
Common Objects in 3D:
Large-Scale Learning and Evaluation of Real-life 3D Category Reconstruction

Jeremy Reizenstein1 Roman Shapovalov1 Philipp Henzler2 Luca Sbordone1

Patrick Labatut1 David Novotny1

{reizenstein,romansh,lsbordone,plabatut,dnovotny}@fb.com {p.henzler}@cs.ucl.ac.uk

1Facebook AI Research 2University College London

https://github.com/facebookresearch/co3d

Figure 1: We introduce the Common Objects in 3D (CO3D) dataset comprising 1.5 million multi-view images of almost
19k objects from 50 MS-COCO categories annotated with accurate cameras and 3D point clouds (visualized above).

Abstract
Traditional approaches for learning 3D object cate-

gories have been predominantly trained and evaluated on
synthetic datasets due to the unavailability of real 3D-
annotated category-centric data. Our main goal is to facil-
itate advances in this field by collecting real-world data in
a magnitude similar to the existing synthetic counterparts.
The principal contribution of this work is thus a large-scale
dataset, called Common Objects in 3D, with real multi-view
images of object categories annotated with camera poses
and ground truth 3D point clouds. The dataset contains a
total of 1.5 million frames from nearly 19,000 videos cap-
turing objects from 50 MS-COCO categories and, as such,
it is significantly larger than alternatives both in terms of
the number of categories and objects.

We exploit this new dataset to conduct one of the first
large-scale “in-the-wild” evaluations of several new-view-

synthesis and category-centric 3D reconstruction methods.
Finally, we contribute NerFormer - a novel neural render-
ing method that leverages the powerful Transformer to re-
construct an object given a small number of its views.

1. Introduction
Recently, the community witnessed numerous advances

in deeply learning to reconstruct category-centric 3D mod-
els. While a large variety of technical approaches was pro-
posed [56, 62, 13, 25, 26, 46, 8], they are predominantly
trained and benchmarked either on synthetic data [6], or on
real datasets of specific object categories such as birds [62]
or chairs [37]. The latter is primarily a consequence of a
lack of relevant real-world datasets with 3D ground truth.

Our main goal is therefore to collect a large-scale open
real-life dataset of common objects in the wild annotated

1

ar
X

iv
:2

10
9.

00
51

2v
1

 [
cs

.C
V

]
 1

 S
ep

 2
02

1

https://github.com/facebookresearch/co3d

with 3D ground truth. While the latter can be collected with
specialized hardware (turn-table 3D scanner, dome [29]), it
is challenging to reach the scale of synthetic datasets [6]
comprising thousands of instances of diverse categories.

Instead, we devise a photogrammetric approach only re-
quiring object-centric multi-view RGB images. Such data
can be effectively gathered in huge quantities by means
of crowd-sourcing “turn-table” videos captured with smart-
phones, which are nowadays a commonly owned accessory.
The mature Structure-from-Motion (SfM) framework then
provides 3D annotations by tracking cameras and recon-
structs a dense 3D point cloud capturing the object surface.

To this end, we collected almost 19,000 videos of 50
MS-COCO categories with 1.5 million frames, each an-
notated with camera pose, where 20% of the videos are
annotated with a semi-manually verified high-resolution
3D point cloud. As such, the dataset exceeds alternatives
[9, 1, 21] in terms of number of categories and objects.

Our work is an extension of the dataset from [26]. Here,
we significantly increase the dataset size from less than 10
categories to 50 and, more importantly, conduct a human-
in-the-loop check ensuring reliable accuracy of all cameras.
Finally, the dataset from [26] did not contain any point
cloud annotations, the examples of which are in fig. 1.

We also propose a novel NerFormer model that, given a
small number of input source views, learns to reconstruct
object categories in our dataset. NerFormer mates two of
the main workhorses of machine learning and 3D computer
vision: Transformers [65] and neural implicit rendering
[43]. Specifically, given a set of 3D points along a rendering
ray, features are sampled from known images and stacked
into a tensor. The latter is in fact a ray-depth-ordered se-
quence of sets of sampled features which admits processing
with a sequence-to-sequence Transformer. Therefore, by
means of alternating feature pooling attention and ray-wise
attention layers, NerFormer learns to jointly aggregate fea-
tures from the source views and raymarch over them.

Importantly, NerFormer outperforms a total of 14 base-
lines which leverage the most common shape representa-
tions to date. As such, our paper conducts one of the
first truly large-scale evaluations of learning 3D object cat-
egories in the wild.

2. Related Work
In this section we review current 3D datasets and related

methods in the areas of single-image reconstruction, gener-
ative modelling and novel-view synthesis.
3D object datasets The main enabler of early works in
3D reconstruction was the synthetic ShapeNet [6] dataset.
Pascal3D [72] introduced a real world dataset providing
pose estimation for images, but only approximate 3D mod-
els. Choi et al. [9] provide a large set of realobject-centric
RGB-D videos, however only a small subset is annotated

Dataset [6] [72] [9] [1] [21] [26] Ours
Real 5 X X X X X X
Categories 55 12 9 9 NA 7 50
Objects 51k 36k 2k 15k 2k 2k 19k
3D GT full approx. depth pcl, box full pcl pcl
Multi-view full none full limited full full full

Table 1: Common Objects in 3D compared to alternatives.
The “pcl” abbreviation stands for “point clouds”.

with 3D models and cameras. Increasing the number of cat-
egories and objects, Objectron [1] contains object-centric
videos, object/camera poses, point clouds, surface planes
and 3D bounding boxes. Unfortunately, only a limited num-
ber of object-centric videos cover full 360 degrees. Our
dataset further increases the number of categories by a fac-
tor of 5 and covers the full 360 degree range. Requiring 3D
scanners, GSO [21] provides clean full 3D models includ-
ing textures of real world objects. Due to the requirement
of 3D scanning, it contains less objects. A detailed compar-
ison of the aforementioned datasets is presented in tab. 1.

3D reconstruction A vast amount of methods studied
fully supervised 3D reconstruction from 2D images making
use of several different representations: voxel grids [10, 18],
meshes [19, 67], point clouds [14, 73], signed distance
fields, [49, 2] or continuous occupancy fields [42, 8, 17, 16].

Methods overcoming the need for 3D supervision are
based on differentiable rendering allowing for comparison
of 2D images rather than 3D shapes [51, 63, 31]. Generat-
ing images from meshes was achieved via soft rasterization
in [32, 40, 61, 30, 7, 36, 77, 20, 67]. Volumetric represe-
nations are projected to 2D via differentiable raymarching
[25, 15, 41, 43, 39, 55] or in a similar fashion via sphere
tracing for signed distance fields [45, 74]. [28] introduce
differentiable point clouds. Another line of work focuses
on neural rendering, i.e. neural networks are trained to ap-
proximate the rendering function [44, 56]. [35, 34] map pix-
els to object-specific derformable template shapes. [47, 48]
canonically align point clouds of object-categories in an un-
supervised fashion, but do not reason about colour. Exploit-
ing symmetries and reasoning about lighting [71], compose
appearance, shape and lighting.

Similar to us, [52, 75, 26, 60] utilize per-pixel warp-
conditioned embedding [26]. In contrast to our method,
multi-view aggregation is handled by averaging over en-
codings which is prone to noise. Instead, we learn the ag-
gregation by introducing the NerFormer module. Finally, a
very recent IBRNet [68] learns to copy existing colors from
known views in an IBR fashion [24, 5], whereas our method
can hallucinate new colors, which is crucial since we lever-
age far fewer source views (at most 9).

2

Figure 2: Statistics of the Common Objects in 3D dataset reporting the total (right) and per-category (left) numbers of
collected videos, and the number of videos with accurate cameras and point clouds.

3. Common Objects in 3D
In this section we describe the dataset collection process.

AMT video collection In order to scale the collection of
object-centric videos, we crowd-sourced it on Amazon Me-
chanical Turk (AMT). Each AMT task asks a worker to se-
lect an object of a given category, place it on a solid sur-
face and take a video where they keep the whole object in
view while moving full circle around it. We pre-selected
50 MS-COCO [38] categories (listed in fig. 2) comprising
stationary objects that are typically large enough to be re-
constructed. The workers were instructed to avoid actions
that would hinder the ensuing reconstruction stage such as
abrupt movements leading to motion blur. Each video was
reviewed to ensure that it fulfills the requirements.
Generating 3D ground-truth As explained below, we
use off-the-shelf software to produce object masks, camera
tracking, and 3D reconstructions for each video. We then
semi-automatically filter out poor reconstructions.
1) Sparse reconstruction Given the set of valid object-
centric videos, we reconstruct the extrinsic (3D location
and orientation) and intrinsic (calibration) properties of the
cameras that captured the videos. To this end, each video
is first converted into a time-ordered sequence of images
V = (Ii | Ii ∈ R3×H×W)NIi=1 by extracting nI = 100
frames uniformly spaced in time. The frames are then fed
to the COLMAP SfM pipeline [53] which annotates each
image with camera projection matrices P = (P i | P i ∈
R4×4)NIi=1. Fig. 3 shows example camera tracks together
with estimated sparse scene geometries.
2) Object segmentation We segment the object in each
image Ii with PointRend [33], state-of-the-art instance seg-
mentation method, resulting in a sequence of soft binary
masksM = (M i | M i ∈ [0, 1]H×W)NIi=1 per video. Note
that, while masks aid further dense reconstruction, we have
not used them for camera tracking which is typically an-
chored to the background regions.
3) Semantic dense reconstruction Having obtained the
camera motions and segmentations, we now describe the
process of annotating the captured objects with a 3D sur-
face. We first execute the multi-view stereo (MVS) algo-

rithm of COLMAP [54] to generate per-frame dense depth
maps (Di | Di ∈ RH×W+)NIi=1. We then run COLMAP’s
point cloud fusion algorithm, which back-projects the depth
values masked withM and retains the points that are con-
sistent across frames, to get a point cloud P(V) = {xi}NP

i=1.
Example dense point clouds are visualized in fig. 3.
4) Labelling reconstruction quality with Human-in-the-
loop. Since our reconstruction pipeline is completely au-
tomated, any of the aforementioned steps can fail, resulting
in unreliable 3D annotations. We thus incorporate a semi-
manual check that filters inaccurate reconstructions.

