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Abstract
We present ARCH++, an image-based method to recon-

struct 3D avatars with arbitrary clothing styles. Our re-
constructed avatars are animation-ready and highly real-
istic, in both the visible regions from input views and the
unseen regions. While prior work shows great promise
of reconstructing animatable clothed humans with various
topologies, we observe that there exist fundamental limi-
tations resulting in sub-optimal reconstruction quality. In
this paper, we revisit the major steps of image-based avatar
reconstruction and address the limitations with ARCH++.
First, we introduce an end-to-end point based geometry en-
coder to better describe the semantics of the underlying
3D human body, in replacement of previous hand-crafted
features. Second, in order to address the occupancy ambi-
guity caused by topological changes of clothed humans in
the canonical pose, we propose a co-supervising framework
with cross-space consistency to jointly estimate the occu-
pancy in both the posed and canonical spaces. Last, we
use image-to-image translation networks to further refine
detailed geometry and texture on the reconstructed surface,
which improves the fidelity and consistency across arbitrary
viewpoints. In the experiments, we demonstrate improve-
ments over the state of the art on both public benchmarks
and user studies in reconstruction quality and realism.
Project page: https://tonghehehe.com/archpp.

1. Introduction
Digital humans have become an increasingly important

building block for numerous AR/VR applications, such as
video games, social telepresence [54, 43] and virtual try-on.
Towards truly immersive experiences, it is crucial for these
avatars to obtain higher level of realism that goes beyond
the uncanny valley [51]. Building a photorealistic avatar in-
volves many manual works by artists or expensive capture
systems under controlled environments [15, 23, 55], limit-
ing access and increasing cost. Therefore, it is vital to revo-
lutionize reconstruction techniques with minimal prerequi-
site (e.g., a selfie) for future digital human applications.

Recent human models reconstructed from a single im-
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Figure 1. Given an image of a subject in arbitrary pose (left), our
method could generate photorealistic avatars in both the posed in-
put space (middle) as well as auto-rigged canonical space (right).

age combine category-specific data prior with image ob-
servations [79, 33, 73]. Among which, template-based ap-
proaches [34, 37, 74, 3, 9] nevertheless suffer from lack of
fidelity and difficulty supporting clothing variations; while
non-parametric reconstruction methods [62, 82, 63, 25],
e.g., using implicit surface functions, do not provide intu-
itive ways to animate the reconstructed avatar despite im-
pressive fidelity. In the recent work ARCH [28], the au-
thors propose reconstructing non-parametric human model
using pixel-aligned implicit functions [62] in a canonical
space, where all reconstructed avatars are transformed to a
common pose. To do so, a parametric human body model
is exploited to determine the transformations. By transfer-
ring skinning weights, which encode how much each ver-
tex is influenced by the transformation of each body joint,
from the underling body model, the reconstruction results
are ready to animate. However, we observe that the advan-
tages of a parametric body model and pixel-aligned implicit
functions are not fully exploited.

In this paper we introduce ARCH++, which revisits the
major steps of animatable avatar reconstruction from im-
ages and addresses the limitations in the formulation and
representation of the prior work. First, current implicit
function based methods mainly use hand-crafted features
as the 3D space representation, which suffers from depth
ambiguity and lacks human body semantic information. To
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address this, we propose an end-to-end geometry encoder
based on PointNet++ [58, 59], which expressively describes
the underlying 3D human body. Second, we find the unpos-
ing process to obtain the canonical space supervision causes
topology change (e.g., removing self-intersecting regions)
and consequently the articulated reconstruction fails to ob-
tain the same level of accuracy in the original posed space.
Therefore, we present a co-supervising framework where
occupancy is jointly predicted in both the posed and canon-
ical spaces, with additional constraints on the cross-space
consistency. This way, we benefit from both: supervision
in the posed space allows the prediction to retain all the de-
tails of the original scans; while canonical space reconstruc-
tion can ensure the completeness of a reconstructed avatar.
Last, image-based avatar reconstruction often suffers from
degraded geometry and texture in the occluded regions. To
make the problem more tractable, we first infer surface nor-
mals and texture of the occluded regions in the image do-
main using image translation networks, and then refine the
reconstructed surface with a moulding-inpainting scheme.

