1, which is learned by minimizing its divergence from the



variational posterior ¢ (-) through the KL-term in Eq. 2. As
the posterior g4 (-) has access to the current input sample x;,
it can guide the prior (which does not have access to x;, but
only to 1.;—1) to produce a distribution on z; that mimics
the posterior (and hence we can discard the posterior at test
time). Thus, the training-time sampling pipeline is given by:
Zt ~ Q¢(Zt|w1:t), Ty ~ pe(wt‘wlztfh z), and Py <i> q¢
(matching in distribution).

While learning the stochastic prior py,(-) allows for char-
acterizing the data stochasticity, the model’s predictive uncer-
tainty remains unaccounted for. Our hierarchical framework
for estimating this uncertainty, follows a two-step process.
The first is the estimation of the learned prior, py(-). The
key idea in the second step is to leverage the variance in
the learned prior py(-) to estimate this uncertainty. Since
the prior estimation network, py,(-), is retained both during
training and inference (unlike the posterior), this permits its
usage for downstream tasks, during inference.

4. Proposed Method

As alluded to above, we seek to control the prediction
model using the uncertainty estimated directly from the
stochastic prior. Subsequently, we assume the prediction
model consists of an LSTM, fy, with weights € such that:

Ty = f0(331:t717 Zt) = fe(wtfh 2t hfﬂ), 3)

where &; denotes the t*" generated frame and hY_, captures
the internal states of the LSTM. The generated frame & is
then sent through the likelihood model to compute the MSE.
With this setup, we are now ready to introduce our neural
uncertainty quantifier (NUQ). Figure 2 provides an overview
of our framework.

4.1. Neural Uncertainty Quantifier

As is standard practice, let us assume the data likelihood
model pg(x¢|T1.4-1, 2¢) ~ N (x4, blf)’ where b; denotes the
precision (inverse variance) of our prediction model, where
by > 0, b, € R. Denton and Fergus [13] assumes b, to be an
isotropic constant, such that the negative log-likelihood of
the predicted frame &; boils down to computing the ¢5-loss.
This reduces Eq. 2 to become the evidence lower bound
(ELBO) [33]:

T

1. 2
Logp = Z 5 |Z¢ — @]|” + 4
2F 1 S

KL (g4(2t|x1:0) || Py (2e|T1:0-1)) -

Our key insight to the proposed uncertainty measure
arises from the observation that the {5-norm term in Eq. 4
does not include any dependency on the uncertainty asso-
ciated with the prediction of &;. Note that there are two

extreme situations when this loss is large that impacts ef-
fective training: (i) when there is no uncertainty associated
with the generation of &, however the prediction model is
not trained well, such that &; does not match x;, and (ii)
when there is uncertainty involved in the generative model
such that the generated &, while plausible given the context,
is different from x;. Thus, the key research question for
effective model training becomes: how can we equip the pre-
diction model to differentiate these situations? Our solution
is to directly condition the prediction model with the uncer-
tainty derived from the prior py (2¢|®1:.—1), so that when
the stochasticity is high for the generated frames, the ¢5-loss
term is weighed down such that the gradients computed on
this term will have a lesser impact in updating the weights

of the neural network; thereby stabilizing the training.
Suppose our prior py, (2¢|®1:¢—1) is a normal distribution
N (u7,X7), with parameters p7, the mean, and X7 the
covariance matrix - capturing the predictive uncertainty, in
the latent space. For better characterization of this prior
model, we assume it to be implemented as an LSTM g, with
weights ¢ such that (u?, %) = gy(2;_1;h! ), where
hil denotes the hidden state. Similarly, we assume the pos-
terior g, (z¢|®1.¢) is normally-distributed: N'(p{, 37), and
is implemented using an LSTM {4 (x;; h?) with weights ¢
and hidden state hf . This leads us to the following sampling

pipeline:
. 0 1
& = fo(Ti—1,2;hy_1) NN(th,bT)’ ()
zilzra 1 ~ N(pF B7) 5 (107, 37) = gu(@e13 b)),

(6)

zt|w1:t ~ N(/J/g, E(tl) ; (,U/g, E(tl) = l(i)(xt; h;tp)a (7)

Using this setup, we are now ready to present our hierar-
chical, generative, variational model for uncertainty estima-
tion, an overview of which is shown in Figure 2. To set the
stage, let us assume the precision is sampled from the distri-
bution p(b;|@1.:—1). Then, we can rewrite the log-likelihood
in Eq. 1 by including the precision distribution as:

/ log p(x¢|bt, zt, 1.6—1) + log p(z¢]1:6-1) (8
bt,z¢
+ log p(be|w1:0—1) dby dzy

The above integral is intractable. Hence, we approximate
it by sampling b; and z;. Note that the first two terms taken
together is essentially the left-hand side of Eq. 1, except
with the additional conditioning on ;. Using the variational
lower bound [33], like in Eq. 1, we have :

log p(@e|be, 1:t-1) > By, (2 |2y.,) log Do (@t [T 16 -1, 2, bt) —

KL (g¢(zt|z1:t) lpy (2t|@1:0-1) , for t > F.
©)
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Figure 2. Overview of our approach.

Please see the supplementary for the derivation.

As stated before, we seek to connect the uncertainty %7
in the latent prior py(2¢|z1..—1) to the precision b;. We
accomplish this via a variational encoder-decoder network.
Such a formulation permits the flexibility of introducing
customized prior distributions on its latent space. During
training, the encoder component of this network, ¢»(-), with
parameters \, takes as input 37, and produces the sufficient
statistics of the posterior distribution ¢ (-) governing the
latent space of this network, while the decoder 7, (-), with
parameters v draws a sample s, from this distribution, and
decodes it to generate b;, with a distribution on b; denoted
by p,(+). This sampling scheme is described as follows:

bt ~ pu(bt|st7 ml:tfl) = pu(bt|st7 Ef)?