To this end, we employ an active learning [11] pipeline
which cycles between: a) manually labelling the point-
cloud and camera-tracking quality; b) retraining a “qual-
ity” SVM classifier; and c) automatically estimating the
shape/tracking quality of unlabelled videos. Details of this
process are deferred to the supplementary.
5) The dataset The active-learned SVM aids the final
dataset filtering step. As accurate camera annotations are
crucial for the majority of recent 3D category reconstruc-
tion methods, the first filtering stage completely removes
all scenes with camera tracking classified as “inaccurate”
(18% of all videos). While all videos that pass the cam-
era check are suitable for training, the scenes that pass both
camera and point cloud checks (30% of the videos with ac-
curate cameras) comprise the pool from which evaluation
videos are selected. Note, a failure to pass the point cloud
check does not entail that the corresponding scene is ir-
reconstructible and should therefore be removed from train-
ing – instead this merely implies that the MVS method [54]
failed, while other alternatives (see sec. 5) could succeed.

Fig. 2 summarizes the size of Common Objects in 3D.
Reconstructing a single video took on average 1h 56 min-
utes with the majority of execution time spent on GPU-
accelerated MVS and correspondence estimation. This
amounts to the total of 43819 GPU-hours of reconstruction
time distributed to a large GPU cluster.

4. Learning 3D categories in the wild
Here, we describe the problem set, give an overview of

implicit shape representations, and explain our main techni-

3

Input 360° crowd-sourced video
+ predicted PointRend masks

SfM camera tracking Dense semantic reconstruction Reconstruction quality classifier

Camera metrics:
- BA energy,
- sparse pt. cloud size,
- # cameras

Camera
tracking
metrics

Camera tracking
metrics:

BA energy, #points,
#cameras, ...

Dense cloud metrics
RGB render err., #points,

density, ...

Dense
cloud

metrics

M
an

ua
l l

ab
el

ac

cu
ra

te
 /

in
ac

cu
ra

te

M
an

ua
l l

ab
el

s
ac

cu
ra

te
/in

ac
cu

ra
te

Camera / cloud
binary classifiers

RBF-SVM
Training

Automatic
labelling

Camera
tracking
metrics

Dense
cloud

metrics Pr
ed

ic
te

d
la

be
l

ac
cu

ra
te

 /
in

ac
cu

ra
te

Figure 3: 3D ground truth for Common Objects in 3D was generated with active learning. Videos are first annotated with
cameras and dense point clouds with COLMAP [53]. Given several reconstruction metrics and manual binary annotations
(“accurate”/“inaccurate”) of a representative subset of reconstructions, we train an SVM that automatically labels all videos.

cal contribution: the NerFormer neural rendering model.
Problem setting We tackle the task of generating a repre-
sentation of appearance and geometry of an object given a
small number of its observed source RGB views {Isrc

i }
Nsrc
i=1

and their cameras {P src
i }

Nsrc
i=1 which, in our case, are samples

from the set of frames Vv and cameras Pv of a video v.
In order to visualize the generated shape and appearance,

we differentiably render it to a target view for which only
the camera parameters P tgt ∈ R4×4 are known. This re-
sults in a render Î tgt which is, during training, incentivised
to match the ground truth target view I tgt.

Methods are trained on a dataset of category-centric
videos {Vv}nV

v=1, which allows to exploit the regular struc-
ture of the category for better generalization to previously
unseen objects. Note that, in our experiments (sec. 5), we
additionally consider “overfitting” with nV = 1.

4.1. Representing common objects in 3D

In order to predict novel views, all methods need to re-
construct 3D shape in some form. The latter can be repre-
sented with a plethora of recent frameworks such as voxel
grids [64, 41], implicit surfaces [43, 46, 45], point clouds
[28, 69], or meshes [40, 50]. Among those, implicit repre-
sentations have been successfully applied to reconstructing
real scenes and object categories [43, 25, 75], therefore we
choose to use them in our pipeline.
Implicit surface An implicit surface is defined as a level
set Sf = {x | f(x, z) = C,C ∈ R} of a function
f : R3 × Dz 7→ R that accepts a 3D point x ∈ R3 and Dz-
dimensional latent code z ∈ RDz . In addition to f , which
represents geometry, a second function c : R3×S2×Dz 7→
R3 assigns colors c(x, r, z) to the input points x. Note that,
in line with recent work [43, 74], c is further conditioned
on the 3D direction vector r ∈ S2 from which x is imaged
in order to model viewpoint-dependent effects such as spec-
ularities. Finally, both functions f and c depend on the la-
tent code z encoding geometry and appearance of the scene.

Changes in z alter the level set of f and colors c allowing
for representing different instances of object categories.

Following recent successes of [55, 26], we model
category-specific 3D shapes with opacity functions fo.
Specifically, fo assigns fo(x, z) = 0 to the unoccupied
points x /∈ Sf , and f(x′, z) > 0 to surface points x′ ∈ Sf .

Neural implicit surfaces Recent methods implement
functions fo and c as multi-layer perceptrons (MLP) fMLP
and cMLP [43, 45, 22, 2]. They typically learn shallow spe-
cialized networks on top of the shared deep feature extractor
f ′MLP: fMLP = fHEAD ◦ f ′MLP and cMLP = cHEAD ◦ f ′MLP.

We depart from representing occupancies with plain
MLPs as they process input 3D points x independently,
without any form of spatial reasoning, which is crucial in
our case where input source views provide only a partial
information about the reconstructed shape.

Positional embedding Following [43, 66], avoiding
loss of detail, we pre-process the raw 3D coordi-
nates x with a positional embedding (PE) γ(x) =
[sin(x), cos(x), ..., sin(2Nfx), cos(2Nfx)] ∈ R2Nf before
feeding to fMLP(x, z). While [43] was the first to demon-
strate benefits of PE, in sec. 5 we also combine PE with
other pre-NeRF methods, such as SRN [56] or DVR [45].

Rendering an implicit surface In order to admit image-
supervised learning, implicit surfaces are converted into an
explicit representation of appearance and geometry with a
rendering function r. Formally, given a target camera P tgt,
the goal is to generate the target image I tgt = r(f, c, P tgt)
which depicts the scene from P tgt’s viewpoint.

We render opacity fields with the Emission-Absorption
model (EA). EA renders the RGB value I tgt

u ∈ R3 at
a pixel u ∈ {1, . . . ,W} × {1, ...,H}, by evaluating
the opacity function fo(x, z) for an ordered point-tuple
(xru
i)NS

i=1 sampled along u’s projection ray ru at approx-
imately equidistant intervals ∆. The color I tgt

u (ru, z) =∑NS
i=1 wi(x

ru
i , z)c(xru

i , ru, z) is a sum of per-point colors

4

Source view !!"#$

Pooling transf. enc. "#!
Ray transf. enc. "#%
Pooling. enc. "#!
Ray transf. enc. "#%

Sampled features $#!
NeRFormer %&'(

Color &)*+,
Opacity %)*+,

Sourceview !-"#$

Source
view !."#$

Targ
et v
iew

!/0
/

Emitted ray /1 Pixel uSource view
Features Ψ!"#$

EA Raymarching

Ren
der
3!/0
/

3D Transformer
Encoder "#2

Weighted pooling 4345678($9#!)
Ray point features 434(

Transformer feats $9#!

Figure 4: We propose NerFormer which jointly learns to
pool features from source views and to raymarch by means
of a series of transformers alternating between attention
along the ray and pooling dimensions.

Figure 5: NerFormer learns to attend to features from
source images. A ray is emitted from a target-image pixel
(1st column), and its points are projected to the source views
(columns 2-8) from which features are sampled. For each
source feature, NerFormer predicts attention (red=high,
blue=low) for aggregating to a single source embedding per
point. Note how the attention model implicitly learns to
pool features from nearby source views.

c(xru
i , ru, z) weighted by the emission-absorption product

wi =
(∏i−1

j=0 Tj

)
(1− Ti) with Ti = exp(−∆fo(x

ru
i , z)).

4.2. Latent shape encoding z

A crucial part of a category-centric reconstructor is the
latent embedding z. Early methods [18, 70, 58, 61, 40] pre-
dicted a global scene encoding zglobal = ΦCNN(Isrc) with a
deep convolutional network ΦCNN that solely analyzed the
colors of source image pixels. While this approach was suc-
cessful for the synthetic ShapeNet dataset where shapes are
rigidly aligned, it has been recently shown in [26, 75] that
such approach is infeasible in real world settings where ob-
jects are arbitrarily placed in the 3D space. This is because,
unlike in the former case where color-based shape inference
is possible since similar images of aligned scenes generate
similar 3D shapes, in the latter case, similarly looking im-
ages of unaligned scenes can generate vastly different 3D.

Warp-conditioned embedding To fix the latter, [26] pro-
posed Warp-Conditioned Embedding (WCE): given a world

coordinate point x and a source view Isrc with camera P src,
the warp-conditioned embedding zWCE ∈ RDz

zWCE(x, Isrc, P src) = ΨCNN(Isrc)[πP src(x)],

is formed by sampling a tensor of source image descrip-
tors ΨCNN(Isrc) ∈ RDz×H×W at a 2D location πP src(x).
Here, πP src(x) = P src[x; 1] = du[u; 1] expresses perspec-
tive camera projection of a 3D point x to a pixel u with
depth du ∈ R. Intuitively, since zWCE is a function of the
world coordinate x, the ensuing implicit f can perceive the
specific 3D location of the sampled appearance element in
the world coordinates, which in turn enables f to learn in-
variance to rigid scene misalignment.

In the common case where multiple source views are
given, the aggregate WCE z∗WCE(x, {Isrc

i }, {P src
i }) is de-

fined as a concatenation of the mean and standard de-
viation of the set of view-specific source embeddings
{zWCE(x, Isrc

i , P
src)}Nsrc

i=1.

Boosting baselines with WCE The vast majority of ex-
isting methods for learning 3D categories leverage global
shape embeddings zglobal, which renders them inapplicable
to our real dataset. As WCE has been designed to alleviate
this critical flaw, and because of its generic nature, in this
paper we endow state-of-the-art category-centric 3D recon-
struction methods with WCE in order to enable them for
learning category-specific models on our real dataset.

To this end, we complement SRN [56], NeuralVolumes
[41], and the Implicit Point Cloud (discussed later) with
WCE. These extensions are detailed in the supplementary.