In the experiments, we evaluate ARCH++ on photore-
alistically rendered synthetic images as well as in-the-wild
images, outperforming prior works based on implicit func-
tions and other design choices on public benchmarks.

The contributions of ARCH++ include: 1) a point-based
geometry encoder for implicit functions to directly extract
human shape and pose priors, which is efficient and free
from quantization errors; 2) we are the first to point out
and study the fundamental issue of determining target oc-
cupancy space: posed-space fidelity vs. canonical-space
completeness. Albeit ignored before, we outline the pros
and cons of different spaces, and propose a co-supervising
framework of occupancy fields in joint spaces; 3) we dis-
cover image-based surface attribute estimation could ad-
dress the open problem of view-inconsistent reconstruction
quality. Our moulding-inpainting surface refinement strat-
egy generates 360◦ photorealistic 3D avatars. 4) our method
demonstrates enhanced performance on the brand new task
of image-based animatable avatar reconstruction.

2. Related Work
Template-based reconstruction utilizes parametric hu-

man body models, e.g., SCAPE [4] and SMPL [44] to
provide strong prior on body shape and pose to address
ill-posed problems including body estimation under cloth-
ing [76, 80] and image-based human shape reconstruc-
tion [11, 40, 34, 22, 38, 72, 37, 74]. While these works
primarily focus on underling body shapes without cloth-
ing, the template-based representations are later extended to
modeling clothed humans with displacements from the min-
imal body [57], or external clothing templates [10], from 3D
scans [75, 57], videos [2, 24], and a single image [1, 10, 31].
As these approaches build clothing shapes on a body tem-
plate mesh, the reconstructed models can be easily driven
by pose parameters of the parametric body model. To ad-

dress the lack of details with limited mesh resolutions, re-
cent works propose to utilize 2D UV maps [39, 3]. How-
ever, as a clothing topology can significantly deviate from
the underling body mesh and its variation is immense, these
template-based solutions fail to capture clothing variations
in the real world.

Non-parametric capture is widely used to capture
highly detailed 3D shapes with an arbitrary topology from
multi-view systems under controlled environments [48, 5,
68, 65, 20, 69, 18, 71, 66, 47]. Recent advances of deep
learning further push the envelope by supporting sparse
view inputs [21, 27], and even monocular input [41]. For
single-view clothed human reconstruction, direct regression
methods demonstrate promising results, supporting various
clothing types with a wide range of shape representations
including voxels [67, 30], two-way depth maps [19, 64],
visual hull [52], and implicit functions [62, 63, 25]. In
particular, pixel-aligned implicit functions (PIFu) [62] and
its follow-up works [63, 25] demonstrate impressive recon-
struction results by leveraging neural implicit functions [49,
13, 56] and fully convolutional image features. Unfortu-
nately, despite its high-fidelity results, non-parametric re-
constructions are not animation-ready due to missing body
part separation and articulation. Recently, IF-Net [14] ex-
ploits partial point cloud inputs and learns implicit functions
using latent voxel features. Compared with image-based
avatar reconstruction, completion from points can leverage
directly provided strong shape and pose cues, and thus skip
learning them from complex images.

Hybrid approaches combine template-based and non-
parametric methods and allow us to leverage the best of
both worlds, namely structural prior and support of arbitrary
topology. Recent work [8] shows that using SMPL model
as guidance significantly improves robustness of non-rigid
fusion from RGB-D inputs. For single-view human recon-
struction, Zheng et al. first introduce a hybrid approach of
a template-model (SMPL) and a non-parametric shape rep-
resentation (voxel [82] and implicit surface [81]). These
approaches, however, choose an input view space for shape
modeling with reconstructed body parts potentially glued
together, making the reconstruction difficult to animate as in
the aforementioned non-parametric methods. The most rel-
evant work to ours is ARCH [28], where the reconstructed
clothed humans are ready for animation as pixel-aligned
implicit functions are modeled in an unposed canonical
space. However, such framework fundamentally leads to
sub-optimal reconstruction quality. We achieve significant
improvement on accuracy and photorealism by addressing
the hand-crafted spatial encoding for implicit functions, the
lack of supervision in the original posed space, and the lim-
ited fidelity of occluded regions.