St ~ qx(st‘wl:tfl) = QA(3t|Ef)

(10)

In order to provide appropriate regularization for the
latent space distribution, ¢,(-), we assume a manually-
defined hyper-prior distribution governing the latent space
of this module denoted p(s;). Let the hyper prior p(s;) ~
D, (a3, 87), with parameters o}, 37 chosen by the user and
let gx(s¢|X7) ~ Da(a3, 37), where the parameters o, 37
are estimated by the encoder network (). With this setup,
analogous to Eq. 2, we obtain the following variational lower
bound on the likelihood of b;:

log p(bt|@1:t—1) > By, (5, 57) log pu (be]se, X7) —

KL (g (se[55) [| p(se)) for e > B O D)

Please see the supplementary for the derivation. Plugging
Eq. 9 and Eq. 11 in Eq. 8, we have the following:

Eq, (zil@1.0) l0g Po(@e|Tr1:6 -1, 20, b ) —
KL (g¢(zt|z1:t) lpe (2t @1:6-1)) +

By (stlwre—1) 108 Do (bef s, B7) — KL (qa(s:[37) [[p(se))
(12)
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Figure 3. Plate diagrams depicting the graphical model of our
NUQ-framework. (a) shows the sampling dependencies between
the learned prior and the uncertainty prediction modules, while (b)
shows our posterior sampling framework. The plates denote, for
example, ¢ — 1 repetitions of the random variable z in (a).

Assuming that pg(x¢|x1.4—1, 2, b¢) follows a Gaussian
distribution N (x4, b—lt), along the lines of Eq. 4, leads us to
our final ELBO objective, which we minimize:

T

1 .
L = Z B} [be || & — @ ||” — log be] —
t=F+1

Eq, (s¢|57) log pu (bt |s¢, X7 )+

m KL(qg (z¢]21:0)|py (2¢|21:0-1)) + 12 KL (g2 (5:125) [lp(5¢))
(13)

where 71,12 > 0 are regularization constants (as suggested
in Higgins et al. [25]).

Given our setup, a natural choice in a hierarchical
Bayesian conjugate sense is to assume p(s;) ~ I'(ag, 57),
the gamma distribution, which is a conjugate prior for the
precision. Unfortunately, however using the gamma distribu-
tion for the posterior does not permit the reparametrization
trick [34, 33], which is essential for making sampling-based
networks differentiable. While one may resort to approxima-
tions to the gamma prior such as using implicit gradients [1 6]
or generalized re-parameterization techniques [47], these ap-



proaches can be computationally expensive. Instead, we
propose to approximate it by a truncated normal distribu-
tion Ny, (af, B7) (which is amenable to re-parametrization),
where now o (> 0) and 3; correspond to the mean and the
standard deviation of the truncated normal, respectively and
are estimated by the encoder network (,(+). In practice, the
truncation is effected through rejection sampling [45]; i.e.,
we sample from a normal distribution, and reject samples
if they are negative. Empirically, we find this choice of the
hyper prior (being a gamma distribution) and our truncated-
normal posterior combination to be beneficial. Thus, the KL
divergence in Eq. 11 will eventually promote the network
¢ () to produce the sufficient statistics of a truncated-normal
distribution which will closely approximate the true gamma
hyper-prior governing p(s;). Additionally, since s; is a scalar
(€ R), thus b; (= é) is directly sampled from g, (-) rather
than through the decoder network, 7,,(-) . Figure 3 presents a
plate diagram of our proposed hierarchical graphical model.

4.2. Sequence Discriminator

Inspired by the success of generative adversarial net-
works in generating realistic images and realistic object mo-
tions [20, 20, 22, 4, 39, 37], as well as the synergy that GANs
bring about in improving the quality of other generative mod-
els [10, 23, 3], we propose to integrate NUQ with a sequence
discriminator, where the generated frame sequences are input
to a discriminator that checks for their realism and motion
coherence. Different from prior approaches that employ
GAN:Ss for future frame prediction [39, 37], our discrimi-
nator (D,,) is a recurrent neural network with weights w.
It takes as input k£ contiguous frames with image dimen-
sions &5, X &, and produces a non-negative score, denoting
the probability of that sequence being real or fake. Thus,
Dy, : ROW¥0wxk 5 R Suppose, Y1.x C @17 represents
k contiguous frames starting at a random time step from
video sequences x1.7 in the training dataset X'. If &;_j41.¢
represents a sequence of k generated frames, then our dis-
criminator loss is given by:

T
Lh.—— Z Ey, . ~x 10g [Day (y1:1)] + (14)
t=F+1

Eit—k+1:t~p(it—k+1:t‘ml:t—lwzl:t) log [1 - Dw(i:t*kﬂit)] )

where, the discriminator is trained to distinguish between the
generated (with label zero) and real (with label one) input
sequences, by minimizing £2, while the generator tries to
maximize it. Combining the ELBO loss in Eq. 13 with the
generator loss, we have our modified training loss for this
variant, given by £ = Eéj’@w’/\ — LD where y > 0isa
small regularization constant. For both variants (Eq. 13 or
Eq. 14), we optimize the final objective using ADAM [32].