4.3. Attention is all you nerf

Limitations of WCE While [26] has demonstrated that
the combination of NeRF and WCE (termed NeRF-WCE)
leads to performance improvements, our experiments indi-
cated that a major shortcoming of NeRF-WCE is its inabil-
ity to deal with cases where parts of the 3D domain are la-
belled with noisy WCE. This is because NeRF’s MLP f ′MLP
independently processes each 3D point and, as such, cannot
detect failures and recover from them via spatial reason-
ing. The 3D deconvolutions of Neural Volumes [41] are a
potential solution, but we found that the method ultimately
produces blurry renders due to the limited resolution of the
voxel grid. The LSTM marcher of SRN [56] is capable of
spatial reasoning, which is however somewhat limited due
to the low-capacity of the LSTM cell. Last but not least,
a fundamental flaw is that simple averaging of the source-
view WCE embeddings can suppress important features.

Our main technical contribution aims to alleviate these
issues and follows a combination of two main design guide-
lines: 1) We replace the f ′MLP with a more powerful archi-
tecture capable of spatial reasoning. 2) Instead of engineer-
ing the WCE aggregation function, we propose to learn it.

5

Tgt. img. IPC SRN [56] NV [41] IDR [74] NeRF [43] NerFormer

Figure 6: Single-scene new-view synthesis on Common Objects in 3D depicting a target image from the training video
(left), and corresponding synthesized view generated by IPC, SRN [56], NV [41], IDR [74], NeRF [43], and our NerFormer .

NerFormer As a solution, we propose to leverage the
popular Transformer architecture [65]. Employing a
sequence-to-sequence model is intuitive since the set of all
WCE embeddings along a projection ray is in fact a depth-
ordered descriptor sequence along the ray dimension, and
an unordered sequence along the feature pooling dimension.

Formally, given a ray ru, we define Zru ∈ RNS×Nsrc×Dz

as a stacking of un-aggregated WCEs of all ray-points xru
j :

Zru =
({

zWCE(xru
j , I

src
i , P

src
i)
}nsrc

i=1

)NS

j=1
. (1)

The NerFormer module f ′TR(Zru) = fHEAD
TR ◦ TEL ◦ · · · ◦

TE1(Zru) replaces the feature backbone f ′MLP (sec. 4.1)
with a series of L 3D transformer modules TEl terminated
by a weighted pooling head fHEAD

TR (fig. 4). Here, each 3D
transformer module TEl is a pairing of Transformer En-
coder [65] layers TE0(Z) and TE1(Z):

MHAdl (Zl) = Z ′l = LN(MHAl(Zl, dim=d) + Zl) (2)

TEdl (Zl) = LN(MLPl(Z ′l) + Z ′l) (3)

TEl(Zl) = TE0
l (TE1

l (Zl)) = Zl+1, (4)

MHA(Z, dim=d) is a multi-head attention layer [65] whose
attention vectors span the d-th dimension of the input ten-
sor Z, MLP is a two-layer MLP with ReLU activation, and
LN is Layer Normalization [3]. Intuitively, the alternation
between ray and pooling attention of TE0(Z) and TE1(Z)
facilitates learning to jointly aggregate WCE features from
the source views and ray-march over them respectively.

Finally, f ′TR is terminated by a weighted pooling head
fHEAD

TR (ZL) that aggregates the second dimension of ZL
output by the final L-th 3D transformer module TEL:
fHEAD

TR (ZL) =
∑nsrc
i=1 ωi(ZL)ZL[:, i, :] ∈ RNS×Dz , where

the weights ωi ∈ [0, 1],
∑
i ωi = 1 are output by a linear

layer with softmax activation. We show ωi in fig. 5.

method PSNR LPIPS `depth
1

IoU method PSNR LPIPS `depth
1

IoU

NerFormer 23.3 0.17 0.40 0.96 SRN[56] 20.4 0.21 0.60 0.93
NeRF+WCE[26] 21.0 0.19 0.74 0.91 SRN+WCE+γ 16.9 0.30 0.60 0.75
NeRF[43] 23.6 0.17 0.38 0.95 SRN+WCE 15.8 0.26 0.64 0.80
NV[41] 22.2 0.20 0.91 0.91 SRN+γ 16.9 0.30 0.59 0.75
NV+WCE 18.7 0.25 0.85 0.90 DVR[45] 15.0 0.33 0.89 0.68
IDR[74] 18.5 0.15 0.81 0.92 DVR+γ 15.8 0.38 0.74 0.65
IPC+WCE 13.9 0.25 1.59 0.83 P3DMesh[50] 17.3 0.22 0.69 0.91
IPC 13.8 0.25 1.58 0.83

Table 2: Single-scene new-view synthesis results on Com-
mon Objects in 3D comparing the baseline approaches
[43, 41, 74, 56, 45, 67], IPC, their variants with Warp-
conditioned Embeddings (+WCE) or Positional Embedding
(+γ), and our NerFormer (the best / 2nd best result).

The final opacity and coloring functions of NerFormer
are thus fo = fHEAD ◦ f ′TR, co = cHEAD ◦ f ′TR respectively,
which are rendered with the EA raymarcher (sec. 4.1).

Technical details Training minimizes, with Adam (learn-
ing rate 5·10−4), a sum of the RGB MSE error ‖I tgt− Î tgt‖2
and the binary cross entropy between the rendered alpha
mask M̂ tgt and the ground truth mask M tgt. We iterate over
batches comprising a randomly sampled target view and 1
to 9 source views of a training video until convergence.

5. Experiments
Datasets In order to evaluate and train reconstruction
methods on our dataset, we split the 18,619 collected CO3D
videos into 4 different sets as follows. For each of the 50
categories, we split its videos to a train and a test set in
9:1 ratio. For each video, we further define a set of frames
that are removed from the training set by randomly divid-
ing each train video in a 8:2 ratio to 80 train-known
training and 20 train-unseen holdout frames. test
video frames are split according to the same protocol result-
ing in test-known and test-unseen sets. As all base-

6

(a) Average statistics (b) PSNR @ # source views (c) PSNR @ target view difficulty

train-unseen test-unseen train-unseen test-unseen train-unseen test-unseen

Method PSNR LPIPS `depth
1 IoU PSNR LPIPS `depth

1 IoU 9 7 5 3 1 9 7 5 3 1 easy med. hard easy med. hard

NerFormer 17.9 0.26 0.87 0.82 17.6 0.27 0.91 0.81 19.3 19.0 18.3 17.4 15.6 18.9 18.6 18.1 17.1 15.1 18.9 15.5 14.6 18.6 14.9 14.7
SRN+WCE+γ 17.6 0.24 0.28 0.89 14.4 0.27 0.40 0.81 18.0 18.0 17.8 17.6 16.8 14.6 14.5 14.6 14.5 13.9 18.0 16.8 16.0 14.7 13.6 15.1
SRN+WCE 16.6 0.26 0.31 0.87 14.6 0.27 0.36 0.82 17.0 17.0 16.7 16.4 15.8 14.9 14.8 14.8 14.6 13.9 16.9 15.7 14.5 14.9 13.7 14.8
NeRF+WCE[26] 14.3 0.27 2.14 0.72 13.8 0.27 2.23 0.70 14.3 15.0 14.9 14.7 14.2 12.6 14.5 14.4 14.2 13.8 12.1 13.6 13.6 14.4 13.0 13.0
IPC+WCE 14.1 0.36 2.12 0.70 13.5 0.37 2.24 0.69 14.4 14.4 14.2 14.1 13.4 13.8 13.8 13.7 13.6 12.6 14.4 13.7 13.4 13.8 12.8 12.2
P3DMesh 17.2 0.23 0.50 0.91 12.4 0.26 2.49 0.69 17.6 17.5 17.4 17.1 16.2 12.6 12.5 12.5 12.5 12.1 17.5 16.8 16.0 12.6 11.8 13.2
NV+WCE 12.3 0.34 2.87 0.54 11.6 0.35 3.01 0.53 12.5 12.5 12.3 12.2 12.0 11.7 11.6 11.6 11.6 11.3 12.4 12.0 13.6 11.7 11.2 12.0
SRN+γ+AD 21.7 0.21 0.31 0.89 - - - - 21.7 21.7 21.7 21.7 21.8 - - - - - 21.7 21.3 19.7 - - -
SRN[56]+AD 21.2 0.21 0.23 0.94 - - - - 21.2 21.2 21.2 21.2 21.3 - - - - - 21.2 20.8 19.2 - - -
NV[41]+AD 19.7 0.23 0.41 0.93 - - - - 19.7 19.7 19.6 19.6 19.7 - - - - - 19.7 19.3 17.7 - - -
NeRF+AD 17.1 0.25 0.55 0.92 - - - - 17.1 17.0 17.0 17.0 17.1 - - - - - 17.1 16.9 15.8 - - -
P3DMesh[50]+AD 16.1 0.24 0.74 0.89 - - - - 16.1 16.1 16.1 16.1 16.2 - - - - - 16.1 16.0 15.1 - - -
IPC+AD 14.0 0.37 2.20 0.69 - - - - 14.4 14.3 14.1 14.0 13.3 - - - - - 14.3 13.6 13.2 - - -
IDR+AD 13.7 0.25 1.74 0.88 - - - - 13.7 13.7 13.7 13.7 13.8 - - - - - 13.7 13.7 14.0 - - -
DVR+γ+AD 7.6 0.29 3.24 0.09 - - - - 7.6 7.6 7.5 7.5 7.7 - - - - - 7.6 7.7 9.0 - - -
DVR[45]+AD 7.6 0.29 3.01 0.06 - - - - 7.6 7.6 7.5 7.5 7.7 - - - - - 7.6 7.7 9.0 - - -

Table 3: Category-centric new-view synthesis results on Common Objects in 3D comparing mean performance over 10
object categories. Reported are: (a) the main metrics averaged over the train-unseen/test-unseen set; (b) PSNR
averaged over test samples with a specific number of source views and; (c) the samples within one of three viewpoint difficulty
bins. Methods with +AD are autodecoders and thus not applicable to the test-unseen set. (best / 2nd best)

lines require a bounded scene coordinate frame, we zero-
center each point cloud and normalize the scale by dividing
with an average over per-axis standard deviations.

