2103.17154v1 [cs.CV] 31 Mar 2021

arxXiv

Learning Spatio-Temporal Transformer for Visual Tracking

Bin Yan'*, Houwen Peng?', Jianlong Fu?, Dong Wang', Huchuan Lu!

!Dalian University of Technology

Abstract

In this paper, we present a new tracking architecture with
an encoder-decoder transformer as the key component. The
encoder models the global spatio-temporal feature depen-
dencies between target objects and search regions, while
the decoder learns a query embedding to predict the spa-
tial positions of the target objects. Our method casts object
tracking as a direct bounding box prediction problem, with-
out using any proposals or predefined anchors. With the
encoder-decoder transformer, the prediction of objects just
uses a simple fully-convolutional network, which estimates
the corners of objects directly. The whole method is end-
to-end, does not need any postprocessing steps such as co-
sine window and bounding box smoothing, thus largely sim-
plifying existing tracking pipelines. The proposed tracker
achieves state-of-the-art performance on five challenging
short-term and long-term benchmarks, while running at
real-time speed, being 6Xx faster than Siam R-CNN [47].
Code and models are open-sourced at here.

1. Introduction

Visual object tracking is a fundamental yet challenging
research topic in computer vision. Over the past few years,
based on convolutional neural networks, object tracking has
achieved remarkable progress [25, 9, 47]. However, convo-
lution kernels are not good at modeling long-range depen-
dencies of image contents and features, because they only
process a local neighborhood, either in space or time. Cur-
rent prevailing trackers, including both the offline Siamese
trackers and the online learning models, are almost all build
upon convolutional operations [2, 37, 3, 47]. As a conse-
quence, these methods only perform well on modeling lo-
cal relationships of image content, but being limited to cap-
turing long-range global interactions. Such deficiency may
degrade the model capacities on dealing with the scenarios
where the global contextual information is important for lo-
calizing target objects, such as the objects undergoing large-
scale variations or getting in and out of views frequently.

*Work performed when Bin is an intern of MSRA. T Corresponding
author: houwen.peng @microsoft.com.

2Microsoft Research Asia

70.0

Ours-ST101
Ours-ST50

67.5 Siam R-CNN

65.0

f=)
[N]
n

PrDiMP

LTMU o DiMP
cean i
KYS . SiamAttn

Success
=N
=1
(=}

v
N
n

55.0
MAMLE-FCOS

52.5 (i]qlz;xlTruck ATOM

| Real-Time

10 20 30 40 50
Speed (FPS)

50.0
0

Figure 1: Comparison with state-of-the-arts on LaSOT [13]. We
visualize the Success performance with respect to the Frames-Per-
Seconds (fps) tracking speed. Ours-ST101 and Ours-ST50 in-
dicate the proposed trackers with ResNet-101 and ResNet-50 as
backbones, respectively. Better viewed in color.

The problem of long range interactions has been tackled
in sequence modeling through the use of transformer [46].
Transformer has enjoyed rich success in tasks such as
natural language modeling [11, 39] and speech recogni-
tion [34]. Recently, transformer has been employed in dis-
criminative computer vision models and drawn great atten-
tion [12, 5, 35]. Inspired by the recent DEtection TRans-
former (DETR) [5], we propose a new end-to-end tracking
architecture with encoder-decoder transformer to boost the
performance of conventional convolution models.

Both spatial and temporal information are important for
object tracking. The former one contains object appearance
information for target localization, while the latter one in-
cludes the state changes of objects across frames. Previous
Siamese trackers [25, 51, 14, 6] only exploit the spatial in-
formation for tracking, while online methods [54, 57, 9, 3]
use historical predictions for model updates. Although be-
ing successful, these methods do not explicitly model the
relationship between space and time. In this work, consider-
ing the superior capacity on modeling global dependencies,
we resort to transformer to integrate spatial and temporal
information for tracking, generating discriminative spatio-
temporal features for object localization.

More specifically, we propose a new spatio-temporal ar-
chitecture based on the encoder-decoder transformer for

https://github.com/researchmm/Stark
mailto:houwen.peng@microsoft.com

visual tracking. The new architecture contains three key
components: an encoder, a decoder and a prediction head.
The encoder accepts inputs of an initial target object, the
current image, and a dynamically updated template. The
self-attention modules in the encoder learn the relation-
ship between the inputs through their feature dependencies.
Since the template images are updated throughout video se-
quences, the encoder can capture both spatial and tempo-
ral information of the target. The decoder learns a query
embedding to predict the spatial positions of the target ob-
ject. A corner-based prediction head is used to estimate
the bounding box of the target object in the current frame.
Meanwhile, a score head is learned to control the updates of
the dynamic template images.