3. Proposed Methods
Our proposed framework, ARCH++, uses a coarse-to-

fine scheme, i.e., initial reconstruction by learning joint-
space implicit surface functions (see Fig. 2), and then mesh
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Figure 2. Overview of the initial joint-space implicit surface reconstruction. This procedure includes three components: i) semantic-aware
geometry encoder, ii) pixel-aligned appearance encoder and iii) joint-space occupancy estimator. See text for detailed explanation.

refinement in both spaces (see Fig. 3).

3.1. Joint-Space Implicit Surface Reconstruction
Semantic-Aware Geometry Encoder. The spatial fea-

ture representation of a query point is critical for deep im-
plicit function. While the pixel-aligned appearance feature
via Stack Hourglass Network [53] has already demonstrated
its effectiveness in detailed clothed human reconstruction
by prior works [62, 63, 28, 25], an effective design of point-
wise spatial encoding has not yet been well studied. The
extracted geometry features should be informed of the se-
mantics of the underlying 3D human body, which provide
strong priors to regularize the overall dressed people shape.

The spatial encoding methods used previously include
hand-crafted features (e.g., RBF [28]) and latent voxel fea-
tures [14, 25, 81]. The former is constructed based on Eu-
clidean distances between a query point and the body joints,
ignoring the shapes. The voxel-based features capture both
shape and pose priors of a parametric body mesh. Com-
pared with the hand-crafted features, the end-to-end learned
voxel features are better informed of the underlying body
structures but often constrained by GPU memory sizes and
suffer from quantization errors due to low spatial resolution.
To effectively encode the shape and pose priors without los-
ing any precision, we propose a novel semantic-aware ge-
ometry encoder that extracts point-wise spatial encodings.
Essentially a parametric body mesh can be sampled into a
point cloud and fed into PointNet++ [58, 59] to learn point-
based spatial features, which have several advantages over
both hand-crafted RBF features and voxel-based ones. Our
method encodes both shape and pose priors from paramet-
ric shapes without computation overhead and quantization
errors caused by the mesh voxelization process. Additional
detailed statistical comparisons on points v.s. voxels in rep-
resenting 3D shapes are reported in [19].

Given a parametric body mesh estimated and deformed
by [74, 28], we use a PointNet++ [58, 59] based semantic-
aware geometry encoder to learn the underlying 3D human
body prior. We sampleN0 (e.g., 7324) points from the body
mesh surfaces and feed them into the geometry encoder for

spatial feature learning, that is,
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where xi0 ∈ R3 is a point sampled from the parametric
body mesh. The PointNet++ based encoder utilizes fully-
connected layers and neighborhood Max-Pooling to extract
semantic-aware geometry features h ∈ R32 of a point. It
also applies Furthest Point Sampling to progressively down
sample the points N1 = 2048, N2 = 512, N3 = 128 to
extract latent features with increasing receptive fields. For
example {xj1} is a down sampled point set with size N1,
and hj1 ∈ R32 is the learned feature w.r.t. each point.

As illustrated in Fig. 2, for any query point pa ∈ R3

in the canonical space we obtain its point-wise spatial en-
coding fg ∈ R96 via inverse L2-norm kernel based fea-
ture interpolation, followed by query coordinates concate-
nated Multi-layer Perceptrons (MLP). Particularly, we ex-
tract these features from different point set densities-j, k, l
to construct concatenated features fg = (f jg ⊕ fkg ⊕ f lg)
that are informed of multi-scale structures. For example,
f jg ∈ R32 is defined as:

f j
g (pa, {xj1, h

j
1}) = MLP(pa ⊕

∑
m

∥pa − xm1 ∥−2

S(pa, {xj1, h
j
1})

hm
1 ),

S(pa, {xj1, h
j
1}) =

∑
m

∥pa − xm1 ∥−2 ,

(2)

where the index m is determined by finding the K nearest
neighbors among the point set {xj1} w.r.t. the query point.
Empirically we found setting K = 3 obtains fair perfor-
mance. The features extracted at other point set densities
fkg , f

l
g ∈ R32 are obtained similarly leveraging {xk2 , hk2}

and {xl3, hl3}, respectively.