Evaluation protocol All evaluations focus on new
RGB+D-view synthesis where a method, given a known
target camera P tgt and a set of source views {Isrc

i }
nsrc
i=1, ren-

ders new target RGB view Î tgt and depth D̂tgt. Four metrics
are reported: The peak-signal-to-noise ratio (PSNR) and the
LPIPS distance [76] between Î tgt and the ground truth target
RGB frame I tgt, the Jaccard index between the rendered/g.t.
object mask M̂ tgt/M tgt and the `1 distance `depth

1 between the
rendered depth D̂tgt and the ground truth point cloud depth
render Dtgt. Note that PSNR and `depth

1 are only aggregated
over the foreground pixels {ufg|M tgt[ufg] = 1}. Metrics are
evaluated at an image resolution of 800x800 and 400x400
pixels for single-scene (sec. 5.2) and category-specific re-
construction (sec. 5.3) respectively.

5.1. Evaluated methods

We implemented a total of 15 approaches that leverage
the majority of common shape representation types.

Implicit surfaces Among implicit surface estimators we
selected the seminal opacity-based NeRF; and IDR [74] and
DVR [45] expressing shapes as a SDF fd and render with
sphere-tracing. We further benchmark SRN [56] which im-
plements an implicit learned LSTM renderer. Importantly,
following secs. 4.1 and 4.2, we evaluate the modifications
SRN-γ, DVR-γ that endow SRN and DVR respectively with
positional embedding γ. Furthermore, SRN-γ-WCE, SRN-
WCE, NeRF-WCE [26] complement SRN and NeRF with
the Warp-conditioned Embedding [26]. Finally, we also
evaluate our NerFormer method.

Voxel grids Neural Volumes (NV) [41] represents the
State of the Art among voxel grid predictors. Similar to
implicit methods, we also combine NV with WCE.
Point clouds In order to compare with a point cloud-
based method, we devised an Implicit Point Cloud (IPC)
baseline which represents shapes with a colored set of 3D
points, converts the set into an implicit surface and then ren-
ders it with the EA raymarcher. We note that IPC is strongly
inspired by SynSin [50, 69] (see supplementary).
Meshes We benchmark P3DMesh - the best-performing
variant of PyTorch3D’s soft mesh rasterizer from [50] in-
spired by Pixel2Mesh [67], which deforms an initial spher-
ical mesh template with a fixed topology with a series of
convolutions on the mesh graph.

5.2. Single-scene reconstruction

We first task the approaches to independently recon-
struct individual object videos. More specifically, given
a test video, every baseline is trained to reproduce the
video’s test-known frames (by minimizing method-
specific loss functions such as `2 RGB error), and evaluated
by comparing the renders from the given test-known
camera viewpoints to the corresponding ground truth im-
ages/depths/masks. Since training on all ∼2k test videos
is prohibitively expensive (each baseline trains at least for
24 hours on a single GPU), we test on 40 randomly selected
test videos (two from each of 20 random classes). Quan-
titative / qualitative results are in fig. 6 / Tab. 2.

NerFormer is either the best or the second best across all
metrics. NeRF+WCE is beaten by vanilla NeRF which sug-
gests that the noisy WCE embeddings can hurt performance
without NerFormer ’s spatial reasoning. Interestingly, IDR’s
realistic, but less detailed renders win in terms of LPIPS,
but are inferior in PSNR. Furthermore, we observed a large

7

Tgt. img. Source images SRN[56]+AD NerFormer SRN[56]+WCE IPC+WCE P3DMesh[50]

-

-

-

Figure 7: Category-centric 3D reconstruction on Common Objects in 3D depicting a target image, known source images
{Isrc
i }, and a synthesized new view. The first/last 3 rows are from the train/test set (SRN+AD is not applicable to test).

discrepancy between the train and test PSNR of γ/WCE-
endowed SRN. This shows that, for the single-scene setting,
increasing the model expressivity with WCE or γ can lead
to overfitting to the training views.

5.3. Learning 3D Object Categories

Our main task is learning category-centric 3D models. In
more detail, a single model is trained on all train-known
frames of an object category and evaluated on 1000 ran-
domly generated test samples from train-unseen and
test-unseen sets of the category. Each train or test
sample is composed of a single target image I tgt and ran-
domly selected source views {Isrc}nsrc

i , where nsrc is ran-
domly picked from {1, 3, 5, 7, 9}. Since training a model
for each of the 50 object categories is prohibitively expen-
sive (each method takes at least 7 days to train), we chose a
subset of 10 categories for evaluation.
Baselines For each method we evaluate the ability to
represent the shape space of training object instances
by turning it into an autodecoder [4] which, in an
encoder-less manner, learns a separate latent embedding
zscene(sequenceID) for each train scene as a free training
parameter. Since autodecoders (abbreviated with the +AD
suffix) only represent the train set, we further compare to
all WCE-based methods which can additionally reconstruct
test videos. Note that, as remarked in [26] and sec. 4.2,
the alternative encoding zglobal = ΦCNN(Isrc) is deemed to
fail due to the world coordinate ambiguity of the training
SfM reconstructions.
Results Quantitative and qualitative comparisons are
shown in tab. 3 and fig. 7 respectively. Besides average met-

rics over both test sets, we also analyze the dependence on
the number of available source views, and on the difficulty
of the target view. For the latter, test frames are annotated
with a measure of their distance to the set of available source
views, and then split into 3 different difficulty bins. Aver-
age per-bin PSNR is reported. The supplementary details
the distance metric and difficulty bins.

While SRN+AD has the best performance across all
metrics on train-unseen; on the test-unseen set,
where SRN+AD is inapplicable, our NerFormer is the best
for most color metrics. Among implicit methods, the SDF-
based DVR and IDR are outperformed by the opacity-based
NeRF, with both DVR+WCE and IDR+WCE failing to con-
verge. This is likely because regressing SDFs is more
challenging than classifying 3D space with binary labels
opaque/transparent. Finally, we observed poor performance
of P3DMesh, probably due to the inability of meshes to rep-
resent complicated real geometries and textures.

6. Conclusion
We have introduced Common Objects in 3D (CO3D),

a dataset of in-the-wild object-centric videos capturing 50
object categories with camera and point cloud annotations.

We further contributed NerFormer which is a marriage
between Transformer and neural implicit rendering that can
reconstruct 3D object categories from CO3D with better ac-
curacy than a total of 14 other tested baselines.

The CO3D collection effort still continues at a steady
pace of ∼500 videos per week which we plan to release in
the near future.

8

Common Objects in 3D:
Large-Scale Learning and Evaluation of Real-life 3D Category Reconstruction

Supplementary material

Sampled features !!!
"" × "#!$ × $%

Source
view %&#!$

Sourceview %'#!$

Source
view %(#

!$

Source view
features Ψ&#!$

Li
ne

ar
 la

ye
r

D
)
×

80

Multi-head att.
along dim d

2-layer MLP
Linear !!" × !!"→ ReLU
→ Linear !!" × !#$%

Learned dense
ResNet feature

Image color

Segmentation mask

Sampled source feature

Pos. encoding ((*)
!!

Fe
at

ur
es

 !
*+
,

"
"
×
"
#!
$
×
8
0

Po
ol

in
g

tra
ns

f.
en

c.
 .
/
&

R
ay

 tr
an

sf
. e

nc
. .
/
,

Fe
at

ur
es

 !
*+
&

"
"
×
"
#!
$
×
4
0

Po
ol

in
g

tra
ns

f.
en

c.
 .
/
&

R
ay

 tr
an

sf
. e

nc
. .
/
,

Fe
at

ur
es

 !
*+
-+

'
"
"
×
"
#!
$
×
2
0

Li
ne

ar
 la

ye
r

20
×

1

So
ftm

ax
W

ei
gh

te
d

su
m

al

on
g

di
m

 1
W

ei
gh

ts
 2

"
"
×
"
#!
$
×
1

Pe
r-

po
in

t f
ea

tu
re

s
"
"
×
2
0

4 .
/0

1
Li

n.
 +

 R
el

u
+

Li
n.

2
0
+
(
6 2

×
3

8 .
/0

1
Li

n.
 +

 R
eL

U
2
0
×
1

C
ol

or
 4

N
"
×
3

O
pa

ci
ty

 8 3
"
#
×
1

"#×"#!$×445
Skip + LayerNorm

Skip + LayerNorm
"#×"#!$×4326

Transform
er Enc. !"

!"#
$!

w
ith attention along dim

 d

Projection	ray		r7
1 × 3

EA
 ra

ym
ar

ch
in

g

R
en

de
re

d
co

lo
r
F % 268

6

3D
 T

ra
ns

fo
rm

er

En
co

de
r .
/
*

Layers

Tensors

Figure I: A detailed illustration of the architecture of NerFormer .

In what follows, we provide additional quantitative re-
sults (sec. A), technical details of NerFormer and the base-
lines (sec. B), and details of the Human-in-the-loop 3D an-
notation process (sec. C).

A. Additional results

A.1. Results on all 50 categories

While tab. 3 in the main paper provides results on a
subset of 10 object categories for all baselines, for com-
pleteness, in tab. I, we provide evaluation on all 50 object
classes for 4 best-performing baselines according to results
reported in tab. 3: NerFormer, SRN+WCE, SRN+γ+WCE,
and NeRF+WCE.

Similar to tab. 3, on the test-unseen set, NerFormer
is the best in all color-based metrics, suggesting that SRN
and NeRF+WCE are prone to overfitting to the training
scenes. While SRN outperforms NerFormer in some cases
on train-unseen, we note that the autodecoders would
likely yield superior performance on train-unseen due
to their ability to capture the information from all views of
a training scene in the latent scene-specific encoding.

A.2. Convergence speed

Fig. II further analyzes training convergence on the
single-scene new-view synthesis task. For each method and

epoch, we plot the average and standard deviation over of
the per-epoch mean PSNRs of each of the 40 test scenes.
The fastest converging methods are SRN, IDR, NerFormer
, NeRF which also top the performance in tab. 2, indicat-
ing a significant correlation between convergence rate and
performance. Furthermore, there is a large discrepancy be-
tween the train and test PSNR of γ/WCE-endowed SRN.
This shows that, for the single-scene setting, increasing the
model expressivity with WCE or γ can lead to overfitting to
the training views.