Extensive experiments demonstrate that our method es-
tablishes new state-of-the-art performance on on both short-
term [18, 36] and long-term tracking benchmarks [13, 22].
For instance, our spatio-temporal transformer tracker sur-
passes Siam R-CNN [47] by 3.9% (AO score) and 2.3%
(Success) on GOT-10K [18] and LaSOT [13], respectively.
It is also worth noting that compared with previous long-
term trackers [8, 47, 53], the framework of our method is
much simpler. Specifically, previous methods usually con-
sist of multiple components, such as base trackers [9, 50],
target verification modules [21], and global detectors [40,
19]. In contrast, our method only has a single network
learned in an end-to-end fashion. Moreover, our tracker can
run at real-time speed, being 6x faster than Siam R-CNN
(30 v.s. 5 fps) on a Tesla V100 GPU, as shown in Fig. 1

In summary, this work has three contributions.

* We propose a new transformer architecture dedicated
to visual tracking. It is capable of capturing global fea-
ture dependencies of both spatial and temporal infor-
mation in video sequences.

e The whole method is end-to-end, does not need
any postprocessing steps such as cosine window and
bounding box smoothing, thus largely simplifying ex-
isting tracking pipelines.

* The proposed trackers achieve state-of-the-art perfor-
mance on five challenging short-term and long-term
benchmarks, while running at real-time speed.

2. Related Work

Transformer in Language and Vision. Transformer
is originally proposed by Vaswani et al. [46] for machine
translation task, and has became a prevailing architecture in
language modeling. Transformer takes a sequence as the in-
put, scans through each element in the sequence and learns
their dependencies. This feature makes transformer be in-
trinsically good at capturing global information in sequen-
tial data. Recently, transformer has shown their great po-
tential in vision tasks like image classification [12], object

detection [5], semantic segmentation [49], multiple object
tracking [44, 35], etc. Our work is inspired by the recent
work DETR [5], but has following fundamental differences.
(1) The studied tasks are different. DETR is designed for
object detection, while this work is for object tracking. (2)
The network inputs are different. DETR takes the whole
image as the input, while our input is a triplet consisting of
one search region and two templates. Their features from
the backbone are first flatten and concatenated then sent
to the encoder. (3) The query design and training strate-
gies are different. DETR uses 100 object queries and uses
the Hungarian algorithm to match predictions with ground-
truths during training. In contrast, our method only uses one
query and always matches it with the ground-truth without
using the Hungarian algorithm. (4) The bounding box heads
are different. DETR uses a three-layer perceptron to pre-
dict boxes. Our network adopts a corner-based box head for
higher-quality localization.

Moreover, TransTrack [44] and TrackFormer [35] are
two most recently representative works on transformer
tracking. TransTrack [44] has the following features. (1)
The encoder takes the image features of both the current and
the previous frame as the inputs. (2) It has two decoders,
which take the learned object queries and queries from the
last frame as the input respectively. With different queries,
the output sequence from the encoder are transformed into
detection boxes and tracking boxes respectively. (3) The
predicted two groups of boxes are matched based on the
IoUs using the Hungarian algorithm [24]. While Track-
former [35] has the following features. (1) It only takes the
current frame features as the encoder inputs. (2) There is
only one decoder, where the learned object queries and the
track queries from the last frame interact with each other.
(3) It associates tracks over time solely by attention opera-
tions, not relying on any additional matching such as mo-
tion or appearance modeling. In contrast, our work has the
following fundamental differences with these two methods.
(1) Network inputs are different. Our input is a triplet con-
sisting of the current search region, the initial template and
a dynamic template. (2) Our method captures the appear-
ance changes of the tracked targets by updating the dynamic
template, rather than updating object queries as [44, 35].