Pixel-Aligned Appearance Encoder. We share the
same architecture design as [62, 63, 28, 25] to map an input
image I ∈ R512×512×3 into the latent feature maps ψµ(I) ∈
R128×128×256 via a Stacked Hourglass Network [53] with
weights µ. To obtain appearance encoding fa ∈ R256 of
any query point pb ∈ R3 in the posed space, we project it
back to the image plane based on a camera model of weak



perspective projection, and bilinearly interpolate the latent
image features:

fa(pb, I) = B(ψµ(I), π(pb)), (3)

where B(·) indicates the differentiable bilinear sampling op-
eration, and π(·) means weak perspective camera projection
from the query point pb to the image plane of I .

Joint-Space Occupancy Estimator. While most non-
parametric and hybrid methods use the posed space as the
learning and inference target space, ARCH instead recon-
structs the clothed human mesh directly in a canonical space
where humans are in a normalized A-shape pose. Differ-
ent choices of the target space have pros and cons. The
posed space is naturally aligned with the input pixel evi-
dence and therefore the reconstructions have high data fi-
delity leveraging the direct image feature correspondences.
Thus, many works choose to reconstruct a clothed human
mesh in its original posed space (e.g., PIFu(HD) [62, 63],
Geo-PIFu [25], PaMIR [81]). However, in many situa-
tions the human can demonstrate complex poses with self-
intersection (e.g., hands in the pocket, crossed arms) and
cause a ”glued” mesh that is difficult to articulate. Mean-
while, canonical pose reconstruction offers us a rigged mesh
that is animation ready (via its registered A-shape paramet-
ric mesh [28]). The problem of using the canonical space
as the target space is that when we warp the mesh into its
posed space there could be artifacts like intersecting sur-
faces and distorted body parts (see Fig. 6). Thus, the re-
construction fidelity of the warping obtained canonical-to-
posed space mesh will degenerate. To maintain both input
image fidelity and reconstruction surface completeness, we
propose to learn the joint-space occupancy distributions.

We use a joint-space defined occupancy map O to im-
plicitly represent the 3D clothed human under both its orig-
inal posed space and a rigged canonical space:
O = {(pa, pb, oa, ob) : pa, pb ∈ R3, −1 ≤ oa, ob ≤ 1}, (4)

where oa, ob denote the occupancy for points pa and pb.
A point in the posed space is pb and its mapped counter-
part in the canonical space is pa = SemDF(pb). The se-
mantic deformation mapping (SemDF) between the original
posed and the rigged canonical spaces is enabled by nearest
neighbor-based skinning weights matching between pb and
the estimated underlying parametric body mesh [28].

To enable mesh reconstruction in joint spaces, we use
both point-wise spatial features fg ∈ R96 that are informed
of semantic full-body structures, and pixel-aligned features
fa ∈ R256 that encode human front-view appearances:

oa = Fθ(fg ⊕ fa), ob = Fβ(fg ⊕ fa), (5)

where θ, β are network weights of the MLP-based deep im-
plicit surface functions. To reconstruct avatars from the
dense occupancy estimations in two spaces, we use March-
ing Cube [45] to extract the isosurface at oa = τ and ob = τ
(i.e., τ = 0), respectively.

The network outputs oa, ob are supervised by the ground
truth joint-space occupancy ôa, ôb, depending on whether a

Pix2Pix

Image-Space Normal/Texture Estimation

Moulding

Moulding

Initial 
Recon.

Inpaintingng In g

Figure 3. Overview of the mesh refinement steps. Our approach
refines the initially estimated joint-space meshes from Fig. 2 using
estimated normals and textures.

posed space query point pb and its corresponding canonical
space point pa are inside the clothed human meshes or not.
Though pa, pb are a pair of mapped points their ground-truth
occupancy values are not the same in all cases. For exam-
ple, a point outside and close to the hand of a parametric
body could has ôb > 0 and ôa < 0 if the original mesh
in posed space has self-contact (e.g., hands in the pocket).
Namely, the SemDF defines a dense correspondence map-
ping between the two spaces but their occupancy values are
not necessarily the same. Therefore, naively learning the
distribution in one space and then warping the reconstruc-
tion into another pose can cause mesh artifacts (see Fig. 6).
This motivates us to model two space occupancy distribu-
tions jointly in order to maintain both canonical space mesh
completeness and posed space reconstruction fidelity.
3.2. Mesh Refinement