A.3. Execution speed

Tab. II contains an evaluation of execution times for all
methods from tab. 2. Here, each row reports an average time
to render an 800x800 pixel image on NVIDIA Tesla V100
GPU.

A.4. Test-time autodecoder optimization

In tab. III, we provide an extension of tab. 3 containing
the evaluation of the best-performing autodecoding meth-
ods at test-time. First, each method is first trained on
train-known. Then, during evaluation, the latter freezes
the trained weights and optimizes the input latent code for
a given set of source frames from a test sequence. The la-
tent codes are optimized with Adam until convergence, de-
caying the learning rate 10-fold whenever the optimization

9

(a) Average statistics (b) PSNR @ # source views (c) PSNR @ target view difficulty

train-unseen test-unseen train-unseen test-unseen train-unseen test-unseen

Method PSNR LPIPS `depth
1 IoU PSNR LPIPS `depth

1 IoU 9 7 5 3 1 9 7 5 3 1 easy med. hard easy med. hard

NerFormer 16.5 0.24 3.67 0.76 15.7 0.24 1.82 0.75 17.5 17.3 16.9 16.3 14.8 16.7 16.4 16.1 15.5 13.9 17.3 14.7 12.8 16.5 13.7 11.2
SRN+WCE 16.3 0.25 0.37 0.81 14.2 0.27 0.47 0.77 16.6 16.6 16.5 16.2 15.6 14.4 14.3 14.3 14.2 13.5 16.6 15.5 12.9 14.4 13.4 11.4
SRN+WCE+γ 17.1 0.25 0.35 0.81 13.7 0.28 0.47 0.73 17.4 17.4 17.3 17.0 16.3 14.0 13.8 13.9 13.7 13.2 17.4 16.3 14.4 14.0 13.1 10.6
NeRF+WCE[26] 12.6 0.27 6.21 0.54 11.6 0.27 4.54 0.51 13.0 13.0 12.8 12.6 11.6 11.9 11.8 11.8 11.6 10.8 12.9 12.1 9.4 11.9 11.1 8.7

Table I: Results on all 50 classes from CO3D comparing the 4 best-performing methods from tab. 3.

method time [sec] method time [sec]

NerFormer 178.41 SRN[56] 1.00
NeRF+WCE[26] 113.82 SRN+γ 1.19
NeRF[43] 23.82 SRN+WCE+γ 4.20
NV[41] 0.37 SRN+WCE 5.34
NV+WCE 0.41 DVR[45] 196.94
IDR[74] 69.11 DVR+γ 204.39
IPC 0.15 P3DMesh[50] 0.09
IPC+WCE 0.16

Table II: Average rendering time of an 800x800 pixel im-
age comparing all methods from tab. 2.

0 50 100 150 200 250 300
Epoch

20

22

24

26

28

30

32

34

PS
N

R

NeRF
NeRF+WCE
NeRFormer
SRN+WCE
SRN
SRN+WCE+
SRN+
NV
NV+WCE
DVR
DVR+
Pixel2Mesh
IDR
IP
IP+WCE

Figure II: Convergence speed on single-scene new-view-
synthesis showing the mean and std. dev. over the per-
scene training PSNRs for each method.

objective plateaus.
We observed that the latent code optimization was

mostly failing for NeRF and NV. On the other hand, SRN
gave slightly better performance, which we attribute to the
higher smoothness of the implicit function compared to the
NeRF and NV (SRN contains normalization layers while the
other baselines are bare MLPs interleaving linear layers and
ReLUs).

A.5. Estimating new-view difficulty

Tab. 3 contains metrics evaluated separately for three
viewpoint difficulty bins. Here, we detail the process of
estimating the difficulty of a testing target view.

Camera difficultyD Given a target camera P tgt and a set
of available source views {P src

i }
Nsrc
i=1, the difficulty of the tar-

get view D(P tgt) ∈ [0, 1] is quantified as the average of the
two lowest distances d(P tgt, P src

i) between the target view
and each of the source views.

Camera distance dcam The distance dcam(Pi, Pj) ∈ [0, 1]
between two cameras Pi and Pj is defined as follows. We
first generate a cubical voxel grid of size 323 in the center
of the scene with the voxel size set such that the majority
of the grid is observed by all cameras in the scene. Each
point xk, denoting the coordinates of the center of a cell
in the voxel grid, is then projected to both cameras leading
to a pair of projection rays rik, r

j
k ∈ S2. We then define

the similarity s(rik, r
j
k) = δ[πPi(xk) ∈ Ωi ∧ πPj (xk) ∈

Ωj](1 + rik · r
j
k) as a dot product between the pair of rays

weighted by an indicator that checks whether the projection
of xk simultaneously lands in the rasters Ωi,Ωj ∈ [0,W]×
[0, H] of both cameras Pi and Pj . The camera distance dcam

is then defined as one minus the intersection-over-union of
the similarities between all pairs of rays generated by each
voxel grid point xk:

dcam(Pi, Pj) = 1−
∑
k s(r

i
k, r

j
k)∑

k s(r
i
k, r

i
k) + s(rjk, r

j
k)− s(rik, r

j
k)
.

Intuitively, the camera distance is proportional to the angle
between the camera heading vectors adjusted by the overlap
between the voxels observed by both cameras. However,
merely considering the heading vectors would not take into
account the intrinsics of the cameras (focal length / prin-
cipal point). We thus devised dcam which leverages angles
between projection rays, which are a function of both the
intrinsics and extrinsics.

In order to understand dcam, consider the following two
examples: Two cameras observing the same set of voxels at
a relative angle of 0.5π would have dcam(Pi, Pj) ≈ 2

3 , while
opposite-facing cameras would yield a maximum possible
dcam(Pi, Pj) ≈ 1.

Camera difficulty bins Each testing target camera P tgt is
then assigned into one of 3 difficulty bins (easy, medium,
hard) depending on its difficulty measure D(P tgt). More
specifically, the easy cameras satisfy 0 ≤ D(P tgt) < 1

6 ,
medium 1

6 ≤ D(P tgt) < 1
3 , and hard D(P tgt) ≥ 1

3 .

10

(a) Average statistics (b) PSNR @ # src. views (c) PSNR @ tgt. difficulty

test-unseen test-unseen test-unseen

Method PSNR LPIPS `
depth
1 IoU 9 7 5 3 1 easy medium hard

NerFormer 17.6 0.27 0.91 0.81 18.9 18.6 18.1 17.1 15.1 18.6 14.9 14.7
SRN+γ+AD 13.2 0.29 0.48 0.71 13.6 13.5 13.3 13.1 12.4 13.5 11.6 11.8
SRN[56]+AD 13.8 0.28 0.45 0.74 14.3 14.3 14.0 13.6 12.6 14.2 12.5 11.1
NV[41]+AD 11.4 0.53 1.29 0.47 11.5 11.2 11.3 11.5 11.5 11.4 11.3 8.0
NeRF+AD 10.6 0.32 4.42 0.49 10.7 10.5 10.4 10.7 10.4 10.7 10.3 3.6

Table III: Autodecoder latent optimization on test-unseen extending the results in tab. 3. Each method labelled with
+AD is first trained on train-known. During evaluation the latter fixes the trained weights and optimizes the input latent
code for a given set of source frames from a test sequence. For context, we also compare to NerFormer , which is not an
autodecoder.

B. Additional technical details
In this section we provide additional details of Ner-

Former and of the benchmarked baseline approaches which
were outlined in sec. 5.

B.1. NerFormer

Source image features Ψ The dense pixel-wise descrip-
tor ΨCNN(Isrc) (sec. 4.2) of a source image Isrc is a stacking
of 3 types of feature tensors along the channel dimension
after differentiably upsampling to a common spatial resolu-
tion H ×W . The feature types are: 1) Intermediate acti-
vations extracted from the source image Isrc after “layer1”,
“layer2”, and “layer3” layers of the ResNet34 [23] network,
2) the source segmentation mask M src, 3) the raw source
image Isrc. Note that we separately map the output of each
of the ResNet34 layers to a 32-dimensional feature with a
1x1 convolution followed by `2 normalization of the feature
column at every spatial location.
NerFormer architecture In fig. I we provide a more de-
tailed visualisation of the NerFormer architecture.
Rendering details Similar to NeRF [43], NerFormer op-
timizes loss functions for 800 randomly sampled image rays
ru in each training target image. Following [43], Ner-
Former implements a coarse and fine rendering network
fTR. The former, given a ray ru, samples 32 points xi ∈ ru
at uniform depth intervals between predefined lower and up-
per depth bounds. The fine rendering network then samples
16 points on ru with importance sampling from the distri-
bution proportional to the coarse rendering weights wi.
Training details For a randomly sampled pixel u we
thus render the color Î tgt

u and an alpha value M̂ tgt
u = 1 −∏

i(1−exp(−∆fo(x, z))) ∈ [0, 1], where the latter denotes
the total amount of light absorbed by the implicit surface
(M̂ tgt

u = 1 for complete absorption).
As noted in sec. 4.3, the optimized loss is a sum of the

RGB squared error
∑

u ‖Î
tgt
u − I tgt

u ‖2 and the segmenta-
tion binary cross entropy (BCE)

∑
uM

tgt
u log M̂ tgt

u + (1 −
M tgt

u) log(1− M̂ tgt
u). The latter ensures that rays that do not

intersect the object of interest do not terminate in the scene
and vice versa. Following [43], we evaluate the losses for
the fine and coarse renders and optimize their sum.

B.2. NeRF

We use the implementation of NeRF [43] from Py-
Torch3D [50] which closely follows the original paper.
Similar to NerFormer , we also add to the original losses of
NeRF the BCE loss between the rendered alpha mask and
the ground truth target mask. The coloring function cMLP
and the opacity function fMLP have their architecture iden-
tical to the original implementation.

B.3. SDF methods - DVR, IDR

Here we detail the two baseline methods that represent
shapes with signed distance fields (SDF). We start with in-
troducing the SDF and a method for their rendering.

Signed distance fields While opacity functions fo repre-
sent shapes with a measure of opaqueness of 3D spatial el-
ements, signed distance fields fd(x, z) ∈ R, express the
signed euclidean distance to the nearest point x′ ∈ Sf on
the implicit surface Sf .