Spatio-Temporal Information Exploitation. Exploita-
tion of spatial and temporal information is a core problem in
object tracking field. Existing trackers can be divided into
two classes: spatial-only ones and spatio-temporal ones.
Most of offline Siamese trackers [2, 26, 25, 60, 29] be-
long to the spatial-only ones, which consider the object
tracking as a template-matching between the initial tem-
plate and the current search region. To extract the rela-
tionship between the template and the search region along
the spatial dimension, most trackers adopt the variants of
correlation, including the naive correlation [2, 26], the

depth-wise correlation [25, 60], and the point-wise corre-
lation [29, 52]. Although achieving remarkable progress
in recent years, these methods merely capture local simi-
larity, while ignoring global information. By contrast, the
self-attention mechanism in transformer can capture long-
range relationship, making it suitable for pair-wise match-
ing tasks. Compared with spatial-only trackers, spatio-
temporal ones additionally exploit temporal information to
improve trackers’ robustness. These methods can also be
divided into two classes: gradient-based and gradient-free
ones. Gradient-based methods require gradient computa-
tion during inference. One of the classical works is MD-
Net [37], which updates domain-specific layers with gradi-
ent descent. To improve the optimization efficiency, later
works [9, 3, 27, 48, 55] adopt more advanced optimiza-
tion methods like Gauss-Newton method or meta-learning-
based update strategies. However, many real-world de-
vices for deploying deep learning do not support back-
propagation, which restricts the application of gradient-
based methods. In contrast, gradient-free methods have
larger potentials in real-world applications. One class of
gradient-free methods [54, 57] exploits an extra network to
update the template of Siamese trackers [2, 61]. Another
representative work LTMU [8] learns a meta-updater to pre-
dict whether the current state is reliable enough to be used
for the update in long-term tracking. Although being effec-
tive, these methods cause the separation between space and
time. In contrast, our method integrates the spatial and tem-
poral information as a whole, simultaneously learning them
with the transformer.

Tracking Pipeline and Post-processing. The tracking
pipelines of previous trackers [25, 51, 60, 47] are com-
plicated. Specifically, they first generate a large number
of box proposals with confidence scores, then use various
post-processing to choose the best bounding box as the
tracking result. The commonly used post-processing in-
cludes cosine window, scale or aspect-ratio penalty, bound-
ing box smoothing, tracklet-based dynamic programming,
etc. Though it brings better results, post-processing causes
the performance being sensitive to hyper-parameters. There
are some trackers [16, 19] attempting to simplify the track-
ing pipeline, but their performances still lag far behind that
of state-of-the-art trackers. This work attempts to close this
gap, achieving top performance by predicting one single
bounding box in each frame.

3. Method

In this section, we propose the spatio-temporal trans-
former network for visual tracking, called STARK. For
clarity, we first introduce a simple baseline method that di-
rectly applies the original encoder-decoder transformer for
tracking. The baseline method only considers spatial infor-
mation and achieves impressive performance. After that, we
extend the baseline to learn both spatial and temporal repre-

Search Regiol

Initial
Template

Backbone

P o

C Flatten and Concatenate)

Transformer
Decoder

Transformer
Encoder

Target Query

Figure 2: Framework for spatial-only tracking.

sentations for target localization. We introduce an dynamic
template and an update controller to capture the appearance
changes of target objects.

3.1. A Simple Baseline Based on Transformer

We present a simple baseline framework based on visual
transformer for object tracking. The network architecture is
demonstrated in Fig. 2. It mainly consists of three compo-
nents: a convolutional backbone, an encoder-decoder trans-
former, and a bounding box prediction head.

Backbone. Our method can use arbitrary convolutional
networks as the backbone for feature extraction. Without
loss of generality, we adopt the vanilla ResNet [15] as the
backbone. More concretely, except for removing the last
stage and fully-connected layers, there is no other change
for the original ResNet [15]. The input of the backbone is a
pair of images: a template image of the initial target object
z € R3>H=xW= and a search region of the current frame
x € R3*HaxWe = After passing through of the backbone,
the template z and the search image x are mapped to two
feature maps f, € RC*“& X" and f, € ROX 55X

Encoder. The feature maps output from the backbone
require pre-processing before feeding into the encoder. To
be specific, a bottleneck layer is first used to reduce the
channel number from C' to d. Then the feature maps are
flatten and concatenated along the spatial dimension, pro-
ducing a feature sequence with length of %% + %%
and dimension of d, which servers as the input for the
transformer encoder. The encoder consists of N encoder
layers, each of which is made up of a multi-head self-
attention module with a feed-forward network. Due to the
permutation-invariance of the original transformer [46], we
add sinusoidal positional embeddings to the input sequence.
The encoder captures the feature dependencies among all
elements in the sequence and reinforces the original features
with global contextual information, thus allowing the model

