
Towards Interpretable Deep Metric Learning with Structural Matching

Wenliang Zhao1,2,3*, Yongming Rao1,2,3*, Ziyi Wang1,2,3, Jiwen Lu1,2,3†, Jie Zhou1,2,3

1Department of Automation, Tsinghua University, China
2State Key Lab of Intelligent Technologies and Systems, China

3Beijing National Research Center for Information Science and Technology, China
zhaowl20@mails.tsinghua.edu.cn; raoyongming95@gmail.com;

wziyi20@mails.tsinghua.edu.cn; {lujiwen, jzhou}@tsinghua.edu.cn

Abstract

How do the neural networks distinguish two images? It
is of critical importance to understand the matching mech-
anism of deep models for developing reliable intelligent
systems for many risky visual applications such as surveil-
lance and access control. However, most existing deep met-
ric learning methods match the images by comparing fea-
ture vectors, which ignores the spatial structure of images
and thus lacks interpretability. In this paper, we present
a deep interpretable metric learning (DIML) method for
more transparent embedding learning. Unlike conventional
metric learning methods based on feature vector compari-
son, we propose a structural matching strategy that explic-
itly aligns the spatial embeddings by computing an optimal
matching flow between feature maps of the two images. Our
method enables deep models to learn metrics in a more
human-friendly way, where the similarity of two images can
be decomposed to several part-wise similarities and their
contributions to the overall similarity. Our method is model-
agnostic, which can be applied to off-the-shelf backbone net-
works and metric learning methods. We evaluate our method
on three major benchmarks of deep metric learning includ-
ing CUB200-2011, Cars196, and Stanford Online Products,
and achieve substantial improvements over popular metric
learning methods with better interpretability. Code is avail-
able at https://github.com/wl-zhao/DIML.

1. Introduction
Visual similarity plays an important role in a range of

vision tasks including image retrieval [33], person identifi-
cation [4] and image clustering [30]. Recent advances in
learning visual similarity are mostly driven by Deep Metric
Learning (DML), which leverages deep neural networks to

*Equal contribution.
†Corresponding author.

CN
N

CN
N

CC

marginal distributionfeature maps
image pair

Optimal
Transport

s= 0.449s = 0.59

s = 0.12

Figure 1: The main idea of the proposed deep interpretable
metric learning (DIML) method. Unlike most existing deep
metric learning methods match the images by comparing
feature vectors, we propose a structural matching strategy
that explicitly aligns the spatial embeddings by computing
an optimal matching flow between feature maps of the two
images to improve the interpretability of visual similarity.

learn an embedding space where the embedding similarity
in this space can meaningfully reflect the semantic similarity
between samples. A variety of deep metric learning methods
have been proposed and have shown strong superiority in
learning accurate and generalizable visual similarities on var-
ious tasks [7, 42, 16]. Despite the great progress in learning
discriminative embeddings, deep metric learning methods
with better interpretability have drawn limited attention from
the community. Understanding the underlying matching
mechanism of deep metric learning models is of critical im-
portance for developing reliable intelligent systems for many
risky visual applications such as surveillance [34] and access
control [21].

To improve the transparency of deep visual models, many
efforts have been made recently by either explaining the ex-
isting models [52, 31, 1, 2] or modifying models to achieve
better interpretability [48, 49]. For example, visual attri-
bution methods leverage correlation or gradient to find the
important regions that have high contributions to the final
prediction. [48] and [49] propose to add part constraints

ar
X

iv
:2

10
8.

05
88

9v
1

 [
cs

.C
V

]
 1

2
A

ug
 2

02
1

https://github.com/wl-zhao/DIML

and tree structures to construct interpretable CNN models
respectively. However, these methods are only designed for
explaining the reasoning process of how the output of a deep
model is produced and did not consider the interaction be-
tween samples. Although they achieve promising results on
image classification [52, 2], visual question answering [31],
and image generation [1], they cannot explain how visual
similarity is composed. Therefore, how to improve the inter-
pretability of deep metric learning methods is still an open
problem that has barely been visited in previous works.

In this paper, we present a deep interpretable metric learn-
ing (DIML) framework as a first step towards more trans-
parent embedding learning. Different from most existing
deep metric learning methods that match the images by di-
rectly comparing feature vectors, we propose to leverage
the spatial structure of images during matching to improve
interpretability, as illustrated in Figure 1. More specifically,
we measure the similarity of two images by computing an
optimal matching flow between the feature maps using the
optimal transport theory such that the similarity can be de-
composed into several part-wise similarities with different
contributions to the overall similarity. Our framework con-
sists of three key components: 1) Structural Similarity
(SS). Unlike most existing deep metric learning methods
that match the images by comparing feature vectors, we pro-
pose a new similarity/distance metric by measuring the sim-
ilarity of corresponding parts in the feature maps based on
the optimal matching flow; 2) Spatial Cross-Correlation
(CC). To handle the view variance in the image retrieval
problem, we propose to use spatial cross-correlation as the
initial marginal distribution to compute the optimal trans-
port plan; 3) Multi-scale Matching (MM). We also devise
a multi-scale matching strategy to better incorporate exist-
ing metric learning methods and enable us to adaptively
adjust the extra computational cost in large-scale search
problems. Since our method is model-agnostic and our con-
tribution is orthogonal to previous deep metric learning meth-
ods on architectures [14], objective functions [33, 16] and
sampling strategies [44, 51], our method can be applied to
off-the-shelf backbone networks and metric learning meth-
ods even without training. Extensive experimental study on
three major benchmarks of deep metric learning including
CUB200-2011 [40], Cars196 [17] and Stanford Online Prod-
ucts (SOP) [24] shows that our method enables us to achieve
more interpretable metric learning while substantially im-
proving various metric learning methods with or without
re-training the models.

2. Related Work

Deep Metric Learning. Deep metric learning (DML) has
drawn increasing attention recently and become one of the
primary framework for a range of vision tasks including

image retrieval [33, 16], image clustering [30], person re-
identification [4, 27, 3] and face recognition [37, 7, 26].
Previous works on deep metric learning commonly focus
on learning more accurate and robust embeddings to better
reflect the semantic relations among samples. To achieve
this goal, a variety of deep metric learning approaches
are proposed to improve the architectures [45, 14], objec-
tive functions [10, 30, 5, 24, 33, 16] and sampling strate-
gies [44, 9, 20, 51, 28]. Different from these works, there is
a line of deep metric learning research on developing more
effective distance or similarity metrics. Except for the com-
monly used `p distance and cosine similarity, signal-to-noise
ratio (SNR) [46] and hyperbolic geodesic distance [15] have
also proven to be effective to reflect the semantic relation-
ships among samples. However, these deep metric learning
methods only consider the distance or similarity between
feature vectors, which ignores the spatial structure of images
and thus lacks interpretability. In this work, we propose to
measure the similarity of two images by explicitly leveraging
the spatial structures of images such that more accurate and
interpretable similarity of two samples can be obtained.