Sphere tracing (ST) While EA is the most popular
method for rendering opacity fields fo, ST is its analogue
for signed distance fields fd. Specifically, ST renders a
pixel u by seeking the minimum of the signed distance
function fd on the domain of 3D points belonging to the
ray ru. ST, during its t-th iteration, refines the current
estimate xru

t of the ray-surface intersection by moving
∆t = fd(x

ru
t , z) units in the direction of the projection ray:

xru
t+1 = xt + ∆tru. Upon convergence at time T , the ren-

dered color Î tgt
u = c(xru

T , ru, z) comprises the response of
the coloring function at the estimated ray-surface intersec-
tion.

DVR natively supports our supervisory scenario and hence
no alternations were required for the training protocol of
both DVR+AD and DVR. In order to implement DVR+γ, we

11

simply convert the input coordinates to positional embed-
dings and adjust the number of input channels of the first
layer of DVR’s implicit function accordingly. The released
code [45] supports DVR+AD so no changes were required
here. As mentioned in the paper, unfortunately, all our at-
tempts to merge DVR with WCE lead to a non-converging
model.
IDR Similar to DVR, IDR [74] supports our supervisory
setup by default. In order to implement IDR+AD, we append
the latent code z to the positional embeddings that are input
to the implicit function, and we adjust the number of input
channels of the first layer of the implicit function accord-
ingly. IDR already takes as input the positional embeddings
γ, so the extension IDR+γ does not apply here. As men-
tioned in the main paper, we could not obtain a converging
version of IDR+WCE.

B.4. SRN

Here, we first give a brief overview of the learned SRN
raymarcher, followed by describing the WCE extension of
SRN.
Neural raymarching Contrasted to the explicit formula-
tions of sphere-tracing or EA, recently, SRN [56] proposed
to learn to march along the projection rays with a recur-
rent deep network. Similar to sphere-tracing, SRN decides
at iteration t on the length of the raymarching step ∆t by
evaluating a function at the current intersection estimate
xru
t . However, instead of querying the SDF, SRN utilizes an

LSTM [27] cell fLSTM(xru
t , ru, z,ht) = (∆t,ht+1) which

is additionally conditioned on the ray direction ru and a
temporal hidden state ht. In this manner, the raymarcher
adapts the step-size prediction based on the past marching
observations.
SRN+WCE The WCE exension of SRN is straight-
forwardly implemented by replacing the itera-
tive invocation of the global-encoding-conditioned
implicit fLSTM(xru

t , ru, zglobal,ht) of the SRN’s
raymarcher with the WCE-conditioned implicit
fLSTM(xru

t , ru, z
?
WCE(xru

t , {Isrc
i }, {P src

i }),ht) This way,
the learned raymarcher can “tap”” into the source views
during every iteration to receive a more direct triangulation
signal. As apparent from tabs. 3 and I, our WCE extension
of SRN provides a very strong baseline that in fact achieves
the best depth prediction performance.
Mask prediction The learned raymarcher of the original
version of SRN does not render an alpha mask of the fore-
ground object. In order to enable the latter, we extend the
last layer of the SRN’s coloring function c with an addi-
tional channel that is terminated with a sigmoid activation
and represents the alpha value of the corresponding pixel
u. This channel is then supervised by minimizing the DICE
coefficient between its output and the ground truth segmen-
tation masks M tgt.

B.5. P3DMesh

As mentioned in the paper, P3DMesh [50] deforms an
initial spherical mesh template with a fixed topology with
a series of convolutions on the mesh graph. As in [67],
the graph convolutions accept features sampled from the
source images at the 2D projections of the mesh vertices.
Since P3DMesh supports conditioning only on a single-
source-view, we extend to the multi-view setting by aver-
aging over the per-vertex features sampled from each of
the source views. Furthermore, note that the implementa-
tion in [50] differentiably renders the mesh with a memory-
efficient version of the Soft Rasterizer [40]. The training
protocol, including the employed losses and their weight-
ing, closely follows [50].

B.6. Neural Volumes (NV)

Neural Volumes [41] is a method that represents im-
plicit surfaces as voxel grids. In what follows, we first
briefly describe voxel grids, their specific implementation
in NV, and its extension with warp-conditioned embedding
(NV+WCE).
Voxel grids While MLPs can label an arbitrary element
of the 3D domain, a voxel grid can be seen as an implicit
surface restricted to a subset of R3 which is uniformly sub-
divided to a lattice V (z) ∈ RR3

of R3;R ∈ N+ cuboid
elements of the same size. Note that the lattice V (z) is
a function (typically a 3D deconvnet) of z which allows
for representing different 3D shapes. The implicit func-
tion fvoxel(x, z) = ζ(V (z),x) is then evaluated by sam-
pling V (z) at the corresponding world coordinate x, with
a grid-sampling function ζ : RR3 × R3 7→ Rdim(f), such
as trilinear interpolation. Voxel grids also admit coloring
via a volume C(z) ∈ R3×R3

which can be sampled in an
analogous manner.
Neural Volumes A notable voxel-grid-based method is
Neural Volumes [41], which proposed an improved sam-
pling function ζwarp(ζ(W (z),x) + x, V (z)) which refines
the sampling location x with an offset vector ζ(W (z),x) ∈
R3 sampled from a warping lattice W (z) ∈ RR3

. Here
both W and V are implemented as a 3D deconvolutional
network.
NV and NV+AD NV+AD is in fact the vanilla version
of [41] whose 3D deconvnets V and W accept the
scene-specific latent code zscene(sequenceID) (described in
sec. 5.3). The ”overfitting” version of NV from tab. 2 is a
special case of NV+AD with a single latent code.
NV+WCE The WCE extension of Neural Volumes
(NV+WCE) appends the WCE to the feature of each voxel
after the second 3D deconvolution layer of the 3D con-
vnets V and W . Here, the WCE of a voxel is generated
by expressing the world coordinate xVi of the center of the
correspoding voxel Vi and calculating the aggregate WCE

12

z?WCE(xVi , {Isrc
i }, {P src

i }) for a set of source views {Isrc
i }

and their cameras {P src
i }. Note that a similar approach has

been proposed in [31].
Training All versions of NV optimize the losses from
[41] with the original weights. Furthermore, we exploit the
known ground truth segmentation masks and minimize the
binary cross entropy between the alpha mask returned by
the raymarcher of NV and the ground truth mask M tgt.

B.7. Implicit Point Cloud (IPC)

As mentioned in sec. 5, IPC represents shapes by con-
verting a point cloud to an implicit function which is later
rendered with EA raymarching.

Formally, let a point cloud P(z) = {xi}
Npts
i=1 be an Npts-

sized unordered set of points, where P is a point cloud pre-
dictor (detailed later in this section) which accepts the la-
tent code z. P(z) then admits an occupancy function fPε
defined as follows:

fPε(x
′, z) = δ[‖NNP(z)(x′)− x′‖ < ε],

where NNP(z)(x′) = arg minx∈P(z) ‖x − x′‖ returns the
nearest point from the point cloud P(z) to the query point
x′. Intuitively, fPε yields zero everywhere except within an
ε neighborhood of each point cloud point xi ∈ P(z), where
fP yields 1. As we describe later, anchoring the implicit
function on the set of cloud points allows for faster and
more memory-efficient EA raymarching than in the case of
the neural implicit occupancy fMLP (described in sec. 4.1).

In order to color the implicit point cloud, we define its
coloring function cIPC:

cIPC(x′, r, z) = cMLP(NNP(z)(x′), r, z).

Here cIPC attaches to an arbitrary point x′ the response of
the coloring MLP cMLP at x′’s nearest point cloud neighbor
NNP(z)(x′).
Rendering IPC IPC is rendered efficiently with the Py-
Torch3D point cloud renderer [50, 69]. More specifically,
given a target camera P tgt, each point from the predicted
point cloud P(z) is projected to the camera plane to form
a set of 2D projections {πP tgt(xi)|xi ∈ P(z)}. For each
pixel coordinate u ∈ {1, ...,W}× {1, ...,H} in the render-
ing lattice of the target render Î tgt ∈ R3×H×W , the renderer
records the ordered set

Πu
ε (P(z)) =

(
xi|xi ∈ P(z); ‖πP tgt(xi)− u‖ ≤ εfP tgt ;

dP tgt(xi) ≤ dP tgt(xi+1)
)
,

of point cloud points xi ∈ P(z) whose 2D projections
πP tgt(xi) land within the εfP tgt distance from the pixel u,
and which is ordered by the depth dP tgt(xi) of each point in
the target camera P tgt. fP tgt ∈ R is the focal length of the
target camera P tgt.

Intuitively, Πu
ε (P(z)) denotes the set of point cloud

points whose ε neighborhoods are intersected by the ren-
dering ray ru emitted from pixel u. Note that this is an
approximation: comparing the 2D camera-plane distance
‖πP tgt(xi) − u‖ to the constant εfP tgt corresponds to or-
thographic projections of the point neighborhoods, whereas
our cameras are perspective. However, the orthographic ap-
proximation is mild in our case, since the distance of the
point cloud points from the camera is relatively large com-
pared to its focal length.

The EA raymarching then takes the set of u’s 3D points
Πu
ε (P(z)) in order to render the color Î tgt

u ∈ R3:

Î tgt
u (ru, z) =

∑
xi∈Πu

ε (P(z))

wi(xi, z,u)cIPC(xi, ru, z).