5. Experiments

In this section, we empirically validate the efficacy of
NUQ on challenging real-world and synthetic datasets.
Datasets: We conduct experiments on four standard stochas-
tic video prediction datasets, namely (i) Stochastic Moving
MNIST (SMMNIST) [13, 10], (i) BAIR Robot Push [15],
(iii) KTH-Action [48], and (iv) UCF-101 [49]. In SMM-
NIST, a hand-written digit moves in rectilinear paths within
a 48 x 48 pixel box, bouncing off its walls, where the post
bounce movement directions are stochastic. The dataset
has a test set size of 1,000 videos [10]. The BAIR Push
Dataset [ 1 5] consists of 64 x 64 pixel videos featuring highly
stochastic motions of a Sawyer robotic arm pushing objects
on a table. This dataset has 257 test samples using the split
of Denton and Fergus [13]. The KTH Action Dataset [48] is
a small dataset of 64 x 64 pixel videos containing a human
performing various actions (walking, jogging, etc.), captured
in a controlled setting with a static camera. The test set for
this dataset consists of 476 videos. Finally, the UCF-101
Dataset [49] is a dataset of videos, resized to 64 x 64 contain-
ing 101 common human action categories (such as pushups,
cricket shot, etc.), spanning both indoor and outdoor activi-
ties. The test set for this dataset consists of 1,895 videos. We
hypothesize that by incorporating the predictive uncertainty,
NUQ undergoes more efficient training updates and can thus
train with fewer samples, efficiently. We therefore conduct
experiments with varying training set sizes for some of these
datasets.

Baselines and Evaluation Metrics: To carefully evaluate
the performance improvement brought about by incorporat-
ing our uncertainty estimation method into a stochastic video
generation framework, we choose three competitive and
closely-related state-of-the-art methods within the stochastic
video prediction realm as baselines, namely: (i) Denton and
Fergus [13], (ii) Castrejon et al. [8], and (ii) Hsieh er al. [27].
At test time, we follow the standard protocol of generating
100 sequences for all models and report performances on
sequences that matches best with the ground truth [13]. To
quantify the generation quality, we use standard evaluation
metrics: (i) per-frame Structural Similarity (SSIM) ([9]), (ii)
Peak Signal to Noise Ratio (PSNR), and (iii) Learned Per-
ceptual Image Patch Similarity (LPIPS) [65] - with a VGG
backbone. We report the average scores on these metrics
across all predicted frames.

Experimental Setup: For SMMNIST, BAIR Push, and
KTH Action, we train all methods with 5 seen and 15 un-
seen frames, while at test time 20 frames are predicted af-
ter the first 5 seen ones. When training with UCF-101,
15 seen and 10 unseen frames are used, while at test time
the number of unseen frames is set to 15. For the base-
line methods [13, 8, 27], we use the publicly available im-
plementations from the authors. To ensure our proposed
NUQ-framework is similar in learning capacity, we use the



Table 1. SSIM, PSNR, and LPIPS scores on the test set for different datasets after @1, @5, and @Convergence (C) (upto 150 epochs)
epochs of training with varying training set sizes. [Key: Best results in bold and second-best in blue.]

SSIM 1 PSNR * LPIPS |
Dataset: SMMNIST @ | @ | @ || @ | @ | @C || @l | @5 | @C
Number of training samples - 2,000
Ours 0.8686 | 0.8638 | 0.8948 || 17.76 | 18.13 | 18.14 || 0.3087 | 0.2836 | 0.1803
Ours (w/o discriminator) | 0.8599 | 0.8825 | 0.8929 || 17.82 | 18.07 | 18.48 || 0.3283 | 0.3158 | 0.1967
Denton and Fergus [13] | 0.8145 | 0.8650 | 0.8696 || 17.07 | 18.05 | 18.13 || 0.3429 | 0.3345 | 0.2321
Castrejon et al. [8] 0.8564 | 0.8748 | 0.8868 || 17.36 | 17.98 | 18.12 || 0.3392 | 0.3432 | 0.2262
Hsieh et al. [27] 0.4538 | 0.8419 | 0.8569 || 11.27 | 16.40 | 16.70 || 0.4370 | 0.3696 | 0.2842
Number of training samples - 8,000 (full training set)
@1 @5 @C @1 @5 @C @1 @5 @C
Ours 0.8524 | 0.8610 | 0.9088 || 17.93 | 18.14 | 19.07 || 0.3787 | 0.3013 | 0.1149
Denton and Fergus [13] | 0.8154 | 0.8607 | 0.8819 || 17.49 | 18.22 | 18.30 || 0.4061 | 0.3626 | 0.2813
Castrejon et al. [8] 0.8640 | 0.8708 | 0.8868 || 17.23 | 18.06 | 18.27 || 0.3939 | 0.3316 | 0.1040
Hsieh et al. [27] 0.5328 | 0.8374 | 0.8801 || 11.46 | 16.65 | 16.70 || 0.4217 | 0.4039 | 0.2747
SSIM 1 PSNR 1 LPIPS |
Dataset: BAIR Push @ | @ | @C || @ | @5 | @C | @ | @5 | @C
Number of training samples - 2,000
Ours 0.7709 | 0.8230 | 0.8314 | 18.40 | 19.15 | 19.26 || 0.3394 | 0.2014 | 0.1574
Denton and Fergus [13] | 0.7351 | 0.7853 | 0.8196 || 17.32 | 17.44 | 18.49 || 0.3531 | 0.3197 | 0.1725
Castrejon et al. [8] 0.7094 | 0.7961 | 0.8221 || 17.19 | 17.92 | 18.79 || 0.3433 | 0.2560 | 0.1742
Hsieh et al. [27] 0.4979 | 0.7901 | 0.7989 | 11.32 | 15.28 | 16.00 || 0.4159 | 0.3899 | 0.1891
Number of training samples - 43,264 (full training set)
@1 @5 @C @] @5 @C @] @5 @C
Ours 0.8135 | 0.8336 | 0.8460 || 19.03 | 19.14 | 19.31 || 0.1656 | 0.1470 | 0.1296
Denton and Fergus [13] | 0.7782 | 0.8198 | 0.8328 || 18.30 | 18.38 | 18.81 || 0.2119 | 0.1843 | 0.1499
Castrejon et al. [8] 0.7816 | 0.8309 | 0.8437 | 18.29 | 18.56 | 19.59 || 0.1878 | 0.1720 | 0.1181
Hsieh et al. [27] 0.7507 | 0.8123 | 0.8323 || 16.52 | 16.61 | 16.61 || 0.2140 | 0.1829 | 0.1713
. SSIM 1 PSNR t LPIPS |
Dataset: KTH Action | —G1——G5 T @c [ @1 | @5 [ @C | @ | @ | @C
Number of training samples - 1,911 (full training set)
Ours 0.7990 | 0.8192 | 0.8448 || 22.62 | 22.89 | 24.02 || 0.4309 | 0.3390 | 0.2238
Denton and Fergus [13] | 0.7028 | 0.8056 | 0.8374 || 21.29 | 22.93 | 24.73 || 0.4621 | 0.3580 | 0.2497
Castrejon et al. [8] 0.6345 | 0.8054 | 0.8510 || 21.31 | 21.12 | 24.82 || 0.4513 | 0.3471 | 0.2395
Hsieh et al. [27] 0.4647 | 0.5335 | 0.7057 || 11.25 | 12.32 | 16.44 || 0.5189 | 0.3939 | 0.2771
SSIM PSNR 1 LPIPS |
Dataset: UCF-101 @ | @ | @C || @ | @ | @C | @ | @5 | @C
Number of training samples - 11,425 (full training set)
Ours 0.7359 | 0.7636 | 0.7729 || 21.25 | 21.98 | 22.73 || 0.3914 | 0.2865 | 0.0836
Denton and Fergus [13] | 0.6253 | 0.7540 | 0.7603 || 19.35 | 20.60 | 21.64 || 0.3507 | 0.3006 | 0.1259
Castrejon et al. [8] 0.6712 | 0.7555 | 0.7756 || 20.58 | 20.58 | 22.53 || 0.3414 | 0.2965 | 0.1036
Hsieh ez al. [27] 0.6199 | 0.6800 | 0.7103 || 16.65 | 17.18 | 18.41 || 0.3989 | 0.3239 | 0.1771