Explainable & Interpretable Vision Models. Recent
years have witnessed remarkable progress in various com-
puter vision tasks driven by the success of deep learn-
ing [18, 12, 19]. Despite the impressive discriminative
power, the interpretability is often viewed as an Achilles’
heel of deep models. Improving the explainability and inter-
pretability of deep models has attracted increasing attention
in recent years. Existing works can be roughly divided into
two groups: 1) explaining existing models through visu-
alization and diagnosis of deep representations; 2) modi-
fying deep models to learn disentangled and interpretable
representations. For example, Zhou et al. [52] proposes a
method named Class Activation Mapping (CAM), which
identifies discriminative regions in feature maps of CNNs
by analyzing the effects on the final classification results.
Grad-CAM [31] improves the method by combining both
the input features and the gradients of a model’s layer. Apart
from these methods focusing on explaining and analyzing
trained models, interpretable vision models are developed
by revising the architectures or training procedure of conven-
tional deep models. Zhang et al. [48] design interpretable
CNNs by enforcing each filter in a high-level convolutional
layer represents a specific object part. [49] combine the
CNNs and decision tree to inherit the advantages of the two
types of models to construct power yet interpretable image
classification models. However, these methods only explain
the reasoning process of how the output of a deep model
is produced and did not consider the interaction between
samples. Therefore, they cannot analyze and explain how
the similarity of the two samples is composed. Recently,
Williford et al. [43] present a study on explainable face
recognition, which uses image editing techniques to gener-

CN
N

CN
N

CC

marginal distributions
embedded
feature mapsimage pair

s= 0.449s = 0.59

s = 0.12

Optimal
Transport

optimal transport plan
𝑻∗

×

similarity matrix
𝑺

HW

=

overall similarity = 0.45

𝑺

Figure 2: The overall pipeline of our deep interpretable metric learning (DIML) framework. The feature maps extracted from
the backbone CNN model are further fed into the cross-correlation module (CC) to compute the marginal distributions that
represent the weights of each location. The optimal transport plan then is obtained using the marginal distributions and the
similarity matrix. Our framework decomposes the visual similarity to part-wise similarities and their contributions, which
enable us to interpret and analyze how a deep model distinguishes two images.

ate a new dataset to evaluate what regions contribute to face
matching. Their benchmark requires prior knowledge on
face structures and thus is hard to generalize to other image
matching problems. Different from these works, we propose
to study a new and more generic problem of interpretable
deep metric learning and provide a basic solution.

3. Approach
3.1. Preliminaries: Deep Metric Learning

Deep metric learning aims to find a distance metric pa-
rameterized by deep neural networks to map the input image
feature pairs to a distance in R that reflects the semantic
similarity of the two images defined by labels. Formally,
given a set of images X = {xk}Nk=1 and the corresponding
labels Y = {yk}Nk=1, deep metric learning introduces the
deep neural networks f : X → Φ ⊂ RC to map an image
to a feature φk = f(xk), where the semantic patterns of the
input image are extracted. The mainstreams of deep metric
learning aim to learn Mahalanobis distance metrics d(·, ·),
which can be formulated as:

d(xk, xl) = ‖Mf(xk)−Mf(xl)‖2 = ‖g(φk)− g(φl)‖2,

where g(φk) = Mφk := ψk ∈ Ψ is an parametrized linear
projection from the feature space Φ to an embedding space
Ψ ⊂ RD. Following the configuration in the backbone
networks like ResNet [12] and Inception [35], f can be
decomposed into f = GAP ◦f1, where f1 extracts a feature
map ωk = f1(xk) ∈ RH×W×C and GAP is the global
average pooling. The GAP operation abstracts the feature
maps into vectors so as to enable fast similarity calculation.

However, the abstraction on deep features also loses the
spatial structures of the images during the embedding pro-
cess, which makes most deep metric learning methods lack
interpretability—deep models can tell us whether the two im-
ages are similar but cannot show us the reason. Since it is of

importance to understand the matching mechanism in many
risky visual applications, developing a more interpretable
deep metric learning method becomes a critical research
topic but it has barely been visited in previous works.

3.2. Structural Matching via Optimal Transport

To exploit the spatial structures in images for more in-
terpretable deep metric learning, we devise a new structural
matching scheme to compute feature similarity based on
optimal transport theory [39].

Our core algorithm is adopted from the optimal transport
theory, which aims to seek the minimal cost transport plan
between two distributions. Given a source distribution µs and
a target distribution µt that are defined on probability space
U and V respectively, the minimal cost transport plan can be
obtain by minimizing the Wasserstein distance between the
two distributions:

π∗ = arg inf
π∈Π(µs,µt)

∫
U×V

c(u, v)dπ(u, v), (1)

where π∗ is the optimal transport plan, Π(µs, µt) is the joint
probability distribution with marginals µs and µt, and c :
U × V → R+ is the cost function of transportation.

Different from the above generic formulation, here we
only need to consider the discrete distribution matching for
image feature maps. Consider two feature maps ωs, ωt ∈
RH×W×C obtained by a backbone (e.g. ResNet50 [12]). We
first use the projection layer g to map each element in the
feature maps ωki into an embedding space of dimension D
individually1:

zs
i = g(ωs

i) ∈ RD, zt
j = g(ωt

j) ∈ RD. (2)

1For the sake of simplicity, we use a single subscript i ∈ [1, HW] to
index the spatial location. For pre-trained metric learning models, we can
directly apply the original projection layer on the elements in the feature
maps. Thus, our method does not need any modifications on the parameters.

The cost of transporting one unit of mass from i to j is:

Ci,j = c(i, j) := d(zs
i , z

t
j), (3)

where we use the distance metric d(·, ·) for two vectors
(e.g., Euclid distance or cosine distance) as the transport
cost function c. In this discrete case, the transport plan π
matching the two distributions also becomes discrete. Given
the two corresponding discrete distributions µs and µt, the
original optimal transport problem is equivalent to:

T ∗ = arg min
T≥0

tr(CT>),

subject to T1 = µs, T>1 = µt.
(4)

T ∗ is the optimal matching flow between these two distribu-
tions, which can be also viewed as the structural matching
plan of the two images. T ∗i,j is the amount of mass that needs
to move from i to j in order to reach an overall minimum
cost, which represents the contribution of location pair (i, j)
to the overall matching.

To efficiently solve the optimization problem in (4), we
adopt the Sinkhorn divergence algorithm [6] by introducing
an entropic regularizer to enable fast training and inference.
More details about the algorithm can be found in Supple-
mentary Material. Note that the iterative algorithm is fully
differentiable, which can be easily implemented by using the
automatic differentiation library like PyTorch [25] and di-
rectly apply the matching process to any deep metric learning
pipelines.

Discussions. Some closely related works of the proposed
structural matching scheme include EMD metric learn-
ing [50] and Wasserstein embedding learning [8]. However,
different from our method, they usually focus on learning bet-
ter embeddings for set inputs, which can be naturally solved
by the Wasserstein distance metric learning framework. Here
our main contribution is not the matching algorithm itself
but the introduction of structural matching for learning more
interpretable visual similarity.