We further refine the reconstructed meshes in joint
spaces by adding geometric surface details and photorealis-
tic textures. As illustrated in Fig. 3, we propose a moulding-
inpainting scheme to utilize the front and back side nor-
mals and textures estimated in the image space. This is
based on the observation that direct learning and inference
of dense normal/color fields using deep implicit functions
as [28] usually leads to over-smooth blur patterns and block
artifacts (see Fig. 5). In contrast, image space estimation
of normal and texture maps produces sharp results with
fine-scale details, and is robust to human pose and shape
changes. These benefits are from well-designed 2D con-
volutional deep networks (e.g., Pix2Pix [29, 70]) and ad-
vanced (adversarial) image generation training schemes like
GAN, with perceptual losses. The image-space estimated
normal (and texture) maps could be used in two different
ways. They can be used as either direct inputs into the
Stack Hourglass as additional channels of the single-view
image, or moulding-based front and back side mesh refine-
ment sampling sources. In the experiments, we conduct ab-
lation studies on these two schemes (i.e., early direct input,



late surface refinement) and demonstrate that our moulding-
based refinement is better at maintaining fine-scale surface
details across different views (see Fig. 8).

Posed Space. For the clothed human mesh obtained by
Marching Cube in the original posed space, we conduct vis-
ibility tracing to determine if a vertex V ∈ R3 should be
projected onto the front or the back side to bilinearly sam-
ple the normal/texture maps. Essentially, this is a moulding-
based mesh refinement process for surface details and tex-
tures enhancement. We first conduct normal refinement.
Note that for vertices whose unrefined normals n ∈ R3

are near parallel (i.e., within ε degrees) to the input image
plane, we project them onto both the front and the back side
normal maps Ifn , I

b
n ∈ R512×512×3. We could then com-

pute the refined surface normals n′ ∈ R3 via a linear blend
fusion:

n′ = χ(1− α′)B(Ifn , π(V )) + χ(α′)B(Ibn, π(V )),

α′ = (90◦ + ε− α)/(2ε),
(6)

where α is the angle between the unrefined normal and the
forward camera raycast, and α′ is the normalized value of α.
Again, B(·) indicates the bilinear sampling operation. The
indicator function χ(·) determines the blending weights of
sampled normals from the front and the back sides:

χ(α′) = min(max(α′, 0), 1) (7)

This simple yet effective fusion scheme creates a normal-
refined mesh with negligible blending boundary artifacts.
With the refined surface normals we can further apply Pois-
son Surface Reconstruction [35] to update the mesh topol-
ogy but in practice we find this unnecessary since the
moulding-refined avatar can already satisfy various AR/VR
and novel-view rendering applications. This bump render-
ing idea is also used in DeepHuman [82] but they only
refine meshes using the front views. We further conduct
the texture refinement in a similar manner but use the re-
fined normals to help determine the linear blending weights
of boundary vertices. Our moulding-based front/back nor-
mal and texture refinement method yields clothed human
meshes that look photorealistic at different viewpoints with
full-body surface details (e.g., clothes wrinkles, hairs).

Canonical Space. The reconstructed canonical space
avatar is rigged and thus can be warped back to its posed
space and then refined via the same pipeline described
above. However, a unique challenge for canonical avatar
refinement is that mesh reconstructions in this space might
contain unseen surfaces under the posed space. For exam-
ple, in the third row of Fig. 5, the folded arm is in contact
with the chest in the posed space but unfolded in the canon-
ical space. Therefore, we do not have direct normal/texture
correspondences of the chest regions of the canonical mesh.
To address this problem, we render the front and the back
side images of the canonical mesh with incomplete normal
and texture, and treat it as an inpainting task. This problem
has been well studied using deep neural networks [77, 78]
and patch matching based methods [7, 6, 26]. We use Patch-

Match [6] for its robustness. As demonstrated in the last two
columns of Fig. 5, compared to directly regressing point-
wise normal and texture, our inpainting-based results obtain
sharper details and fewer artifacts.

4. Training Losses
The training process involves learning deep networks for

two goals: joint-space occupancy estimation with Lo, and
normal/texture estimation with Ln and Lt. Specifically, Lo

is the occupancy regression loss of our joint-space deep im-
plicit functions, and Ln,Lt are image translation losses of
the normal, texture estimation networks.