Table 2. SSIM, PSNR, and LPIPS scores on the SMMNIST test set after @1, @5, and @Convergence (C) (upto 150 epochs) epochs of
training with alternative formulations of our model using 2,000 training samples. [Key: Best results in bold].

. SSIM + PSNR 1 LPIPS |
Dataset: SMMNIST @1 @5 @C @l | @ | @C @1 @5 @C
p(s¢) ~ Uniform[0, 1] 0.8173 | 0.8374 | 0.8523 17.6 | 17.95 | 18.06 || 0.3442 | 0.3038 0.198
Estimate b, from the decoder pg(-) 0.7627 | 0.7628 | 0.7828 || 17.54 | 17.55 | 17.55 || 0.3463 | 0.3259 | 0.2225
Estimate b; w/o variance encoder-decoder | 0.7450 | 0.7454 | 0.7648 16.22 | 16.53 | 16.78 0.3469 | 0.3263 | 0.2328
NUQ (Ours) 0.8686 | 0.8638 | 0.8948 || 17.76 | 18.13 | 18.14 || 0.3087 | 0.2836 | 0.1803

“DCGAN encoder-decoder” architecture for the frames, as
], for all datasets. Our variance
encoder network () (-) is a multi-layer perceptron with 2

in Denton and Fergus [

layers, and our sequence discriminator is an LSTM with a
single 256-d hidden layer. More architectural details are
in the Supplementary Materials. We set k = 3 in Eq. 14,
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Figure 4. Diversity Results: SSIM score with increasing number
of generated futures, per time step, on the SMMNIST test set, as a
quantification of output diversity (left) and qualitative generation
results (right) using NUQ trained with 2000 training samples.
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Figure 6. Evolution of scaled uncertainty on the SMMNIST dataset
(trained with 2,000 training samples) against time-steps.

Table 3. Human preference scores for samples generated using
NUQ versus competing baselines across different datasets,

Dataset (# Training Samples) || Prefer: Ours/ [8]/ [13]

SMMNIST (2000 samples) 89% /11% /0 %
BAIR Push (2000 samples) 78% /22% /0 %
KTH-Action (1911 samples) 78% /11% /11 %

and ~y to be 0.00001. We use 17; = 0.0001 and 7> = 0.001
in Eq. 13. Learning rate is set to 0.002 and no scheduling
is used. The hyper-parameters for the baseline methods are
chosen using a small validation set (~ 5% of training data).
State-of-the-Art Comparisons: In Table 1, we report quan-
titative evaluations of our model versus competing baselines
across the four datasets. We observe that both variants of the
NUQ outperform recent competitive baselines by wide mar-
gins on all measures (upto 10% in SSIM), with the one with

the discriminator being slightly better - underscoring the
benefits of adversarial training. While noticeable gains are
obtained across the board, NUQ really shines under limited
training set sizes. We surmise that this gain is attributable to
the failure of the baseline methods in incorporating predic-
tive uncertainty explicitly into the learning objective.