3.3. Deep Interpretable Metric Learning

In Section 3.2, we have already shown how to calculate
the distance between two distributions using the optimal
transport. In this section, we describe how to perform struc-
tural matching in metric learning. Specifically, our method
consists of three components: 1) we use optimal transport
to calculate the structural similarity (SS) of two images; 2)
we propose to calculate the spatial cross-correlation (CC) to
initialize the marginal distributions in Equation (1); 3) we
propose multi-scale matching (MM) to improve the metric
and reduce the computation cost.

Structural Similarity (SS). Given the marginal distribu-
tions µs and µt (which we will discuss in detail later) and
the cost matrix C, we can then obtain the optimal transport

T ∗ by solving (4). Once we have T ∗, we can define the
structural similarity of two feature maps zs, zt ∈ RHW×D
as follows:

sstruct(z
s, zt) =

∑
1≤i,j≤HW

s(zs
i , z

t
j)T
∗
i,j , (5)

where s(·, ·) is a function to calculate the similarity between
two vectors. Our structural similarity enables us to investi-
gate the composition of the overall similarity, thus we can
easily decompose the similarity and understand how the
similarity between different locations in the two images con-
tribute to the overall similarity. Similarly, given any distance
function d(·, ·), we can also derive our structural distance:

dstruct(z
s, zt) =

∑
1≤i,j≤HW

d(zs
i , z

t
j)T
∗
i,j , (6)

Cross-Correlation (CC). Another important part is the def-
inition of the marginal distributions µs and µt. One trivial
solution is to initialize them with uniform distributions, i.e.,

µs
i = µt

i =
1

HW
,∀1 ≤ i ≤ HW, (7)

which indicates similarity of each location has the identical
weight to the overall similarity. In the structural matching
algorithm, the marginal distributions should characterize the
importance of each spatial location. Simply using uniform
distributions implies that we want to match all the features
with equal importance, which is not desired in some cases.
For example, some image contains background information
that may be less useful for matching thus we want to im-
pose lower weights on the background. Another common
circumstance is when we want to match two images with dif-
ferent views (e.g., the first image contains the whole object
and the second one only contains a part of it), and similarly
we only need to focus on the certain part of the first image
and treat the rest as background. To find the areas that are
most related to the similarity, we propose to calculate the
cross-correlation between the two images as the marginal
distributions for the matching algorithm. Specifically, we
first perform global average pooling to zs, zt and obtain the
global feature z̄s, z̄t. We then slide the global feature of one
image on the feature map of the other image and calculate
point-wise correlation at each spatial location. Formally, the
cross-correlation is calculated as:

αs
i =

〈z̄s, zt
i 〉

‖z̄s‖‖zt
i‖
, αt

i =
〈z̄t, zs

i 〉
‖z̄t‖‖zs

i‖
, (8)

where 〈·, ·, 〉 is the dot product and αki ∈ [−1, 1]. After
obtaining the cross-correlation, we can use αki to reflect
the importance of zki in the matching problem. To further
reduce the effects of low correlation regions, we discard

the negative value of αki and normalize it to obtain the final
marginal distributions:

γki = max(0, αki), µki =
1∑
i′ γ

k
i′
γki

∀1 ≤ i ≤ HW, k ∈ {s, t}.
(9)

Once we have the marginal distributions µ(k), we can then
apply the structural matching algorithm in Section 3.2 to
calculate the similarity between two images. We will show
in Section 4.3 that cross-correlation is an indispensable com-
ponent to improve the power of DIML.

Multi-scale Matching (MM). Although DIML can capture
the structural similarity of two images and can provide re-
sults easily understood by humans, it requires more com-
putation (O(H2W 2)) to solve the optimal transport prob-
lem. In the application of image retrieval, there are usu-
ally a great number of images in the gallery. Given an
image as an anchor, calculate the structural similarity be-
tween the anchor and all the images in the gallery is in-
efficient. To reduce the computational cost, we propose
a multi-scale matching method for image retrieval. Let
za ∈ RH×W×D be the feature map of the anchor image
and zk ∈ RH×W×D, k = 1, . . . , N be the feature maps of
all the images in the gallery. In the first scale (1 × 1), we
compute the global feature using global average pooling to
get z̄a, z̄k ∈ RD, and calculate cosine similarity between z̄a

and each z̄k as conventional DML methods. We can then
define a truncation number K and select the images with
top-K similarity score and denote the indices of them as IK
to further enhance the similarity with our method. In the
second scale (H ×W), we calculate the structural similarity
between za and each zk, k ∈ IK . Since K is fixed, the
extra computational cost of DIML can be controlled. By
multi-scale matching, we can filter out the obvious dissimi-
lar samples (1× 1 scale, cosine similarity) and focus on the
hard ones (H ×W scale, structural similarity). Combining
the similarity at two scales can also capture both semantic
and spatial information, which is also helpful to improve
retrieval precision. We will show later in Section 4.3 that a
small K can yield a significant performance boost.

3.4. Implementation

One of the major advantages of DIML is that we can
apply DIML to any pre-train model to improve performance
with no need of training. Besides, we can also incorporate
DIML into the training objective. In this section, we will
describe how to use DIML in these two scenarios.

Testing. Given a pre-trained model, we first calculate the
feature maps ωs, ωt ∈ RH×W×C (before the global pooling
layer) of the image pair xs, xt. We can then use the algorithm
describe in Section 3.3 to compute the structural similarity.
However, HW may be sometimes large in practice (e.g., for

ResNet50 [12], H = W = 7). Therefore, we can use ROI
Align [11] to pool the feature maps to RH′×W ′×C , where
H ′ < H and W ′ < W . With smaller feature maps, we
can then calculate the structural similarity with a relatively
lower computational cost. In our implementation, we use
H ′ = W ′ = G and we found G = 4 can achieve good
trade-off between cost and performance.

Training. We can also combining DIML and existing metric
learning methods to facilitate training. We now use Margin
loss [44] as an example to show how to incorporate DIML
into the training objective. The Margin loss [44] is defined
as

Lmargin(k, l) =
(
σ + (−1)I(yk 6=yl) (Dk,l − β)

)
+
, (10)

where σ and β are learnable parameters, and Dkl is used to
measure the distance between image k and l:

Dk,l =
1

2

(
dstruct(z

k, zl) + d(z̄k, z̄l)
)

(11)

For the implementation details of other metric learning meth-
ods, please refer to the Supplementary Material.

4. Experiments
To evaluate the performance of our proposed DIML,

we conduct experiments on three widely used datasets
in the image retrieval research field: CUB200-2011 [40],
Cars196 [17], and Standard Online Products (SOP) [24].

4.1. Experiment Setups

Datasets. We evaluate our method under a zero-shot image
retrieval setting, where the training set and test set contain im-
age classes with no intersection. We follow the training/test
set splits in previous works [23, 29]:

• CUB200-2011 [40] contains 11,788 images of birds
from 200 species. The first 100 classes (5,864 images)
are used for training, while other 100 classes (5,924
images) are kept for testing.

• Cars196 [17] contains 16,185 images of cars from 196
classes. We use the first 98 classes (8,054 images) for
training and leave the rest 98 classes (8,131 images) for
testing.