Joint-space Occupancy Estimation. The deep implicit
function training is based on query point sampling and su-
pervised occupancy regression with Tanh output layers. We
randomly sample mesh points pa, pb in two spaces and then
add diagonal Gaussian perturbation with a standard devi-
ation of 5 cm to increase the sample coverage of close-
to-surface regions in space. In each training iteration we
sample 20480 pairs of query points (pa, pb), with predicted
occupancy (oa, ob). The joint-space occupancy regression
loss contains three terms:

Lo(oa, ob) = Locc
o (oa) + Locc

o (ob) + Lcon
o (oa, ob), (8)

where Locc
o (oa),Locc

o (ob) denote the Smooth L1-Loss be-
tween the estimated occupancy values and their ground
truth in the canonical and the posed spaces, respectively.
Lcon
o (oa, ob) is a contrastive loss regularizing the occupancy

consistency between the two spaces, that is,

Lcon
o (oa, ob)=

{
|oa − ob|, if ôa = ôb,

λ1 max(λ2 − |oa − ob|, 0), otherwise,
(9)

where λ1 and λ2 are two parameters to adjust the penalty
of inconsistent joint-space groundtruth pairs. Those pairs
usually exist around the self-intersecting regions and need
to be down-weighted due to the errors in canonical space
supervision. Empirically, we set λ1 = 0.1 and λ2 = 0.3.

Mesh Refinement. We consider the image-space nor-
mal and texture estimation as an image-to-image translation
task. Given an input image I , our task is to learn the front
normal map Ifn , the back normal map Ibn and the back side
texture map Ibt ∈ R512×512×3. Note we assume the input
image can be directly used as the front texture map. Inspired
by the demonstrated superior results of Pix2Pix [29, 70], we
define the training losses as:
Ln(I

f
n , I

b
n)=Lrec

n (Ifn)+Lrec
n (Ibn)+Lvgg

n (Ifn) + Lvgg
n (Ibn),

Lt(I
b
t )=Lrec

t (Ibt ) + Lvgg
t (Ibt ) + Ladv

t (Ibt ),
(10)

where Lrec(·) denotes the L1 distance reconstruction loss,
Ladv(·) means the generative adversarial loss and Lvgg(·)
is the VGG-perceptual loss proposed by [32]. In the experi-
ments, we found that the generative adversarial loss Ladv(·)
counteracts to performance in the normal map estimation
task and thus we only enforce this loss term upon the back
side texture map. One explanation is that the normal map
space is more constrained and has fewer variations than



Components Posed Space Canonical Space Mean
Normal ↓ P2S ↓ Chamfer ↓ Normal ↓ P2S ↓ Chamfer ↓ Normal ↓ P2S ↓ Chamfer ↓

Posed Sup. Only 0.037 0.674 0.787 0.087 1.898 1.597 0.062 1.286 1.192
Canonical Sup. Only 0.039 0.716 0.838 0.046 0.606 0.997 0.043 0.661 0.917
Joint 0.037 0.662 0.789 0.045 0.620 0.988 0.041 0.641 0.825
Joint + GeoEnc 0.033 0.495 0.614 0.040 0.471 0.819 0.036 0.483 0.717
Joint + GeoEnc + Refine 0.031 0.495 0.614 0.039 0.471 0.819 0.035 0.483 0.717
Table 1. Ablation studies on the effectiveness of ARCH++ proposed components in both spaces: posed vs. canonical. Best scores are in
bold. Rows are target reconstruction spaces, columns are evaluation spaces. The first row means using the posed space as the target space
(e.g., PIFu, PIFuHD, Geo-PIFu, PaMIR), whose reconstruction can be warped into the canonical space via a registered parametric body to
compute evaluation metrics in both spaces. The second row means direct supervision and reconstruction in the canonical space, followed
by warping into the posed space (e.g., ARCH). The rest rows are based on our joint-space co-supervision and reconstruction scheme.

Methods RenderPeople BUFF
Normal ↓ P2S ↓ Chamfer ↓ Normal ↓ P2S ↓ Chamfer ↓

BodyNet [67] 0.26 5.72 5.64 0.31 4.94 4.52
VRN [30] 0.12 1.42 1.60 0.13 2.33 2.48
SiCloPe [52] 0.22 3.81 4.02 0.22 4.06 3.99
IM-GAN [13] 0.26 2.87 3.14 0.34 5.11 5.32
PIFu [62] 0.11 1.45 1.47 0.13 1.68 1.76
PIFuHD [63] 0.11 1.37 1.43 0.13 1.63 1.75
ARCH [28] 0.04 0.74 0.85 0.04 0.82 0.87
ARCH++ [Ours] 0.03 0.50 0.61 0.03 0.61 0.64

Table 2. Quantitative results and comparisons of normal, P2S and
Chamfer errors between posed reconstruction and ground truth on
RenderPeople and BUFF datasets. Best scores are in bold.

the texture map, and therefore adversarial training does not
fully show its effectiveness in this case.