to learn discriminative features for object localization.
Decoder. The decoder takes a target query and the en-
hanced feature sequence from the encoder as the input.
Different from DETR [5] adopting 100 object queries, we
only input one single query into the decoder to predict one
bounding box of the target object. Besides, since there is
only one prediction, we remove the Hungarian algorithm
[24] used in DETR for prediction association. Similar to
the encoder, the decoder stacks M decoder layers, each of
which consists of a self-attention, an encoder-decoder atten-
tion, and a feed-forward network. In the encoder-decoder
attention module, the target query can attend to all positions
on the template and the search region features, thus learning
robust representations for the final bounding box prediction.
Head. DETR [5] adopts a three-layer perceptron to
predict object box coordinates. However, as pointed by
GFLoss [28], directly regressing the coordinates is equiv-
alent to fitting a Dirac delta distribution, which fails to con-
sider the ambiguity and uncertainty in the datasets. This
representation is not flexible and not robust to challenges
such as occlusion and cluttered background in object track-
ing. To improve the box estimation quality, we design a
new prediction head through estimating the probability dis-
tribution of the box corners. As shown in Fig. 3, we first
take the search region features from the encoder’s output
sequence, then compute the similarity between the search
region features and the output embedding from the decoder.
Next, the similarity scores are element-wisely multiplied
with the search region features to enhance important regions
and weaken the less discriminative ones. The new feature
sequence is reshaped to a feature map f € R%* &% “ and
then fed into a simple fully-convolutional network (FCN).
The FCN consists of L stacked Conv-BN-ReLU layers and
outputs two probability maps Py (z,y) and Py-(z,y) for
the top-left and the bottom-right corners of object bound-
ing boxes, respectively. Finally, the predicted box coordi-
nates (Ty, yy) and (Zp., Upr) are obtained by computing
the expectation of corners’ probability distribution as shown
in Eq. (1). Compared with DETR, our method explicitly
models uncertainty in the coordinate estimation, generating
more accurate and robust predictions for object tracking.

H W H W
(:ft\lv yt\l) = (ZZ‘T : Ptl(may)v Zzy : Ptl(xvy))v

y=0xz=0 y=0 =0
H W H W

(-fb\ra ?jl;):(zzprr(xvy)a Zzypbr(x7y))a
y=0 =0 y=0z=0

(D

Training and Inference. Our baseline tracker is trained

in an end-to-end fashion with the combination of the ¢;

Loss and the generalized IoU loss [41] as in DETR. The
loss function can be written as

L = NiowLiow(biy bi) + Ap, L1 (b, bs).)

Top-left

Encoder Output
corner heatmap

Bottom-right
corner heatmap

® Dot product
® Element-wise product

Decoder output

Figure 3: Architecture of the box prediction head.

where b; and b; represent the groundtruth and the predicted
box respectively and Aoy, Az, € R are hyperparameters.
But unlike DETR, we do not use the classification loss and
the Hungarian algorithm, thus further simplifying the train-
ing process. During inference, the template image together
with its features from the backbone are initialized by the
first frame and fixed in the subsequent frames. During track-
ing, in each frame, the network takes a search region from
the current frame as the input, and returns the predicted box
as the final result, without using any post-processing such
as cosine window or bounding box smoothing.

3.2. Spatio-Temporal Transformer Tracking

Since the appearance of a target object may change
significantly as time proceeds, it is important to capture
the latest state of the target for tracking. In this section,
we demonstrate how to exploit spatial and temporal infor-
mation simultaneously based on the previously introduced
baseline. Three key differences are made, including the net-
work inputs, an extra score head, and the training & infer-
ence strategy. We elaborate them one by one as below. The
spatio-temporal architecture is shown in Fig. 4.

Input. Different from the baseline method which only
uses the first and the current frames, the spatio-temporal
method introduces an dynamically updated template sam-
pled from intermediate frames as an additional input, as
shown in Fig. 4. Beyond the spatial information from
the initial template, the dynamic template can captures the
target appearance changes with time, providing additional
temporal information. Similar to the baseline architecture
in Sec. 3.1, feature maps of the triplet are flatten and con-
catenated then sent to the encoder. The encoder extracts dis-
criminative spatio-temporal features by modeling the global
relationships among all elements in both spatial and tempo-
ral dimensions.