From the table, we also see that NUQ converges faster
than other methods both for small and large training set
sizes. Figures | and 5 show sample generation results from
SMMNIST, BAIR Push, and KTH-Action datasets versus
competing baselines, trained with 2,000 and 1,911 samples,
respectively. From these figures, we see that compared to
baseline methods, frames generated by our method are su-
perior at capturing both the appearance and the motion of
the object (i.e. digit/robot arm/human) even under limited
training data. Human annotators, when presented with a few
random sample generations by NUQ versus competing meth-
ods, overwhelmingly choose NUQ samples for their realism,
as shown in Table 3. Figure 6 shows the evolution of a scaled
uncertainty estimate derived from i over different frames.
The plot shows the increase in uncertainty co-occurs with
the bounce of the digit against the boundary, suggesting that
the uncertainty is well grounded in the data.

Alternative Formulations: Next, we discuss the results
of some alternative formulations of our model. We con-
sider: (i) replacing the gamma hyperprior on p(s;) with
Uniform(0, 1) distribution, (ii) estimating b; from the frame
decoder py(+) by producing a diagonal covariance matrix,
and (iii) assuming a deterministic mapping from X7 to b;
through a multi-layer perceptron. Table 2 presents the per-
formance of these alternatives on the SMMNIST dataset.
From the first row of the table, we see that choosing the
Uniform(0, 1) as priors results in suboptimal variants of
NUQ. Further, the results also show that either estimating
b, directly from the decoder py(-), or computing it deter-
ministically from 37 performs poorly, suggesting that such
estimation techniques are not ideal.

Diversity: In Figure 4 (a), we plot the average SSIM of NUQ
for a set of futures, with increasing cardinality of this set.
Our plot shows that the SSIM increases with larger number
of futures, suggesting that the possibility of matching with
a ground truth future increases with more futures, implying
better diversity of our model. Figure 4(b) presents diverse
generation results on the SMMNIST dataset by NUQ.

6. Conclusions

Recent approaches have demonstrated the need for model-
ing data uncertainty in video prediction models. However, in
this paper we show that the state of the art in such stochastic
methods do not leverage the model’s predictive uncertainty
to the fullest extent. Indeed, we show that explicitly incor-
porating this uncertainty into the learning objective via our
proposed Neural Uncertainty Quantifier (NUQ) framework,



can lead to faster and more effective model training even
with fewer training samples, as validated by our experiments.
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A. Uncertainty Visualizations

Figure 7 visualizes the scaled uncertainty values against
the visual frames, across the SMMNIST and BAIR Push
datasets, each trained with 2000 samples. See the caption of
the figure for more details.

B. Alternative Formulations

Is NUQ the best formulation that one could have for quan-
tifying uncertainty within a stochastic prediction model? In
this section, we propose several alternatives and empirically
evaluate them against the results we obtained using our for-
mulation of NUQ, as an answer to this interesting research
question.

B.1. Alternatives

Alternative Priors: In this variant, we replace our empirical
gamma hyperprior, p(s;), with a half-normal distribution
with location set to 0 and scale set to 1, and in another variant
we use the Uniform(0, 1) distribution as the hyperprior.
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Figure 7. Top two rows: Evolution of scaled uncertainty on the
SMMNIST dataset (with NUQ trained with 2,000 training samples
on the SMMNIST Dataset) against time-steps. The plot shows
the increase in uncertainty co-occurs with the bounce of the digit
against the boundary. Bottom two rows: Scaled Uncertainty against
time-steps on BAIR Push (with NUQ trained with 2000 training
samples on the BAIR Push Dataset), showing that uncertainty co-
occurs with the occlusion of the robot arm.

Using Mahalanobis Distance: In this variant, we use the
frame decoder, py(-), to produce a diagonal covariance
instead of producing the parameters of the gamma prior.
Specifically, the output layer of the decoder now predicts
both the future frame and the diagonal elements of X7,
where we assume X7 is n X n, decoded frames are size
d x d, and D = d?. Generating an estimate of the output
covariance matrix thus implies predicting the D terms along
the diagonal of this matrix. We then reshape these D terms
to d x d to match with the pixel resolution of the frames. We
then use this uncertainty (precision) to weigh the MSE at a
pixel level (instead of the precision b;). This uncertainty is
visualized for a sequence in Figure 8.

GT a A
gneerainy _

Figure 8. Visualization of pixel-wise uncertainty obtained by esti-
mating the variance of the output, directly from the decoder for the
SMMNIST Dataset, trained with 2,000 training samples.



Directly Estimate precision from latent prior: In this for-
mulation, we repurpose the variance encoder (), to emit the
variance to the MSE, b, directly. This is in contrast with
the architecture of the variance encoder in NUQ, where it
is used to estimate the sufficient statistics of the truncated
normal distribution, of and 3;. We essentially replace the
final hidden layer of the network with a single neuron with
sigmoid activation in order to realize this setting.

B.2. Alternatives — Results

In Table 4, we provide comparisons of the above alter-
native formulations on the SMMNIST dataset, trained with
2,000 training samples. From the first row, we see that the
Uniform|[0, 1] distribution variant under-performs compared
to using the gamma distribution as a hyper-prior, as in NUQ.
We surmise that this is due to these distributions being more
spread out over the probability space, as a result of which
they often sample s;’s which do not match the true under-
lying distribution. This results in the MSE term in the loss
function, being overly weighed when it should not be and
vice-versa.