5. Experiments
In this section, we present the experimental settings, re-

sult comparisons and ablation studies of ARCH++.

5.1. Implementation Details
We implement our framework using PyTorch and con-

duct the training with one NVIDIA Tesla V100 GPU. The
proposed deep neural networks are trained with RMSprop
optimizer with a learning rate starting from 1e-4. We use
an exponential learning rate scheduler to update it every 3
epochs by multiplying with the factor 0.1 and terminate the
training after 12 epochs.

5.2. Datasets
We adopt the dataset setting from [28, 63]. Our train-

ing dataset consists of 375 3D scans from RenderPeople
dataset [60] and 205 3D scans from AXYZ dataset [17].
These watertight human meshes have various clothes styles
as well as body shapes and poses. Our testing set includes
37 scans from RenderPeople dataset [60], 192 scans from
AXYZ dataset, 26 scans from BUFF dataset [80], and 2D
images from Internet public domains, representing clothed
people with a large variety of complex clothes. The subjects
in the training dataset are mostly in standing pose, while the
subjects in the test dataset contain various poses including
sitting, twisted and standing, as well as self-glued and sep-
arated limbs. We use Blender and 38 environment maps to
render each scan under different natural lighting conditions.
For each 3D scan, we generate 360 images by rotating a
camera around the mesh with a step size of 1 degree. These

Figure 4. We intentionally hide the method names for you to have
a fair comparison on your own (please zoom in). The answers are2.

RenderPeople images are used to train both the occupancy
estimation and the image translation networks.

We generate ground truth clothed human meshes in
the canonical pose using the method introduced in [28].
Note that the warping process between the posed and the
canonical spaces inevitably contain model noises (e.g., self-
contact region artifacts, skinning weights nearest neigh-
bor discontinuities), which motivates our joint-space co-
supervision and reconstruction scheme.

5.3. Results and Comparisons
We use the same metrics as [62, 63, 28] for quantita-

tive evaluation of the reconstructed meshes. We report the
average point-to-surface Euclidean distance (P2S) and the
Chamfer distance in centimeters, as well as the L2 normal
re-projection errors. The two state of the art methods for our
main comparisons are PIFuHD [63] and ARCH [28], both
are built upon PIFu [62] with improvements in different as-
pects. PIFuHD ingests high-resolution images in a sliding
window manner to achieve rich surface reconstruction de-
tails. ARCH leverages nearest neighbor-based linear blend
skinning weights and hand-crafted RBF features to recon-
struct animatable avatars in a canonical space. In addition
to these two most related methods, we also include multiple
prior methods [67, 30, 52, 13, 62] and report the bench-
mark results on the RenderPeople and the BUFF datasets in
Tab. 2. ARCH++ [Ours] results outperform the second best
method ARCH by large gaps.

The visual comparisons in Fig. 5 and Fig. 4 further ex-
plain the advantages of our improvement. PIFuHD suffers
from shape distortions due to lacking shape and pose priors
provided by the end-to-end geometry encoder. Note that

2Our results (green boxes) have fewer reconstruction artifacts (e.g., in-
correct normal directions, mesh distortion) than ARCH (red boxes).
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Figure 5. Qualitative comparisons against the state-of-the-art methods [62, 63, 28]. The first column is input. Column 2-4, 5-7 are color
and shape reconstruction results, respectively, in the posed space. The last two columns are canonical space avatar reconstructions. Our
method handles arbitrary poses with self-contact and occlusions robustly, and reconstructs a higher level of details than existing methods.

Variants Normal ↓ P2S ↓ Chamfer ↓
Depth [62] 0.047 0.78 0.93
RBF [28] 0.042 0.74 0.85
End-to-end Voxel [25, 81] 0.034 0.52 0.63
End-to-end Point 0.033 0.50 0.61
Table 3. Ablation studies on different types of geometry encoders.