• SOP [24] contains 120,053 images from 22,634 classes.
We use the first 11,318 classes (59,551 images) for
training and other 11,316 (60,502 images) for testing.

A Fair Evaluation Protocol. Although there are many pre-
vious metric learning methods, [23] pointed out that the
improvements over time are not significant, due to the unfair
comparisons of different methods. Therefore, we try our best

to provide fair results by implementing all the methods under
the same evaluation protocol. For all the baseline methods,
we use ResNet-50 [12] pre-trained on ImageNet [18] as the
backbone. We freeze the BatchNorm layers during training
and modify the output channel of the last linear layer to
a fixed embedding dimension D. We use embedding size
D = 128 and other implementation settings following [29]
for most experiments unless otherwise noted.

Evaluation Metrics. Most previous works use Recall@K,
Normalized Mutual Information, and F1 score as accuracy
metrics. However, as is pointed by [23], NMI and F1 scores
sometimes give us wrong pictures of the embedding space.
To this end, we adopt the evaluation metrics used in [23]:
Precision@1, R-Precision, and MAP@R. For the formal
definition of the metrics, see Supplementary Material.

Implementation. It is also worth noting that our proposed
DIML does not require any training. Therefore, we aim to
prove that our method can improve the performance given
any trained model as the baseline. Therefore, we perform
experiments on a wide range of loss functions (Margin [44],
Arcface [7], etc.) and sampling methods (Distance [44], N-
Pair [33], etc.) to prove the effectiveness and the generaliza-
tion ability of our method. For most of the baseline methods,
we follow the implementation from [29].

4.2. Main Results

We first evaluate our method by applying DIML to a wide
range of metric learning methods. We measure the perfor-
mance using the evaluation metrics aforementioned: Preci-
sion@1 (P@1), R-Precision (RP) and MAP@R (M@R), and
the results2 are shown in Table 1. For all the experiments,
we set the truncation number K = 100 and feature map
size G = 4. We observe that our method can improve the
performance for all the models on all the three benchmarks,
without any extra training. Especially, we find on Cars196
dataset, the performances of all the methods are enhanced
profoundly after equipped with our DIML.

4.3. Ablation Study and Analysis

In this section, we will evaluate our DIML in various
settings and provide detailed analyses through experiments
and visualization.
Effects of different components. The DIML consists
of three components: structural similarity (SS), cross-
correlation (CC), and multi-scale matching (MM). We will
analyze the effect of each one, as is shown in Table 2. We
start with two baseline methods Margin [44] and Multi-
Similarity [42], and add the three components gradually.
First, we adopt structural similarity instead of standard co-
sine similarity (where we use uniform distribution in Equa-
tion (7) for µs and µt). We find that SS can improve the

2For more results, please refer to the Supplementary Material.

Table 1: Applying DIML to various deep metric learning
methods. Experimental results show that our method can
improve the performance of all the methods consistently.

Method CUB200-2011 Cars196 SOP

P@1 RP M@R P@1 RP M@R P@1 RP M@R

Contrasitive [10] 61.77 34.25 23.24 67.45 30.01 18.61 73.27 40.92 37.5
+ DIML 64.43 35.16 24.29 73.35 30.76 20.13 74.47 41.58 38.29

Triplet-R [30] 58.34 32.00 20.93 62.73 26.95 15.24 66.60 33.62 30.26
+ DIML 60.60 32.63 21.74 67.92 27.65 16.72 68.73 35.04 31.79

Triplet-S [30] 59.28 32.77 21.79 67.00 30.0 18.23 73.67 40.45 37.14
+ DIML 62.85 33.87 23.04 72.06 30.89 20.04 75.14 41.68 38.42

Triplet-H [29] 61.39 33.21 22.15 71.76 32.53 20.83 73.28 39.98 36.56
+ DIML 62.02 33.50 22.49 74.75 32.94 21.76 73.62 40.14 36.79

Triplet-D [44] 61.99 33.92 22.90 73.07 32.18 20.81 77.34 44.25 40.80
+ DIML 63.40 34.49 23.59 77.31 33.05 22.61 77.81 44.82 41.39

NPair [33] 60.30 33.53 22.27 69.52 32.24 20.25 76.47 43.48 39.94
+ DIML 62.17 34.02 22.85 74.65 32.91 21.67 76.86 43.87 40.38

Angular [41] 61.36 34.17 23.00 70.93 32.97 21.31 73.79 41.42 37.90
+ DIML 63.77 35.09 24.06 74.72 33.80 22.83 74.91 42.17 38.73

GenLifted [13] 58.27 32.86 21.83 66.88 30.96 19.00 74.84 42.28 38.66
+ DIML 61.07 33.82 22.98 72.95 31.93 20.88 75.92 43.08 39.55

ProxyNCA [22] 62.76 35.05 24.03 71.05 31.62 20.55 74.70 41.32 37.96
+ DIML 64.75 36.02 25.10 74.86 32.43 22.00 76.17 42.65 39.36

Histogram [38] 59.96 33.07 22.15 69.49 31.62 19.76 71.15 38.06 34.70
+ DIML 62.69 33.80 23.00 74.50 32.36 21.26 72.06 38.57 35.30

Quadruplet [5] 61.53 34.05 22.93 69.64 31.40 19.67 77.02 44.27 40.88
+ DIML 62.80 34.65 23.62 75.66 32.35 21.69 78.08 45.16 41.79

SNR [46] 62.00 34.72 23.59 72.95 32.72 21.28 77.82 44.98 41.51
+ DIML 64.55 35.25 24.27 77.57 33.54 23.02 78.50 45.65 42.24

Softmax [47] 61.06 32.7 21.55 72.61 31.17 19.88 77.02 43.47 40.25
+ DIML 63.30 33.71 22.64 76.39 32.06 21.49 78.17 44.62 41.43

Margin [44] 62.47 34.12 23.14 72.18 32.00 20.82 78.39 45.64 42.34
+ DIML 65.16 35.37 24.51 76.62 32.85 22.48 79.26 46.44 43.19

Arcface [7] 61.39 33.70 22.4 73.37 31.90 20.52 77.55 44.44 41.07
+ DIML 64.72 34.88 23.72 77.24 32.88 22.34 78.52 45.45 42.10

MS [42] 62.56 32.74 21.99 74.81 32.72 21.60 77.90 44.97 41.54
+ DIML 64.89 33.99 23.34 78.44 33.57 23.31 78.53 45.59 42.22

ProxyAnchor [16] 65.24 35.81 24.87 82.36 36.00 25.85 79.10 46.31 42.91
+ DIML 66.46 36.49 25.58 86.13 37.90 28.11 79.22 46.43 43.04

performance on all the datasets except for SOP (as is high-
lighted by underline). It is mainly because that the SS algo-
rithm aims to match every part of a source image to a target
image. However, the views vary a lot in SOP dataset, which
hinders the application of SS. Second, we show that multi-
scale matching can make use of the semantic information
and improve the performance on all three datasets. Finally,
we replace the uniform distribution with the one calculated
by cross-correlation. We find the marginal distributions ob-
tained in this way are helpful to explore the important area
of the images and can further improve the performance.