For IPC, the weight wi(xi, z,u) =(∏i−1
j=0 T

IPC
j (xi, z,u)

) (
1− T IPC

i (xi, z,u)
)

is the product
of emission and absorption functions with the transmission
term T IPC

i defined as

T IPC
i (xi, z,u) = fPε(xi, z)︸ ︷︷ ︸

=1

‖u− πP tgt(xi)‖
εfP tgt

,

which approximately measures the amount of light trans-
mitted through the spherical ε neigborhood of a point xi
which intersects the projection ray ru. To demonstrate this,
observe that for a pixel uintersect = πP tgt(xi) which coin-
cides with the projection of the 3D point xi, the transmis-
sion T IPC

i (xi, z,u
intersect) = 0, i.e. no light is transmitted

through xi and the corresponding color cIPC(xi, ruintersect , z)
is fully rendered. On the contrary, for a pixel uoutside =
πP tgt(xi + ε) outside the epsilon neighborhood, the unit
transmission T IPC

i (xi, z,u
outside) = 1 signifies that all light

passes through and the point’s color is ignored during ren-
dering. Note that the above equation is very similar to the
top-k point cloud rasterizer of SinSyn [69].
Point cloud predictor P(z) The point cloud predictor
P(z) is the same for both IPC+AD and IPC+WCE. More
specifically, P(z) = {x̄i + oMLP(x̄i, z)}Npts

i=1 offsets a fixed
set of template points P̄ = {x̄i}

Npts
i=1 with an offset function

o : R3×RDz 7→ R3 implemented as an MLP with the same
architecture as fMLP. Therefore, o alters the template point
cloud to match a specific shape given its latent shape code
z.
IPC+AD and IPC+WCE For IPC+AD, the offset function
o accepts the video-specific latent code zscene(sequenceID)
described in sec. 5.3, while for IPC+WCE, o takes
as input the aggregate warp-conditioned embedding
z?WCE(x̄i, {Isrc

i }, {P src
i }) evaluated at each template point

x̄i ∈ P̄ . Finally, the single-scene version, abbreviated
simply as IPC in tab. 2, is a special case of IPC+AD with
zscene(sequenceID) := 0 set to a constant zero vector.

13

Metric Domain Description

BAfinal cost R The final value of the Bundle Adjustment (BA) cost function.
BAtermination {0, 1} The termination state of BA (converged/not converged).
µdet score [0, 1] An average over per-frame detection scores of the PointRend object detector.
µperc detected [0, 100] Percentage of frames in which the category of interest is detected with PointRend.
Ncameras N The number of cameras registered during BA.
Nsparse pts N Number of points in the sparse point cloud.
PCLrender

`depth R The average `1 depth error between the renders of the fused pointcloud P(V) into each camera Pi of a
video V and the corresponding dense depth map Pi.

PCLrender
`rgb R The average `1 RGB error between the renders of the fused pointcloud P(V) into each camera Pi of a

video V and the corresponding frame Ii.
PCLrender

IoU [0, 1] The average Jaccard Index between the renders of the fused point cloud P(V) into each camera Pi of a
video V and the corresponding PointRend segmentation Mi.

PCLdirection cover N Measures the coverage of the views of the point cloud P(V) with the number of occupied bins in the
azimuth/elevation map of projection rays corresponding to each dense point cloud point xj and a camera
Pi.

Table IV: The list of SfM and point-cloud reconstruction metrics that serve as a set of features for training the active-SVM
that labels camera and reconstruction quality.

Training All versions of IPC optimize the MSE between
the rendered image Î tgt and the ground truth colors I tgt. Fur-
thermore, we make use of the ground truth segmentation
masks and minimize the Chamfer distance between the set
of 2D projections of the predicted point cloud points P(z),
and the 2D points of the ground truth segmentation mask
[36]. Note that a standard segmentation loss, such as DICE
[57] or Binary Cross Entropy between the rendered alpha
mask and the ground truth segmentation mask, do not apply
here. This is because the gradients generated by the alpha
mask renders of IPC are not well-defined and do not lead to
convergence.

C. 3D annotations with Human-in-the-loop
In sec. 3, we outlined the process of annotating the AMT-

collected videos with 3D ground truth. Here, we further de-
tail the semi-automated process of labelling the quality of
camera tracking and the 3D dense point cloud of the cap-
tured videos (Paragraph 4 in sec. 3).

We initialize the process by annotating an initial set of
several hundreds of reconstructions with a binary label ”ac-
curate / inaccurate” by visually inspecting both the camera
tracks (Pi|Pi ∈ R4×4)NIi=1 and the scene point cloud P(V).
From each video, we then extract various metrics that are
indicative of the reconstruction quality such as a per-pixel
RGB and depth error of the rendered point cloud, the num-
ber of registered cameras, final bundle adjustment energy
etc. The full set of metrics is outlined in tab. IV. We then
train a binary Support Vector Machine (SVM [12]) with an
RBF kernel that regresses the binary label given the recon-
struction metrics as input.

Afterwards, the trained SVM classifies all previously un-
labelled videos. In line with the uncertainty principle [59],

we manually annotate a subset of previously unlabelled
samples that are the closest to the SVM decision bound-
ary. We further correct significant classification errors by
inspecting the highest/lowest scoring samples. In this man-
ner, we alternate between SVM training and manual an-
notation until 1.5k labels are collected (8 % of the whole
dataset).

In order to validate the SVM’s performance, we conduct
a 5-fold cross-validation on the set of annotated videos. The
cross-validation indicates that the SVM has 90% and 78%
accuracy for classifying the camera tracking and point cloud
quality respectively.

References
[1] Adel Ahmadyan, Liangkai Zhang, Jianing Wei, Artsiom

Ablavatski, and Matthias Grundmann. Objectron: A large
scale dataset of object-centric videos in the wild with pose
annotations. Proc. CVPR, 2021. 2

[2] Matan Atzmon and Yaron Lipman. Sal: Sign agnostic learn-
ing of shapes from raw data. In Proc. CVPR, 2020. 2, 4

[3] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton.
Layer normalization. arXiv, 2016. 6

[4] Piotr Bojanowski, Armand Joulin, David Lopez-Paz, and
Arthur Szlam. Optimizing the latent space of generative net-
works. arXiv, 2017. 8

[5] Chris Buehler, Michael Bosse, Leonard McMillan, Steven
Gortler, and Michael Cohen. Unstructured lumigraph ren-
dering. In Proceedings of the 28th annual conference on
Computer graphics and interactive techniques, pages 425–
432, 2001. 2

[6] Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat
Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese, Mano-
lis Savva, Shuran Song, Hao Su, et al. Shapenet: An
information-rich 3d model repository. arXiv, 2015. 1, 2

14

[7] Wenzheng Chen, Jun Gao, Huan Ling, Edward J. Smith,
Jaakko Lehtinen, Alec Jacobson, and Sanja Fidler. Learning
to Predict 3D Objects with an Interpolation-based Differen-
tiable Renderer. In Proc. NeurIPS, 2019. 2

[8] Wenzheng Chen, Huan Ling, Jun Gao, Edward Smith,
Jaakko Lehtinen, Alec Jacobson, and Sanja Fidler. Learn-
ing to predict 3d objects with an interpolation-based differ-
entiable renderer. In Proc. NIPS, 2019. 1, 2

[9] Sungjoon Choi, Qian-Yi Zhou, Stephen Miller, and Vladlen
Koltun. A large dataset of object scans. arXiv, 2016. 2

[10] Christopher B Choy, Danfei Xu, JunYoung Gwak, Kevin
Chen, and Silvio Savarese. 3d-r2n2: A unified approach
for single and multi-view 3d object reconstruction. In Proc.
ECCV, 2016. 2

[11] David Cohn, Les Atlas, and Richard Ladner. Improv-
ing generalization with active learning. Machine learning,
15(2):201–221, 1994. 3

[12] Corinna Cortes and Vladimir Vapnik. Support-vector net-
works. Machine Learning, 20(3), 1995. 14

[13] Alexey Dosovitskiy and Thomas Brox. Generating images
with perceptual similarity metrics based on deep networks.
In Proc. NeurIPS, 2016. 1

[14] Haoqiang Fan, Hao Su, and Leonidas J Guibas. A point set
generation network for 3d object reconstruction from a single
image. In Proc. CVPR, 2017. 2

[15] Matheus Gadelha, Subhransu Maji, and Rui Wang. 3d shape
induction from 2d views of multiple objects. In 2017 In-
ternational Conference on 3D Vision (3DV), pages 402–411.
IEEE, 2017. 2

[16] Kyle Genova, Forrester Cole, Avneesh Sud, Aaron Sarna,
and Thomas Funkhouser. Local deep implicit functions for
3d shape. In Proc. CVPR, 2020. 2

[17] Kyle Genova, Forrester Cole, Daniel Vlasic, Aaron Sarna,
William T Freeman, and Thomas Funkhouser. Learning
shape templates with structured implicit functions. In Proc.
ICCV, 2019. 2

[18] Rohit Girdhar, David F Fouhey, Mikel Rodriguez, and Ab-
hinav Gupta. Learning a predictable and generative vector
representation for objects. In Proc. ECCV, 2016. 2, 5

[19] Georgia Gkioxari, Justin Johnson, and Jitendra Malik. Mesh
R-CNN. In Proc. ICCV, 2019. 2

[20] Shubham Goel, Angjoo Kanazawa, and Jitendra Malik.
Shape and viewpoint without keypoints. Proc. ECCV, 2020.
2

[21] GoogleResearch. Google scanned objects, September. 2
[22] David Ha, Andrew M. Dai, and Quoc V. Le. HyperNetworks.

2017. 4
[23] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. arXiv preprint
arXiv:1512.03385, 2015. 11

[24] Peter Hedman, Julien Philip, True Price, Jan-Michael Frahm,
George Drettakis, and Gabriel Brostow. Deep blending for
free-viewpoint image-based rendering. ACM Transactions
on Graphics (SIGGRAPH Asia Conference Proceedings),
37(6), November 2018. 2

[25] Philipp Henzler, Niloy Mitra, and Tobias Ritschel. Escaping
plato’s cave using adversarial training: 3d shape from un-

structured 2d image collections. In Proc. ICCV, 2019. 1, 2,
4

[26] Philipp Henzler, Jeremy Reizenstein, Patrick Labatut, Ro-
man Shapovalov, Tobias Ritschel, Andrea Vedaldi, and
David Novotny. Unsupervised learning of 3d object cate-
gories from videos in the wild. Proc. CVPR, 2021. 1, 2, 4, 5,
6, 7, 8, 10

[27] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term
memory. Neural Computation, 9(8), 1997. 12

[28] Eldar Insafutdinov and Alexey Dosovitskiy. Unsupervised
learning of shape and pose with differentiable point clouds.
In Proc. NIPS, 2018. 2, 4

[29] Hanbyul Joo, Tomas Simon, Xulong Li, Hao Liu, Lei Tan,
Lin Gui, Sean Banerjee, Timothy Godisart, Bart C. Nabbe,
Iain A. Matthews, Takeo Kanade, Shohei Nobuhara, and
Yaser Sheikh. Panoptic studio: A massively multiview sys-
tem for social interaction capture. PAMI, 41(1), 2019. 2