Results for our other alternative, to compute the
Mahalanobis-type precision matrix directly from the frame
decoder, is provided in the second row in Table 4; its perfor-
mance is similar to the other alternatives. We also attempted
to directly estimate s; from the variance of the latent space
prior 7. The results for this setting are shown in the third
row in Table 4. However, this setting performs poorly sug-
gesting that a deterministic mapping of the 37 to s; is not
ideal, perhaps because the difference in the uncertainty distri-
bution in the latent space and in the output is not accurately
modeled this way. Overall, the results in the table clearly
show that our proposed formulation of the model yields the
best empirical performance, nonetheless some other formu-
lations to our model seem promising.

C. Architectural Details

In this section, we elaborate on some of the architectural
design choices that we made while implementing NUQ. Our
primary objective while designing the architectural frame-
work of NUQ was to ensure that our network’s generation
capacity remained similar to the state-of-the-art baselines,
such as Denton and Fergus [13], such that all gains obtained
by our framework, could be attributed to modeling the pre-
diction uncertainty.

C.1. Frame Encoder

Our frame encoder consists of a hierarchical stack of
2d-convolution filters. For 48 x 48 inputs, we design a
4-layer network. The first layer consists of 64, 4 x 4 2d-
convolutional filters with stride 2 and padding 1, which are
followed by 2d-BatchNorm and LeakyReLU non-linearity.
In every subsequent layers, we keep doubling the number of

filters. For 64 x 64 inputs, we adapt this network to make it
a S-layer one.

C.2. LSTMs

All LSTM modules in our framework, including the se-
quence discriminator, have a single hidden layer with 256-d
hidden states, except for the LSTM in the frame decoder
pe(-), which has 2 hidden layers, each of 256-d.

C.3. Frame Decoder

We design the frame decoder in congruence with the
frame encoder, so as to permit skip connections between
them, in a U-Net style network [46]. Therefore, our frame
decoder obeys a similar architecture akin to the frame en-
coder, except the 2d-convolution filters are now replaced
with 2d-deconvolution filters and the number of filters in
each layer is doubled (in order to accommodate the skip
connection).

C.4. Variance Encoder

Our variance encoder, ¢ (), is a 2-layer multi-layer per-
ceptron, with LeakyReLU activations, which ultimately pro-
duces the sufficient statistics of the truncated normal distri-
bution governing the posterior in the latent space.

D. Derivations

In this section, we present the derivations of Eq. 9 and
Eq. 11 in the paper. We derive Eq. 9, along the lines
of the variational lower bound derivation in Kingma and
Welling [33]:

log p(x+|bt, x1:64—1) :10gp(mt\buw1:t71)~/ 4 (2t|T1:)d2e

2t

Xy, Ze|be, 1t
:/ q¢(zz|m1;t)logp( £ t| t Lt 1)d2t
z¢

p(zt|@1:t)

p(mfazt|bt7m1:t—1)
= q (zi ml:t)log
/zt ¢ l Q¢(zt|a71:t)

9o (zt|T1:t)
+ zil®1.t) log ————""2dz
/Zt 4o (zt|@1:¢) log PP

dzt

15)
The second term in the above equation is essentially a
KL-Divergence, which is non-negative. We therefore have:

dZt

p(mhzt‘bt,ml:t—l)
log p(x¢|be, 14— z/q zi|lx1t) lo
g p(x|be, T1:0—1) . »(zt|®1:¢) log Q¢(Zt|$1;t)

:/ qu(zt‘mlzt)logp(mtkl'l:t—l,Zt,bt)p(zt\l’u—ﬂdzt
e q4>(zt|m1:t)
(16)

This yields Eq. 9, when the expression inside the log is split
into two, with the first term amounting to the expectation
term in Eq. 9, while the second one resulting in the KL-term.




Table 4. SSIM, PSNR, and LPIPS scores on the SMMNIST test set after @1, @5, and @Convergence (C) (upto 150) epochs of training with
alternative formulations of our model using 2,000 training samples. [Key: Best results in bold].

. SSIM *+ PSNR 1 LPIPS |
Dataset: SMMNIST @l @5 @l | @ | @C | @I @5 @C
p(st) ~ Uniform|0, 1] 0.8173 | 0.8374 | 0.8523 17.6 | 17.95 | 18.06 || 0.3442 | 0.3038 | 0.198
Estimate b; from the decoder pg(-) | 0.7627 | 0.7628 | 0.7828 || 17.54 | 17.55 | 17.55 || 0.3463 | 0.3259 | 0.2225
Estimate b; w/o variance enc-dec 0.7450 | 0.7454 | 0.7648 || 16.22 | 16.53 | 16.78 || 0.3469 | 0.3263 | 0.2328
NUQ (Ours) 0.8686 | 0.8638 | 0.8948 || 17.76 | 18.13 | 18.14 | 0.3087 | 0.2836 | 0.1803
Our NUQ framework is a essentially, a hierarchical varia-
tional encoder-decoder network, where the second level of 0.8945
the hierarchy is described by Eq. 11. Derivation for Eq. 11, 08940
thus proceeds analogously to Eq. 9, as follows: EZ::Z
log p(bt|®1:t—1) = logp(btla:mq)./ qr(st|@1:6-1)dse “osm0
bt, St|5131;t—1) 0.8910

g (st|@1:e—1 log ds¢

p(
p(5t|bt7w1:t71)
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g (se|lere—1)
(St‘btyml:t—l)

dSt

_|_

qA (st|@1:t—1) log ds;

I/ de 5t|$1t 1 log

(17)

Like before, the second term in the above equation is

essentially a KL-Divergence, which is non-negative. We
therefore have:

bey St|@1:4—
log p(be|@1:4-1) 2/ qx(8t|w1:t71)10gw
st qA(St‘mlztfl)

be|lT1.e-1,
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dSt
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(18)
When the expression inside the log is split into two, the first
term results in the expectation term in Eq. 11, while the
second one amounts to the KL-term.