Effects of truncation number. To show how the truncation
number K affect our DIML, we test our method on Mar-
gin [44] and Multi-Similarity [42] with K increasing from
0 to 500 (Figure 3). Note that K = 0 means no structural
similarity is used, which is identical to the baseline. We find
that even a small K will bring considerable improvement on
the performance (especially for the P@1 metric). Generally,
the retrieval accuracy grows with K increasing and saturates

Table 2: Effects of the three components in our DIML:
Structural Similarity (SS), Multi-scale Matching (MM) and
Cross Correlation (CC). We show that our method can en-
hance the performance of the baseline methods by combining
the three components together.

Baseline Components CUB200-2011 Cars196 SOP

SS MM CC P@1 M@R P@1 M@R P@1 M@R

Margin [44]

62.47 23.14 72.18 20.82 78.39 42.34
3 63.64 22.52 74.86 21.24 77.30 41.02
3 3 64.96 23.87 76.02 22.02 78.53 42.45
3 3 3 65.16 24.51 76.62 22.48 79.26 43.19

MS [42]

62.56 21.99 74.81 21.60 77.90 41.54
3 63.52 21.66 75.63 21.10 75.81 39.38
3 3 64.40 22.83 77.39 22.77 77.87 41.55
3 3 3 64.89 23.34 78.44 23.31 78.53 42.22

0 10 50 100 500
62.5

63.0

63.5

64.0

64.5

65.0

P@
1

CUB-200

Margin
MS

0 10 50 100 500
72.0

73.0

74.0

75.0

76.0

77.0

78.0

Cars196

Margin
MS

0 10 50 100 500

78.0

78.2

78.4

78.6

78.8

79.0

79.2

SOP

Margin
MS

0 10 50 100 500
K

22.0

22.5

23.0

23.5

24.0

24.5

M
AP

@
R

Margin
MS

0 10 50 100 500
K

21.0

21.5

22.0

22.5

23.0

23.5
Margin
MS

0 10 50 100 500
K

41.5

41.8

42.0

42.2

42.5

42.8

43.0

43.2

Margin
MS

Figure 3: Comparisons of different truncation number.
We test for different truncation number K ranging from 0 to
500. Experimental results show that a small K can already
bring considerable performance improvement.

Margin MS
60.0

61.0

62.0

63.0

64.0

65.0

66.0

67.0
CUB-200

G = 1
G = 2
G = 4
G = 7

Margin MS
70.0

72.0

74.0

76.0

78.0

80.0

Cars196
G = 1
G = 2
G = 4
G = 7

Margin MS
77.0

77.5

78.0

78.5

79.0

79.5

80.0
SOP

G = 1
G = 2
G = 4
G = 7

Figure 4: Effects of the size of feature map. Generally,
the performance of our DIML is better with higher G.
DIML with G = 4 yields good results within relatively
low computational costs.

before K reaches 100. This phenomenon indicates that with
a fixed and relatively small K, we can already enjoy a signif-
icant performance boost with constant extra computational
cost and no extra training cost.

Effects of feature map size. We then perform an ablation
study on the feature map size G. In our experiments, we use
ResNet50 [12] as our backbone, and the size of the feature
map before the pooling layer is 7 × 7. Hence, we need to
pool the feature map to a smaller one (G × G) to reduce
computational complexity. Specifically, we let G ≤ 7 and
evaluate for the cases where G = 1, 2, 4, 7. The results are
shown in Table 4 and we observe that the performance of

Table 3: Effects of training. Our method can substantially
improve the baseline model with or without training.

Baseline Setting CUB200-2011 Cars196 SOP

test train P@1 M@R P@1 M@R P@1 M@R

Margin [44]
62.47 23.14 72.18 20.82 78.39 42.34

3 65.16 24.54 76.65 22.95 79.26 43.19
3 3 65.36 24.90 75.61 22.34 78.81 42.89

MS [42]
62.56 21.99 74.81 21.60 77.90 41.54

3 64.89 23.38 78.50 23.81 78.53 42.23
3 3 65.72 24.37 78.90 23.80 79.00 42.96

Table 4: Effects of embedding size. Our DIML is robust to
the changing of the embedding size D and can improve the
performance of the baseline methods consistently.

D Method CUB200-2011 Cars196

P@1 RP M@R P@1 RP M@R

64

Margin 59.39 32.59 21.53 69.31 30.98 19.67
Margin [44] + DIML 62.98 33.88 22.95 74.44 31.96 21.60

MS [42] 58.52 31.35 20.23 71.67 30.90 19.57
MS + DIML 61.73 32.61 21.62 76.94 31.95 21.72

ProxyAnchor [16] 62.56 34.61 23.45 78.08 34.35 23.95
ProxyAnchor + DIML 65.01 35.53 24.40 83.11 36.49 26.55

512

Margin [44] 64.92 35.94 24.92 73.68 32.03 21.09
Margin + DIML 66.91 36.82 25.89 76.67 32.62 22.20

MS [42] 65.92 35.14 24.17 76.85 33.93 22.78
MS + DIML 68.15 36.04 25.14 79.74 34.68 24.01

ProxyAnchor[16] 67.30 37.40 26.38 84.75 37.56 27.66
ProxyAnchor + DIML 67.93 37.92 26.88 87.01 39.03 29.39

our method is better with larger G in general. We can also
find G = 4 is a good trade-off between performance and
computational complexity.

Effects of training. Besides the default setting where we
use DIML to test on any pre-trained model, we can also in-
corporate the structural similarity into the training objectives
(see Section 3.4 for details). In Table 3, we compare the
performance in three scenarios: (1) without DIML testing
or training (same as baseline) (2) with DIML testing only
(2) with DIML testing and training. The results are listed
in Table 3. We find that for most cases, using DIML to test
a pre-trained model can already improve the baseline by a
significant margin. Besides, it is also useful sometimes to
apply DIML in the training stage.

Effects of embedding size. Our proposed DIML is also
robust across different embedding sizes. Apart from the
results in Table 1 where D = 128, we perform experiments
with D = 64/512 for Margin [44], Multi-Similarity [42]
and Proxy Anchor [16] and the results are summarized in
Table 4. We demonstrate that our method can boost the
performance of the three methods consistently no matter
how the embedding size D varies.

similarity: 0.191→ 0.414 similarity: 0.114→ 0.336

similarity: 0.217→ 0.440 similarity: 0.073→ 0.470

27.4 × 0.640

0.00 × 0.063

18.5 × 0.277
3.44 × 0.088

38.5 × 0.708

3.86 × 0.155

37.9 × 0.588

0.00 × 0.013

58.0 × 0.601

0.00 × 0.005

similarity: 0.112→ 0.328

0.00 × 0.018

36.4 × 0.516

similarity: 0.121→ 0.321

24.1 × 0.528

0.00 × 0.065

similarity: 0.153→ 0.365

33.5 × 0.483

0.00 × 0.081

similarity: 0.110→ 0.418

similarity: 0.295→ 0.505

0.00 × 0.067

22.3 × 0.648

Figure 5: Visualization. We use heatmaps to show the marginal distributions obtained by cross-correlation (CC). We
also illustrate two most representative part-wise similarity and their contributions to the overall similarity in the form of
[G4T ∗i,j] × [Si,j], where G is the grid size, T ∗i,j and Si,j are the matching flow and similarity between location i and j
respectively. We also show the overall similarity changes after applying our method to the baseline model (cosine similarity→
structural similarity). All image pairs are positive pairs.