Head. During tracking, there are some cases where
the dynamic template should not be updated. For exam-
ple, the cropped template is not reliable when the target
has been completely occluded or has moved out of view,
or when the tracker has drifted. For simplicity, we consider

that the dynamic template could be updated as long as the
search region contains the target. To automatically deter-
mine whether the current state is reliable, we add a simple
score prediction head, which is a three-layer perceptron fol-
lowed by a sigmoid activation. The current state is consid-
ered reliable if the score is higher than the threshold 7.

Training and Inference. As pointed out by recent
works [7, 43], jointly learning of localization and classifica-
tion may cause sub-optimal solutions for both tasks, and it
is helpful to decouple localization and classification. There-
fore, we divide the training process into two stages, regard-
ing the localization as a primary task and the classification
as a secondary task. To be specific, in the first stage, the
whole network, except for the score head, is trained end-to-
end only with the localization-related losses in Eq. 2. In this
stage, we ensure all search images to contain the target ob-
jects and let the model learn the localization capacity. In the
second stage, only the score head is optimized with binary
cross-entropy loss defined as

Lee = yilog (P;) + (1 —y;) log (1 — P;), ©)

where y; is the groundtruth label and P; is the predicted
confidence , and all other parameters are frozen to avoid af-
fecting the localization capacity. In this way, the final model
learn both localization and classification capabilities after
the two-stage training.

During inference, two templates and corresponding fea-
tures are initialized in the first frame. Then a search region
is cropped and fed into the network, generating one bound-
ing box and a confidence score. The dynamic template is
updated only when the update interval is reached and the
confidence score is higher than the threshold 7. For effi-
ciency, we set the update interval as T;, frames. The new
template is cropped from the original image and then fed
into the backbone for feature extraction.

4. Experiments

This section first presents the implementation details and
the results of our STARK tracker on multiple benchmarks,
with comparisons to state-of-the-art methods. Then, abla-
tion studies are presented to analyze the effects of the key
components in the proposed networks. We also report the
results of other candidate frameworks and compare them
with our method to demonstrate its superiority. Finally, vi-
sualization on attention maps of the encoder and the decoder
are provided to understand how the transformer works.

4.1. Implementation Details

Our trackers are implemented using Python 3.6 and Py-
Torch 1.5.1. The experiments are conducted on a server
with 8 16GB Tesla V100 GPUs.

Model. We report the results of three variants of
STARK: STARK-S50, STARK-ST50 and STARK-ST101.

Replace [R\

Search Reglon /\l \)

Template Cropping

o
. = Update

B -

o

Bounding Box
prediction head
(Flatten and Concatenate)

Transformer Transformer
Encoder Decoder

Target Query

g [nitial Dynamic

-, Template Template
= J::\ >

Backbone

‘ Score head ‘

Figure 4: Framework for spatio-temporal tracking. The dif-
ferences with the spatial-only architecture are highlighted
in pink.

STARK-S50 only exploits spatial information and takes
ResNet-50 [15] as the backbone, i.e., the baseline tracker
presented in Sec. 3.1. STARK-ST50 and STARK-ST101
take ResNet-50 and ResNet-101 as the backbones respec-
tively, exploiting both spatial and temporal information, i.e.,
the spatio-temporal tracker presented in Sec. 3.2.

The backbones are initialized with the parameters pre-
trained on ImageNet. The BatchNorm [20] layers are frozen
during training. Backbone features are pooled from the
fourth stage with a stride of 16. The transformer architec-
ture is similar to that in DETR [5] with 6 encoder layers
and 6 decoder layers, which consist of multi-head attention
layers (MHA) and feed-forward networks (FFN). The MHA
have 8 heads, width 256, while the FFN have hidden units of
2048. Dropout ratio of 0.1 is used. The bounding box pre-
diction head is a lightweight FCN, consisting of 5 stacked
Conv-BN-ReLU layers. The classification head is a three-
layer perceptron with 256 hidden units in each layer.