[30] Angjoo Kanazawa, Shubham Tulsiani, Alexei A. Efros, and
Jitendra Malik. Learning category-specific mesh reconstruc-
tion from image collections. In Proc. ECCV, 2018. 2

[31] Abhishek Kar, Christian Häne, and Jitendra Malik. Learning
a multi-view stereo machine. In Proc. NIPS, 2017. 2, 13

[32] Hiroharu Kato, Yoshitaka Ushiku, and Tatsuya Harada. Neu-
ral 3d mesh renderer. In Proc. CVPR, 2018. 2

[33] Alexander Kirillov, Yuxin Wu, Kaiming He, and Ross Gir-
shick. Pointrend: Image segmentation as rendering. In Proc.
CVPR, 2020. 3

[34] Nilesh Kulkarni, Abhinav Gupta, David F. Fouhey, and
Shubham Tulsiani. Articulation-aware canonical surface
mapping. In Proc. CVPR, pages 449–458, 2020. 2

[35] Nilesh Kulkarni, Abhinav Gupta, and Shubham Tulsiani.
Canonical surface mapping via geometric cycle consistency.
In Proc. ICCV, 2019. 2

[36] Xueting Li, Sifei Liu, Kihwan Kim, Shalini De Mello,
Varun Jampani, Ming-Hsuan Yang, and Jan Kautz. Self-
supervised single-view 3d reconstruction via semantic con-
sistency. Proc. ECCV, 2020. 2, 14

[37] Joseph J. Lim, Hamed Pirsiavash, and Antonio Torralba.
Parsing IKEA Objects: Fine Pose Estimation. Proc. ICCV,
2013. 1

[38] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and
C. Lawrence Zitnick. Microsoft COCO: common objects in
context. In Proc. ECCV, 2014. 3

[39] Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and
Christian Theobalt. Neural sparse voxel fields. Proc. NIPS,
2020. 2

[40] Shichen Liu, Tianye Li, Weikai Chen, and Hao Li. Soft ras-
terizer: A differentiable renderer for image-based 3D reason-
ing. arXiv.cs, Proc. CVPR, 2019. 2, 4, 5, 12

[41] Stephen Lombardi, Tomas Simon, Jason Saragih, Gabriel
Schwartz, Andreas Lehrmann, and Yaser Sheikh. Neural vol-
umes: Learning dynamic renderable volumes from images.
ACM Trans. Graph., 38(4):65:1–65:14, July 2019. 2, 4, 5, 6,
7, 10, 11, 12, 13

[42] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Se-
bastian Nowozin, and Andreas Geiger. Occupancy net-

15

works: Learning 3d reconstruction in function space. In
Proc. CVPR, 2019. 2

[43] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. Proc. ECCV, 2020. 2, 4, 6, 10, 11

[44] Thu Nguyen-Phuoc, Chuan Li, Lucas Theis, Christian
Richardt, and Yong-Liang Yang. HoloGAN: Unsupervised
learning of 3D representations from natural images. Proc.
ICCV, abs/1904.01326, 2019. 2

[45] Michael Niemeyer, Lars Mescheder, Michael Oechsle, and
Andreas Geiger. Differentiable volumetric rendering: Learn-
ing implicit 3d representations without 3d supervision. In
Proc. CVPR, pages 3504–3515, 2020. 2, 4, 6, 7, 10, 12

[46] Michael Niemeyer, Lars M. Mescheder, Michael Oechsle,
and Andreas Geiger. Occupancy flow: 4d reconstruction by
learning particle dynamics. In Proc. ICCV, 2019. 1, 4

[47] David Novotny, Diane Larlus, and Andrea Vedaldi. Learning
3d object categories by looking around them. In Proc. ICCV,
2017. 2

[48] David Novotný, Diane Larlus, and Andrea Vedaldi. Cap-
turing the geometry of object categories from video supervi-
sion. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2018. 2

[49] Jeong Joon Park, Peter Florence, Julian Straub, Richard
Newcombe, and Steven Lovegrove. Deepsdf: Learning con-
tinuous signed distance functions for shape representation.
In Proc. CVPR, 2019. 2

[50] Nikhila Ravi, Jeremy Reizenstein, David Novotny, Taylor
Gordon, Wan-Yen Lo, Justin Johnson, and Georgia Gkioxari.
Accelerating 3d deep learning with pytorch3d. arXiv, 2020.
4, 6, 7, 8, 10, 11, 12, 13

[51] Danilo Jimenez Rezende, SM Ali Eslami, Shakir Mohamed,
Peter Battaglia, Max Jaderberg, and Nicolas Heess. Unsuper-
vised learning of 3d structure from images. In Proc. NIPS,
2016. 2

[52] Shunsuke Saito, , Zeng Huang, Ryota Natsume, Shigeo Mor-
ishima, Angjoo Kanazawa, and Hao Li. Pifu: Pixel-aligned
implicit function for high-resolution clothed human digitiza-
tion. Proc. ICCV, 2019. 2

[53] Johannes Lutz Schönberger and Jan-Michael Frahm.
Structure-from-motion revisited. In Proc. CVPR, 2016. 3,
4

[54] Johannes Lutz Schönberger, Enliang Zheng, Marc Pollefeys,
and Jan-Michael Frahm. Pixelwise view selection for un-
structured multi-view stereo. In Proc. ECCV, 2016. 3

[55] Katja Schwarz, Yiyi Liao, Michael Niemeyer, and Andreas
Geiger. Graf: Generative radiance fields for 3d-aware image
synthesis. Proc. NIPS, 2020. 2, 4

[56] Vincent Sitzmann, Michael Zollhöfer, and Gordon Wet-
zstein. Scene representation networks: Continuous 3d-
structure-aware neural scene representations. CoRR,
abs/1906.01618, 2019. 1, 2, 4, 5, 6, 7, 8, 10, 11, 12

[57] Carole H Sudre, Wenqi Li, Tom Vercauteren, Sebastien
Ourselin, and M Jorge Cardoso. Generalised dice overlap
as a deep learning loss function for highly unbalanced seg-
mentations. In Deep learning in medical image analysis and
multimodal learning for clinical decision support. 2017. 14

[58] Maxim Tatarchenko, Alexey Dosovitskiy, and Thomas Brox.
Multi-view 3d models from single images with a convolu-
tional network. In Proc. ECCV, 2016. 5

[59] Simon Tong and Edward Y. Chang. Support vector machine
active learning for image retrieval. In ACM Multimedia,
2001. 14

[60] Alex Trevithick and Bo Yang. Grf: Learning a general radi-
ance field for 3d scene representation and rendering. arXiv,
2020. 2

[61] Shubham Tulsiani, Alexei A Efros, and Jitendra Malik.
Multi-view consistency as supervisory signal for learning
shape and pose prediction. In Proc. CVPR, 2018. 2, 5

[62] Shubham Tulsiani, Abhishek Kar, Joao Carreira, and Jiten-
dra Malik. Learning category-specific deformable 3D mod-
els for object reconstruction. PAMI, 39(4):719–731, 2017.
1

[63] Shubham Tulsiani, Tinghui Zhou, Alexei A Efros, and Ji-
tendra Malik. Multi-view supervision for single-view recon-
struction via differentiable ray consistency. In Proc. CVPR,
2017. 2

[64] Shubham Tulsiani, Tinghui Zhou, Alexei A. Efros, and Ji-
tendra Malik. Multi-view supervision for single-view recon-
struction via differentiable ray consistency. In Proc. CVPR,
pages 209–217, 2017. 4

[65] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia
Polosukhin. Attention is all you need. Proc. NeurIPS, 2017.
2, 6

[66] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In NIPS, 2017. 4

[67] Nanyang Wang, Yinda Zhang, Zhuwen Li, Yanwei Fu, Wei
Liu, and Yu-Gang Jiang. Pixel2mesh: Generating 3d mesh
models from single rgb images. In Proc. ECCV, 2018. 2, 6,
7, 12

[68] Qianqian Wang, Zhicheng Wang, Kyle Genova, Pratul Srini-
vasan, Howard Zhou, Jonathan T Barron, Ricardo Martin-
Brualla, Noah Snavely, and Thomas Funkhouser. Ibrnet:
Learning multi-view image-based rendering. Proc. CVPR,
2021. 2

[69] Olivia Wiles, Georgia Gkioxari, Richard Szeliski, and Justin
Johnson. Synsin: End-to-end view synthesis from a single
image. In Proc. CVPR, pages 7467–7477, 2020. 4, 7, 13

[70] Jiajun Wu, Chengkai Zhang, Tianfan Xue, Bill Freeman, and
Josh Tenenbaum. Learning a probabilistic latent space of ob-
ject shapes via 3D generative-adversarial modeling. In Proc.
NeurIPS, 2016. 5

[71] Shangzhe Wu, Christian Rupprecht, and Andrea Vedaldi.
Unsupervised learning of probably symmetric deformable 3d
objects from images in the wild. In Proc. CVPR, pages 1–10,
2020. 2

[72] Yu Xiang, Roozbeh Mottaghi, and Silvio Savarese. Beyond
PASCAL: A benchmark for 3D object detection in the wild.
In Proc. WACV, 2014. 2

[73] Guandao Yang, Xun Huang, Zekun Hao, Ming-Yu Liu, Serge
Belongie, and Bharath Hariharan. Pointflow: 3d point cloud
generation with continuous normalizing flows. In Proc.
ICCV, 2019. 2

16

[74] Lior Yariv, Yoni Kasten, Dror Moran, Meirav Galun, Matan
Atzmon, Basri Ronen, and Yaron Lipman. Multiview neu-
ral surface reconstruction by disentangling geometry and ap-
pearance. Proc. NIPS, 2020. 2, 4, 6, 7, 10, 12

[75] Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa.
pixelnerf: Neural radiance fields from one or few images.
Proc. ECCV, 2020. 2, 4, 5

[76] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman,
and Oliver Wang. The unreasonable effectiveness of deep
features as a perceptual metric. In Proc. CVPR, 2018. 7

[77] Yuxuan Zhang, Wenzheng Chen, Huan Ling, Jun Gao, Yi-
nan Zhang, Antonio Torralba, and Sanja Fidler. Image gans
meet differentiable rendering for inverse graphics and inter-
pretable 3d neural rendering. Proc. ICLR, 2021. 2

17