4.4. Visualization

To better understand how our method works, we pro-
vide some visualizations for CUB200-2011 [40] in Figure 5,
where each pair of images is from the same category. First,
we visualize the marginal distributions µs and µt (calculated
by cross-correlation) through heatmaps and find that they
can focus on some discriminative parts in the images (e.g.,
head, foot, etc.). Second, we show the optimal transport
flow T ∗i,j and the similarity Si,j = s(zs

i , z
t
j) for some pair

of spatial location (i, j). Since the sum of the values in T ∗

equals 1 and each T ∗i,j is relatively small, we use a re-scaled
version T̂ ∗i,j = G4T ∗i,j such that an uniform transport flow
yields T̂ ∗i,j = 1,∀i, j. We draw arrows between the loca-
tion pairs that make a large (or small) contribution to the
final structural similarity in red (or blue). The formula along
with an arrow takes the form of T̂ ∗i,j × Sij . We observe that
our method can match similar parts and assign a higher T ∗i,j
to the pair while enforcing lower T ∗i,j to the parts that are
less informative to determine the similarity between the two
images. Finally, we demonstrate that by re-weighting the
similarity matrix S with the optimal transport matrix T ∗, our
proposed structural similarity (shown in bold text) is higher
than the standard cosine similarity (shown in light text) by a
large margin.

5. Conclusion

In this paper, we have presented the deep interpretable
metric learning (DIML) method for more transparent embed-
ding learning. We proposed a structural matching strategy
that explicitly aligns the spatial embeddings by computing an
optimal matching flow between feature maps of the two im-
ages. We evaluated our method on three major benchmarks
of deep metric learning including CUB200-2011, Cars196
and Stanford Online Products, and achieved substantial im-
provements over popular metric learning methods with better
interpretability. Our method enables deep models to learn
metrics in a more human-friendly way, which can be used to
inspect and understand the visual similarity of any two sam-
ples or applied to any deep metric learning methods with the
proposed multi-scale matching strategy to improve image
retrieval performance with controllable cost.

Acknowledgements

This work was supported in part by the National Natural
Science Foundation of China under Grant 61822603, Grant
U1813218, and Grant U1713214, in part by a grant from the
Beijing Academy of Artificial Intelligence (BAAI), and in
part by a grant from the Institute for Guo Qiang, Tsinghua
University.

A. Implementation of DIML
A.1. The Sinkhorn Algorithm

The Sinkhorn algorithm [6] modifies the original optimal
transport problem (Eq.4) into the following one:

T ∗ = arg min
T≥0

tr(CT>) + λtr
(
T (log(T)− 11>)>

)
,

subject to T1 = µs, T>1 = µt,

(12)

where λ is a non-negative regularization parameter. By
adding the entropic regularizer, the Equation (12) becomes
a convex problem, which can be solved with Sinkhorn-
Knopp algorithm [32]. Starting from an initial matrix
K = exp(−C/λ), the problem can be solved by iteratively
projecting onto the marginal constraints until convergence:

a← µs/Kb, b← µt/K>a. (13)

After converged, we can obtain the optimal transport plan:

T ∗ = diag(a)Kdiag(b). (14)

A.2. Testing

In all of our experiments, we use ResNet50 [12] as our
backbone. Therefore, the size of the feature map before the
pooling layer is 7 × 7. To reduce computational costs, we
first use ROI Align [11] to pool the feature map toG×G and
G = 4 in most of our experiments unless otherwise noted.
According to the multi-scale matching algorithm, for each
image as a query, we first sort the images in the gallery using
the standard cosine similarity to obtain the indices of top-K
candidates IK (we useK = 100 in most of the experiments).
We then calculate the proposed structural similarity of all
the images in IK . To combine both global and structural
information, we use the sum of the cosine similarity and the
structural similarity for the top-K images to compute their
ranks. The regularization parameter λ in Equation (6) is set
to 0.05.

A.3. Training

Incorporating DIML into the training objectives is quite
straightforward. Generally, the loss functions in metric learn-
ing can be roughly categorized into distance-based meth-
ods (e.g., Contrastive [10], Triplet [9], Margin [44]) and
similarity-based methods (e.g., Multi-Similarity [42], Arc-
face [7], N-Pair [33]) For distance-based methods, we re-
place the original distance function d with the average of
d and our structural distance dstruct; For similarity-based
methods, we replace the original similarity function s with
the average of s and our structural similarity sstruct. In this
section, we will use several loss functions as examples to
demonstrate how to apply DIML during training.

Margin [44] The Margin loss [44] is defined as

Lmargin(k, l) =
(
σ + (−1)I(y

k 6=yl) (Dk,l − β)
)

+
, (15)

where σ and β are learnable parameters, and Dkl is used to
measure the distance between image k and l:

Dk,l =
1

2

(
dstruct(z

k, zl) + d(z̄k, z̄l)
)
, (16)

where d is Euclid distance and dstruct is derived from d using
Equation (10).

Multi-Similarity [42] The original Multi-Similarity is de-
fined as:

s∗(k, l) =


s (k, l) , s (k, l) > minp∈Pk

s (k, p)− ε
s (k, l) , s (k, l) < maxn∈Nk

s (k, n) + ε

0, otherwise
,

(17)

LMS =
1

B

∑
k∈B

 1

α
log

1 +
∑
p∈Pk

exp (−α (s∗ (k, p)− λ))


+

1

β
log

[
1 +

∑
n∈Nk

exp (β (s∗ (k, n)− λ))

]]
,

(18)

where s(k, l) = s(ψk, ψl) is the cosine similarity of the
embeddings ψk, ψl of the two images. To utilize DIML, we
can replace s with

s(k, l)← 1

2

(
s(z̄k, z̄l) + sstruct(z

k, zl)
)
. (19)

Note that in our notation both ψk and z̄k represent the same
embedding in RD.

ProxyNCA [22] It is also worth mentioning there are
slight difference when applying DIML to proxy-based meth-
ods during training. Taking ProxyNCA [22] as example, the
original objective is

Lproxy = − 1

B

∑
k∈B

log

 exp
(
−d
(
ψk, ηy

k
)

∑
c∈C\{yk} exp (−d (ψk, ηc)

 ,

(20)
where d is Euclid distance and ηc ∈ RD is the proxy for

the c-th class. To use DIML, we need to use proxies with
the size RH×W×D, denoted as {ρc, c ∈ C}. Then, we can
replace the d(ψk, ηc) with

d(ψk, ηc)← 1

2

(
d(ψk, ηc) + dstruct(z

k, ρc)
)
, (21)

where we also note that GAP(ρc) = ηc.

Table 5: Comparisons of different truncation numbers. We test for different truncation number K ranging from 0 to 500.
Experimental results show that a small K can already bring considerable performance improvement.