Training. The training data consists of the train-splits of
LaSOT [13], GOT-10K [18], COCO2017 [30], and Track-
ingNet [36]. As required by VOT2019 challenge, we re-
move 1k forbidden sequences from GOT-10K training set.
The sizes of search images and templates are 320 x 320
pixels and 128 x 128 pixels respectively, corresponding to
52 and 22 times of the target box area. Data augmenta-
tions, including horizontal flip and brightness jittering, are
used. The minimal training data unit for STARK-ST is
one triplet, consisting of two templates and one search im-
ages. The whole training process of STARK-ST consists
of two stages, which take 500 epochs for localization and
50 epochs for classification, respectively. Each epoch uses
6 x 10* triplets. The network is optimized using AdamW
optimizer [31] and weight decay 10~%. The loss weights
A1 and A, are set to 5 and 2 respectively. Each GPU

Success NormalizedPrecision

504/ —— STARK-ST101 [67.1] \ 250
—— SiamRCNN [64.8] g

—— STARK-ST101 [77.0]
z [72
401 —— PrDIMP50 [59.8] PR

SiamRCNN [72.2]
—— PrDiMP50 [68.8]

—— Ocean [65.1

SiamRPNpp [49.6]

SiamRPNpp [56.9]

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.1 0.

2 0.3 0.4 0.5
Overlap threshold Location error threshold

Figure 5: Comparisons on LaSOT test set [13].

hosts 16 triplets, hence the mini-batch size is 128 triplets
per iteration. The initial learning rates of the backbone and
the rest parts are 10~° and 10~ respectively. The learning
rate drops by a factor of 10 after 400 epochs in the first stage
and after 40 epochs in the second stage. The training setting
of STARK-S is almost the same as that of STARK-ST, ex-
cept that (1) the minimal training data unit of STARK-S is
a template-search pair; (2) the training process only has the
first stage.

Inference. The dynamic template update interval Ty,
and the confidence threshold 7 are respectively set to 200
frames and 0.5 by default. The inference pipeline only con-
tains a forward pass and a coordinate transformation from
the search region to the original image, without any extra
post-processing.

4.2. Results and Comparisons

We compare our STARK with existing state-of-the-art
object trackers on three short-term benchmarks (GOT-10K,
TrackingNet and VOT2020) and two long-term benchmarks
(LaSOT and VOT2020-LT).

GOT-10K. GOT-10K [18] is a large-scale benchmark
covering a wide range of common challenges in object
tracking. GOT-10K requires trackers to only use the train-
ing set of GOT-10k for model learning. We follow this pol-
icy and retrain our models only with the GOT-10K train set.
As reported in Tab. 1, with the same ResNet-50 backbone,
STARK-S50 and STARK-ST50 outperform PrDiMP50 [10]
by 3.8% and 4.6% AO scores, respectively. Furthermore,
STARK-ST101 obtains a new state-of-the-art AO score of
68.8%, surpassing Siam R-CNN [47] by 3.9% with the
same ResNet-101 backbone.

TrackingNet. TrackingNet [36] is a large-scale short-
term tracking benchmark containing 511 video sequences in
the test set. Tab. 2 presents that STARK-S50 and STARK-
ST50 surpass PrDiMP50 [10] by 4.5% and 5.5% in AUC
respectively. With a more powerful ResNet-101 backbone,
STARK-ST101 achieves the best AUC of 82.0%, outper-
forming Siam R-CNN by 0.8%.

VOT2020. Different from previous reset-based evalu-
ations [23], VOT2020 [22] proposes a new anchor-based

Figure 6: Visualization of the encoder attention and the de-
coder attention.

evaluation protocol and uses binary segmentation masks as
the groundtruth. The final metric for ranking is the Ex-
pected Average Overlap (EAO). Tab. 3 shows that STARK-
S50 achieves a competitive result, which is better than
DiMP [3] and UPDT [4]. After introducing temporal in-
formation, STARK-ST50 obtains an EAO of 0.308, be-
ing superior to previous bounding-box trackers. Inspired
by AlphaRef [22], the winner of VOT2020 real-time chal-
lenge, we equip STARK with a refinement module pro-
posed by AlphaRef to generate segmentation masks. The
new tracker “STARK-ST50+AR” surpasses previous SOTA
trackers, like AlphaRef and OceanPlus [60], getting an EAO
of 0.505.

LaSOT. LaSOT [13] is a large-scale long-term tracking
benchmark, which contains 280 videos with average length
of 2448 frames in the test set. STARK-S50 and STARK-
ST50 achieve a gain of 6.0% and 6.6% over PrDiMP [10]
respectively, using the same ResNet-50 backbone. Further-
more, STARK-ST101 obtains a success of 67.1%, which is
2.3% higher than Siam R-CNN [47], as shown in Fig. 5.