In this section, we present model performances of NUQ
versus competing baselines on the UCF-101 dataset [49] — a
dataset of videos, resized to 64 x 64 containing 101 common
human action categories (such as pushups, cricket shot, etc.),
spanning both indoor and outdoor activities. The test set for
this dataset consists of 1,895 videos. In order to conduct
experiments in this setting, we train all models by showing
them 5 context frames and task them to predict the next 15.
The results showcase the dominance of NUQ over competing
methods on this challenging dataset as well.

E. Quantitative Evaluation of Diversity

In order to analyze the extent of diversity in the generated
frames of our model, we first resort to quantitative evalua-
tion. In Figures 9(a), 9(b), we plot the average SSIM scores
(over time steps) against the number of generated future

0 20 40 60 80 100
Number of Candidate Futures

(a) SMMNIST - SSIM

0.831

0.830

0.829

Average SSIM

0.828

0.827

0 20 40 60 80 100
Number of Candidate Futures
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Figure 9. Diversity in Generated Futures: Evaluation of diversity in
the generation using SSIM on: (a) SMMNIST, (b) BAIR-Push for
increasing number of candidate futures, computed by comparing
against the ground truth (higher the better). We used 2000 samples
for training NUQ for both datasets.

candidates per time-step for each of the three datasets. For
purposes of these plots, the SSIM is computed between the
generated samples and the ground-truth. The monotonically
increasing curve, in these figures, suggests straightforwardly,
that sampling more future per time step helps in better gener-
ation, resulting from the synthesis of more accurate samples
- indicating the model’s diversity. In Figures 10(a), 10(b),
we plot the average SSIM and PSNR scores between ev-
ery pair of candidates generated in each time step, against
the number of futures. These plots decrease monotonically,
suggesting greater difference (i.e. diversity) between the
generated frames as the number of sampled futures goes up.
See the figure caption for more details.
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Figure 10. Diversity in Generated Futures: Evaluation of diversity
in the generation: (a,b) shows diversity in the generated futures
by comparing intra-SSIM distances between all the futures, at a
given time step, and computing the average (lower the better), for
SMMNIST and BAIR Push respectively. For each of these datasets
NUQ was trained with 2000 samples.

Seen Frames Predicted Frames
t=2 =3 =4 t=5 =6 t=7 t=8 =9 =10 =11 =12 =13 =14 =15 =16 t=17 (=18 =19
© o =] o -]

o o o
o] Q L] a o -] ) a o °

Scaled Uncertainty 0.04 0.06 0.04 0.03 0.03 0.02 0.02 0.02 0.00 0.00 001 0.01 0.01 0.03 0.03

o © o o
Ours ® O lBrioargtg Nt ity N, F e
L]
e . e e o ) e . '
Ours (Diverse S1) ' ' ' ' .
o ® © o o o
Ours (Diverse S2) o o o o o o

Denton and Fergus

Castrejon et al.

Hsieh et al.

Figure 11. Visualization of generations by our method versus com-
peting baselines on the SMMNIST Dataset, trained with 2,000
training samples. Further, diverse generations by our method are
also shown. Note scaled uncertainty higher than 0.05 is shown in
red.

F. Qualitative Results

We next present visualizations of frames generated us-
ing NUQ vis-4-vis competing baselines, on the SMMNIST,
BAIR push, UCF-101, and KTH Action datasets. Also
shown are diverse frame generations by NUQ for each of
these datasets.

The results in Figures 11, 14, 15, 16, 17, 18, 19, 20, 21
show qualitative generation results on the SMMNIST dataset,
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Figure 12. Visualization of generations by our method versus com-
peting baselines on the BAIR Robot Push Dataset, trained with
2,000 training samples. Further, diverse generations by our method
are also shown. High motion regions are indicated by a red bound-
ing box, while spatial regions exhibiting high diversity are shown
by a green bounding box. Note scaled uncertainty higher than 0.05
is shown in red.

trained with 2000 samples. Besides the superior quality of
the results generated by our method, we note that for some
cases such as in Figures 17, 18, 19 the prediction of the
baseline method simply disappears. We surmise that this
is due to their inability to learn the motion dynamics of
the digit well, in uncertain environments. In particular, if
the motion is not aptly learnt, then the model often gets
penalized heavily for inaccurately placing a digit (via the
MSE loss), since this results in a high pixel-wise error. In
such a scenario, a model might prefer to not display the digit
at all. However, high stochasticity in the data may not suit
this well and as a result might hurt the generalization. By
intelligently down-weighting the MSE, we circumvent this
problem.

We also see in Figures 12, 22, 26, 23, 27, 28, 29, 30, 24, 25
the performance of different competing methods versus
NUQ on the BAIR push dataset, trained with 2000 sam-
ples. The figures reveal that our method captures the motion
of the robot arm, reasonably well, compared to competing
methods.

Figures 13, 31, 32 present sample generation results by
our method versus competing baselines on the KTH Action
dataset. From the figures, we see that while all of the meth-
ods do a reasonable job of modeling the appearance of the
person, nonetheless the competing methods fail to capture
the motion dynamics well.
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Figure 13. Visualization of generations by our method versus com-
peting baselines on the KTH Action Dataset, trained with the full
training data of 1,911 training samples. Further, diverse genera-
tions by our method are also shown. Spatial regions exhibiting
high diversity are shown by a green bounding box. Note scaled
uncertainty higher than 0.05 is shown in red.

Such trends extend into the UCF-101 dataset as well. The
results for this dataset are shown in Figures 33, 34.