Baseline K
CUB-200 Cars196 SOP

P@1 RP M@R P@1 RP M@R P@1 RP M@R

Margin[44]

0 62.47 34.12 23.14 72.18 32.00 20.82 78.39 45.64 42.34
10 65.16 34.56 23.87 76.65 32.52 21.72 79.26 46.44 43.20
50 65.16 35.43 24.54 76.65 33.64 22.83 79.26 46.44 43.19

100 65.16 35.48 24.54 76.65 33.93 22.95 79.26 46.44 43.19
500 65.16 35.48 24.54 76.65 33.93 22.95 79.26 46.44 43.19

Multi-Similarity[42]

0 62.56 32.74 21.99 74.81 32.72 21.60 77.90 44.97 41.54
10 64.89 33.21 22.73 78.50 33.26 22.50 78.53 45.60 42.24
50 64.89 34.04 23.37 78.50 34.46 23.72 78.53 45.60 42.23
100 64.89 34.12 23.38 78.50 34.70 23.81 78.53 45.60 42.23
500 64.89 34.12 23.38 78.50 34.70 23.81 78.53 45.60 42.23

B. Experimental Details
B.1. Evaluation Metrics

We implement the same evaluation metrics as [23], in-
cluding Precision at 1 (P@1), R-Precision (RP), and Mean
Average Precision at R (MAP@R).
P@1 is also known as Recall@1 in metric learning. Given
a sample xq and feature encoder φ(·), the set of k nearest
neighbors of xq is calculated as the precision of k nearest
neighbors:

N k
q = arg min

N⊂Xtest,|N |=k

∑
xf∈N

de(φ(xq), φ(xf)) (22)

where de(·, ·) is the euclidean distance. Then P@k can be
measured as

P@k =
1

|Xtest|
∑

xq∈Xtest

1

k

∑
xi∈Nk

q

{
1, yi = yq,

0, otherwise
, (23)

where yi is the class label of sample xi. We only report P@1
in our experiments, i.e. k = 1.
R-precision is defined in [23]. Specifically, for each sam-
ple xq, let R be the number of images that are the same
class with xq and R-precision is simply defined as P@R (see
Equation 23). However, R-precision does not consider the
ranking of correct retrievals, so it is not informative enough.
To tackle this problem, [23] introduced Mean Average Pre-
cision at R.
MAP@R is similar to mean average precision, but limit the
number of nearest neighbors to R. So it replaces precision in
MAP calculation with R-precision:

MAP@R =
1

R

R∑
i=1

P (i), (24)

where

P (i) =

{
P@i, if the i-th retrieval is correct;
0, otherwise. (25)

MAP@R is more informative than P@1 and it can be
computed directly from the embedding space without clus-
tering as post-processing.

B.2. Experimental Setups

For most of the baseline methods, we follow the imple-
mentation and the hyper-parameters in [36]. For Proxy An-
chor [16], we use their original implementation but set the
hyper-parameters as [36] (batch size 112, embedding size
128, etc.). Besides various loss functions, we also experi-
ment with different sampling methods. In Table 1 of the
original paper, we use suffixes to represent the sampling
methods (-R: Random; -D: Distance [44]; -S Semihard [30];
-H: Softhard [29]).

C. Detailed Results
In the original paper, we have demonstrated the effects of

truncation number K and feature map size G using charts.
In this section, we provide the original numerical results that
were used to plot those charts in Table 5 and Table 6.

References
[1] David Bau, Jun-Yan Zhu, Hendrik Strobelt, Bolei Zhou,

Joshua B Tenenbaum, William T Freeman, and Antonio Tor-
ralba. Gan dissection: Visualizing and understanding genera-
tive adversarial networks. ICLR, 2019. 1, 2

[2] Hila Chefer, Shir Gur, and Lior Wolf. Transformer inter-
pretability beyond attention visualization. CVPR, 2021. 1,
2

Table 6: Effects of the size of feature map. Generally, the performance of our DIMLis better with higher G. DIML with
G = 4 yields good results within relatively low computational costs.

Baseline G
CUB-200 Cars196 SOP

P@1 RP M@R P@1 RP M@R P@1 RP M@R

Margin[44]

1 62.47 34.12 23.14 72.18 32.00 20.82 78.39 45.64 42.34
2 64.15 34.79 23.83 75.04 32.59 21.85 79.06 46.29 43.03
4 65.16 35.48 24.54 76.65 33.93 22.95 79.26 46.44 43.19
7 65.58 35.58 24.79 76.96 32.93 22.66 79.59 46.83 43.62

Multi-Similarity [42]

1 62.56 32.74 21.99 74.81 32.72 21.60 77.90 44.97 41.54
2 63.77 33.33 22.60 77.45 33.25 22.60 78.39 45.56 42.15
4 64.89 34.12 23.38 78.50 34.70 23.81 78.53 45.60 42.23
7 65.45 34.15 23.55 78.93 33.64 23.50 78.76 45.90 42.57

[3] Guangyi Chen, Yongming Rao, Jiwen Lu, and Jie Zhou. Tem-
poral coherence or temporal motion: Which is more critical
for video-based person re-identification? In ECCV, pages
660–676, 2020. 2

[4] Weihua Chen, Xiaotang Chen, Jianguo Zhang, and Kaiqi
Huang. Beyond triplet loss: a deep quadruplet network for
person re-identification. In CVPR, pages 403–412, 2017. 1, 2

[5] Weihua Chen, Xiaotang Chen, Jianguo Zhang, and Kaiqi
Huang. Beyond triplet loss: a deep quadruplet network for
person re-identification. In CVPR, pages 403–412, 2017. 2, 6

[6] Marco Cuturi. Sinkhorn distances: lightspeed computation of
optimal transport. In NIPS, volume 2, page 4, 2013. 4, 9

[7] Jiankang Deng, Jia Guo, Niannan Xue, and Stefanos Zafeiriou.
Arcface: Additive angular margin loss for deep face recogni-
tion. In CVPR, pages 4690–4699, 2019. 1, 2, 6, 9

[8] Charlie Frogner, Farzaneh Mirzazadeh, and Justin Solomon.
Learning embeddings into entropic wasserstein spaces. ICLR,
2019. 4

[9] Weifeng Ge. Deep metric learning with hierarchical triplet
loss. In ECCV, pages 269–285, 2018. 2, 9

[10] Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimension-
ality reduction by learning an invariant mapping. In CVPR,
volume 2, pages 1735–1742, 2006. 2, 6, 9

[11] Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross Gir-
shick. Mask r-cnn. In ICCV, 2017. 5, 9

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR, pages
770–778, 2016. 2, 3, 5, 6, 7, 9

[13] Alexander Hermans, Lucas Beyer, and Bastian Leibe. In
defense of the triplet loss for person re-identification. arXiv
preprint arXiv:1703.07737, 2017. 6

[14] Pierre Jacob, David Picard, Aymeric Histace, and Edouard
Klein. Metric learning with horde: High-order regularizer for
deep embeddings. In ICCV, pages 6539–6548, 2019. 2