VOT2020-LT. VOT2020-LT consists of 50 long videos,
in which target objects disappear and reappear frequently.
Besides, trackers are required to report the confidence score
of the target being present. Precision (Pr) and Recall (Re)
are computed under a series of confidence thresholds. F-
score, defined as ' = 12:.1; j;%i, is used to rank different
trackers. Since STARK-S does not predict this score, we do
not report its result on VOT2020-LT. Tab. 4 demonstrates
that STARK-ST50 and STARK-ST101 outperform all pre-
vious methods with an F-score of 70.2% and 70.1%, re-
spectively. It is also worth noting that the framework of
STARK is much simpler than that of LTMU_B, the winner
of VOT2020-LT Challenge. To be specific, LTMU_B takes
the combination of ATOM [9] and SiamMask [50] as the
short-term tracker, MDNet [37] as the verifier, and Global-
Track [19] as the global detector. Whereas there is only one
network in STARK and the result is obtained in one forward

Table 1: Comparisons on GOT-10k test set [18]

SiamFC SiamFCv2 ATOM SiamFC++ D3S DiMP50 Ocean PrDiMP50 SiamRCNN STARK STARK STARK

[2] [45] [9] [51] [32] [3] [60] [10] [47] -S50 -ST50 -ST101
AO(%) 34.8 37.4 55.6 59.5 59.7 61.1 61.1 63.4 64.9 67.2 68.8
SR0O.5(%) 353 40.4 63.4 69.5 67.6 71.7 72.1 73.8 72.8 76.1 78.1
SRO.75(%) 9.8 14.4 40.2 479 46.2 49.2 47.3 54.3 59.7 61.2 64.1

Table 2: Comparisons on TrackingNet test set [36].

DSiamRPN ATOM SiamRPN++ DiMP50 SiamAttn SiamFC++ MAML-FCOS PDIMP50 SiamRCNN STARK STARK STARK

(611 [9] [25] B3] [56] [51] [48] [10] [47] -$50 -STS0 -ST101
AUC(%) 63.8 70.3 733 74.0 752 75.4 75.7 75.8 812 803 82.0
Prorm(%) 73.3 77.1 80.0 80.1 81.7 80.0 82.2 81.6 85.4 85.1 86.9

Table 3: Comparisons on VOT2020 [22].“+AR” means using Alpha-Refine to predict masks. The upper row summarizes trackers that
only predict bounding boxes and the lower row presents trackers that report masks.

IVT KCF SiamFC CSR-DCF ~ ATOM DiMP UPDT DPMT SuperDiMP STARK STARK STARK
[42] [17] [2] [33] [9] [3] [4] [1] -S50 -ST50 -ST101
EAO(1) 0.092 0.154 0.179 0.193 0271 0274 0.278 0.303 0.305 0.280 0.308 0.303
Accuracy(T) | 0.345 0.407 0.418 0.406 0462 0457 0.465 0.492 0.477 0.477 0.478 0.481
Robustness(1) | 0.244 0.432 0.502 0.582 0.734 0.740 0.755 0.745 0.786 0.728 0.799 0.775
STM SiamEM SiamMask SiamMargin Ocean D3S FastOcean AlphaRef OceanPlus STARK STARK STARK
[38] [50] [22] [60] [32] [22] [58] -S50+AR -ST50+AR -ST101+AR
EAO(1) 0.308 0.310 0.321 0.356 0430 0.439 0.461 0.482 0.491 0.462 0.505
Accuracy() | 0.751 0.520 0.624 0.698 0.693 0.699 0.693 0.754 0.685 0.759 0.763
Robustness(1) | 0.574 0.743 0.648 0.640 0.754 0.769 0.803 0.777 0.842 0.749 0.789

pass without post-processing.

Speed, FLOPs and Params. As demonstrated in Tab. 5,
STARK-S50 can run in real-time at more than 40 fps. Be-
sides, the FLOPs and Params of STARK-S50 are 4x and
2x less than those of SiamRPN++. Although STARK-
ST50 takes a dynamic template as the extra input and in-
troduces an additional score head, the increases of FLOPs
and Params is a little, even negligible. This shows that our
method can exploit temporal information in a nearly cost-
free fashion. When ResNet-101 is used as the backbone,
both FLOPs and Params increase significantly but STARK-
ST101 can still run at real-time speed, which is 6x faster
than Siam R-CNN (5 fps), as shown in Fig. 1.

4.3. Component-wise Analysis

In this section, we choose STARK-ST50 as the base
model and evaluate the effects of different components in it
on LaSOT [13]. For simplicity, encoder, decoder, positio