Moreover, in some of the aforementioned figures (such as
Figures 14, 15, 16, 22, 12, 25, 31, 32, 33, 34 diverse sample
generations by NUQ is also shown.
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Figure 14. Visualization of generations by our method versus competing baselines on the SMMNIST Dataset, trained with 2,000 training
samples. Further, diverse generations by our method are also shown. Note scaled uncertainty higher than 0.05 is shown in red.
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Figure 15. Visualization of generations by our method versus competing baselines on the SMMNIST Dataset, trained with 2,000 training
samples. Further, diverse generations by our method are also shown. Note scaled uncertainty higher than 0.05 is shown in red.
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Figure 16. Visualization of generations by our method versus competing baselines on the SMMNIST Dataset, trained with 2,000 training
samples. Further, diverse generations by our method are also shown. Note scaled uncertainty higher than 0.05 is shown in red.
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Figure 17. Visualization of generations by our method versus competing baselines on the SMMNIST Dataset, trained with 2,000 training
samples. Further, diverse generations by our method are also shown. Note scaled uncertainty higher than 0.05 is shown in red.
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Figure 18. Visualization of generations by our method versus competing baselines on the SMMNIST Dataset, trained with 2,000 training
samples. Note scaled uncertainty higher than 0.05 is shown in red.
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Figure 19. Visualization of generations by our method versus competing baselines on the SMMNIST Dataset, trained with 2,000 training
samples. Note scaled uncertainty higher than 0.05 is shown in red.
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Figure 20. Visualization of generations by our method versus competing baselines on the SMMNIST Dataset, trained with 2,000 training
samples. Note scaled uncertainty higher than 0.05 is shown in red.
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Figure 21. Visualization of generations by our method versus competing baselines on the SMMNIST Dataset, trained with 2,000 training
samples. Note scaled uncertainty higher than 0.05 is shown in red.
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Figure 22. Visualization of generations by our method versus competing baselines on the BAIR Robot Push Dataset, trained with 2,000
training samples. Further, diverse generations by our method are also shown. High motion regions are indicated by a red bounding box,
while spatial regions exhibiting high diversity are shown by a green bounding box. Note scaled uncertainty higher than 0.05 is shown in red.
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Figure 23. Visualization of generations by our method versus competing baselines on the BAIR Robot Push Dataset, trained with 2,000
training samples. Further, diverse generations by our method are also shown. High motion regions are indicated by a red bounding box,
while spatial regions exhibiting high diversity are shown by a green bounding box. Note scaled uncertainty higher than 0.05 is shown in red.
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Figure 24. Visualization of generations by our method versus competing baselines on the BAIR Robot Push Dataset, trained with 2,000
training samples. Further, diverse generations by our method are also shown. High motion regions are indicated by a red bounding box,
while spatial regions exhibiting high diversity are shown by a green bounding box. Note scaled uncertainty higher than 0.05 is shown in red.
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Figure 25. Visualization of generations by our method versus competing baselines on the BAIR Robot Push Dataset, trained with 2,000
training samples. Further, diverse generations by our method are also shown. High motion regions are indicated by a red bounding box,
while spatial regions exhibiting high diversity are shown by a green bounding box. Note scaled uncertainty higher than 0.05 is shown in red.
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Figure 26. Visualization of generations by our method versus competing baselines on the BAIR Robot Push Dataset, trained with 2,000
training samples. High motion regions are indicated by a red bounding box. Note scaled uncertainty higher than 0.05 is shown in red.
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Figure 27. Visualization of generations by our method versus competing baselines on the BAIR Robot Push Dataset, trained with 2,000
training samples. High motion regions are indicated by a red bounding box. Note scaled uncertainty higher than 0.05 is shown in red.
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Figure 28. Visualization of generations by our method versus competing baselines on the BAIR Robot Push Dataset, trained with 2,000
training samples. High motion regions are indicated by a red bounding box. Note scaled uncertainty higher than 0.05 is shown in red.
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Figure 29. Visualization of generations by our method versus competing baselines on the BAIR Robot Push Dataset, trained with 2,000
training samples. High motion regions are indicated by a red bounding box. Note scaled uncertainty higher than 0.05 is shown in red.
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Figure 30. Visualization of generations by our method versus competing baselines on the BAIR Robot Push Dataset, trained with 2,000
training samples. High motion regions are indicated by a red bounding box. Note scaled uncertainty higher than 0.05 is shown in red.
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Figure 31. Visualization of generations by our method versus competing baselines on the KTH Action Dataset, trained with the full training
data of 1,911 training samples. Further, diverse generations by our method are also shown. Spatial regions exhibiting high diversity are
shown by a green bounding box. Note scaled uncertainty higher than 0.05 is shown in red.
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Figure 32. Visualization of generations by our method versus competing baselines on the KTH Action Dataset, trained with the full training
data of 1,911 training samples. Further, diverse generations by our method are also shown. Spatial regions exhibiting high diversity are
shown by a green bounding box. Note scaled uncertainty higher than 0.05 is shown in red.
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Figure 33. Visualization of generations by our method versus competing baselines on the UCF-101 Dataset, trained with the full training
data of 11,425 training samples. Further, diverse generations by our method are also shown. Spatial regions exhibiting high diversity are
shown by a green bounding box. Note scaled uncertainty higher than 0.05 is shown in red.
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Figure 34. Visualization of generations by our method versus competing baselines on the UCF-101 Dataset, trained with the full training
data of 11,425 training samples. Further, diverse generations by our method are also shown. Spatial regions exhibiting high diversity are
shown by a green bounding box. Note scaled uncertainty higher than 0.05 is shown in red.