[15] Valentin Khrulkov, Leyla Mirvakhabova, Evgeniya Ustinova,
Ivan Oseledets, and Victor Lempitsky. Hyperbolic image
embeddings. In CVPR, pages 6418–6428, 2020. 2

[16] Sungyeon Kim, Dongwon Kim, Minsu Cho, and Suha Kwak.
Proxy anchor loss for deep metric learning. In CVPR, pages
3238–3247, 2020. 1, 2, 6, 7, 10

[17] Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei.
3d object representations for fine-grained categorization. In
ICCVW, pages 554–561, 2013. 2, 5

[18] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Im-
agenet classification with deep convolutional neural networks.
In NIPS, pages 1097–1105, 2012. 2, 6

[19] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep
learning. Nature, 521(7553):436–444, 2015. 2

[20] Xudong Lin, Yueqi Duan, Qiyuan Dong, Jiwen Lu, and Jie
Zhou. Deep variational metric learning. In ECCV, pages
689–704, 2018. 2

[21] Iacopo Masi, Yue Wu, Tal Hassner, and Prem Natarajan. Deep
face recognition: A survey. In SIBGRAPI, pages 471–478.
IEEE, 2018. 1

[22] Yair Movshovitz-Attias, Alexander Toshev, Thomas K Leung,
Sergey Ioffe, and Saurabh Singh. No fuss distance metric
learning using proxies. In ICCV, pages 360–368, 2017. 6, 9

[23] Kevin Musgrave, Serge Belongie, and Ser-Nam Lim. A metric
learning reality check. In ECCV, pages 681–699. Springer,
2020. 5, 6, 10

[24] Hyun Oh Song, Yu Xiang, Stefanie Jegelka, and Silvio
Savarese. Deep metric learning via lifted structured feature
embedding. In CVPR, pages 4004–4012, 2016. 2, 5

[25] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zem-
ing Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch:
An imperative style, high-performance deep learning library.
NeurIPS, 2019. 4

[26] Yongming Rao, Jiwen Lu, and Jie Zhou. Attention-aware
deep reinforcement learning for video face recognition. In
ICCV, pages 3931–3940, 2017. 2

[27] Yongming Rao, Jiwen Lu, and Jie Zhou. Learning discrimi-
native aggregation network for video-based face recognition
and person re-identification. IJCV, 127(6):701–718, 2019. 2

[28] Karsten Roth, Timo Milbich, and Bjorn Ommer. Pads: Policy-
adapted sampling for visual similarity learning. In CVPR,
pages 6568–6577, 2020. 2

[29] Karsten Roth, Timo Milbich, Samarth Sinha, Prateek Gupta,
Bjorn Ommer, and Joseph Paul Cohen. Revisiting train-

ing strategies and generalization performance in deep metric
learning. In ICML, pages 8242–8252. PMLR, 2020. 5, 6, 10

[30] Florian Schroff, Dmitry Kalenichenko, and James Philbin.
Facenet: A unified embedding for face recognition and clus-
tering. In CVPR, pages 815–823, 2015. 1, 2, 6, 10

[31] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das,
Ramakrishna Vedantam, Devi Parikh, and Dhruv Batra. Grad-
cam: Visual explanations from deep networks via gradient-
based localization. In ICCV, pages 618–626, 2017. 1, 2

[32] Richard Sinkhorn. Diagonal equivalence to matrices with pre-
scribed row and column sums. The American Mathematical
Monthly, 74(4):402–405, 1967. 9

[33] Kihyuk Sohn. Improved deep metric learning with multi-class
n-pair loss objective. In NeurIPS, pages 1857–1865, 2016. 1,
2, 6, 9

[34] G Sreenu and MA Saleem Durai. Intelligent video surveil-
lance: a review through deep learning techniques for crowd
analysis. Journal of Big Data, 6(1):1–27, 2019. 1

[35] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,
Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent
Vanhoucke, and Andrew Rabinovich. Going deeper with
convolutions. In CVPR, pages 1–9, 2015. 3

[36] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon
Shlens, and Zbigniew Wojna. Rethinking the inception ar-
chitecture for computer vision. In CVPR, pages 2818–2826,
2016. 10

[37] Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato, and Lior
Wolf. Deepface: Closing the gap to human-level performance
in face verification. In CVPR, pages 1701–1708, 2014. 2

[38] Evgeniya Ustinova and Victor S. Lempitsky. Learning deep
embeddings with histogram loss. In Daniel D. Lee, Masashi
Sugiyama, Ulrike von Luxburg, Isabelle Guyon, and Roman
Garnett, editors, NeurIPS, pages 4170–4178, 2016. 6

[39] Cédric Villani. Optimal transport: old and new, volume 338.
Springer Science & Business Media, 2008. 3

[40] Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona,
and Serge Belongie. The caltech-ucsd birds-200-2011 dataset.
2011. 2, 5, 8

[41] Jian Wang, Feng Zhou, Shilei Wen, Xiao Liu, and Yuanqing
Lin. Deep metric learning with angular loss. In ICCV, pages
2593–2601, 2017. 6

[42] Xun Wang, Xintong Han, Weilin Huang, Dengke Dong, and
Matthew R Scott. Multi-similarity loss with general pair
weighting for deep metric learning. In CVPR, pages 5022–
5030, 2019. 1, 6, 7, 9, 10, 11

[43] Jonathan R Williford, Brandon B May, and Jeffrey Byrne.
Explainable face recognition. In ECCV, pages 248–263.
Springer, 2020. 2

[44] Chao-Yuan Wu, R Manmatha, Alexander J Smola, and Philipp
Krahenbuhl. Sampling matters in deep embedding learning.
In ICCV, pages 2840–2848, 2017. 2, 5, 6, 7, 9, 10, 11

[45] Hong Xuan, Richard Souvenir, and Robert Pless. Deep ran-
domized ensembles for metric learning. In ECCV, pages
723–734, 2018. 2

[46] Tongtong Yuan, Weihong Deng, Jian Tang, Yinan Tang, and
Binghui Chen. Signal-to-noise ratio: A robust distance metric
for deep metric learning. In CVPR, pages 4815–4824, 2019.
2, 6

[47] Andrew Zhai and Hao-Yu Wu. Classification is a strong
baseline for deep metric learning. In BMVC, page 91. BMVA
Press, 2019. 6

[48] Quanshi Zhang, Ying Nian Wu, and Song-Chun Zhu. In-
terpretable convolutional neural networks. In CVPR, pages
8827–8836, 2018. 1, 2

[49] Quanshi Zhang, Yu Yang, Haotian Ma, and Ying Nian Wu.
Interpreting cnns via decision trees. In CVPR, pages 6261–
6270, 2019. 1, 2

[50] Zizhao Zhang, Yubo Zhang, Xibin Zhao, and Yue Gao. Emd
metric learning. In AAAI, volume 32, 2018. 4

[51] Wenzhao Zheng, Zhaodong Chen, Jiwen Lu, and Jie Zhou.
Hardness-aware deep metric learning. In CVPR, pages 72–81,
2019. 2

[52] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and
Antonio Torralba. Learning deep features for discriminative
localization. In CVPR, pages 2921–2929, 2016. 1, 2