PIFuHD is incapable of reconstruct canonical space avatars
and lacks texture estimation. ARCH reconstructions tend to
be over smooth and blurry. Its recovered mesh normal and
texture also have several block artifacts. Additionally, both
methods fail to hallucinate plausible back-side surface de-
tails like clothes wrinkles, hairs, etc. In comparison, our ap-
proach achieves photorealistic and animatable reconstruc-
tions in joint spaces and across different viewpoints. We
further show our results on Internet images in Fig. 9.

5.4. Ablation Studies
Joint Space Reconstruction. To further understand the

impact of the proposed methods, we present ablation stud-
ies in Tab. 1. The first three rows demonstrate the effec-
tiveness of joint-space co-supervision, achieving balanced

Variants Posed ↓ Canonical ↓ Mean ↓
Baseline 0.033 0.040 0.037
Object-space Regression [28] 0.032 0.041 0.037
Image-space Input [63] 0.032 0.038 0.035
Image-space Regression 0.031 0.039 0.035
Table 4. Ablation studies on different ways of normal refinement.

performances on both the posed and the canonical space
mesh reconstructions. Choosing the posed space as the re-
construction target space (e.g., PIFu, PIFuHD, Geo-PIFu,
PaMIR) can cause missing surfaces and topology distor-
tions in the posed-to-canonical space warped meshes (see
Fig. 6). Meanwhile, choosing the canonical space as the tar-
get space (e.g., ARCH) can cause self-intersecting meshes
with broken manifold as well as body part un-natural defor-
mations in the canonical-to-posed space warped meshes. In
contrast, our co-supervision and joint-space inference meth-
ods achieve both reconstruction fidelity in the posed space
and body mesh completeness in the canonical space.

Geometry Encoding. As shown in Tab. 1, we observe
further error reduction leveraging the end-to-end learned
point-wise spatial encodings. The prior method ARCH uses
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Figure 6. Ablation studies on the reconstruction space. Single-
space reconstruction shows artifacts of either mesh surface over-
stretching or intersecting surfaces when warping from one space
to another. Our joint-space reconstruction obtains balanced perfor-
mance of both high reconstruction completeness under the canon-
ical space and high input image fidelity under the posed space.

Input RBF E2E PointE2E Voxel
Figure 7. Ablation studies on geometry encoding. Learned spa-
tial features capture both pose and shape priors of the underlying
parametric models and thus enable mesh reconstruction with more
surface details than the handcrafted RBF features. Meanwhile, re-
sults of the voxel-based features are noisier than the point-based
ones due to mesh quantization (i.e., voxelization) errors.

OS Reg.Input Baseline IS Input IS Reg.
Figure 8. Ablation studies on normal refinement: Object-space Re-
gression (OS Reg.), Image-space Input (IS Input) and Image-space
Regression (IS Reg.). Our method IS Reg. leads to rich recon-
struction details (e.g., clothes wrinkles) in all views.

handcrafted RBF features that only model the pose prior of
parametric body mesh skeletons, ignoring the mesh shape.
In comparison, our point-based features are informed of
both pose and shape priors of the underlying parametric
body model w.r.t. a clothed human mesh, and thus improve
the surface reconstruction quality. We further implement
the learned volumetric spatial feature encodings used in
Geo-PIFu and PaMIR as an alternative encoder and inject
into our framework for direct comparisons. The results are
shown in Tab. 3 and Fig. 7. While both types of end-to-end
spatial features outperform the hand crafted RBF features,
our point-based feature extraction method does not suffer
from computation overhead and mesh quantization errors
of the voxel-based approach.

Normal Refinement. While single-image based direct
inference of human meshes with rich surface details at both

Figure 9. An application of digital human capture from photos.

the front and the back side remains an open question, some
empirical observations and prior works indicate that nor-
mal estimation is a relatively easier task and can help refine
the reconstructions. In Tab. 4 and Fig. 8 we experiment on
three principle ways of leveraging the estimated normals for
mesh reconstructions with refined surface details. Among
these normal refinement methods, our front/back-side im-
age space normal regression and moulding-based surface
refinement approach outperforms other variants. Object-
space normal regression is adopted in ARCH and is based
on learning deep implicit functions of spatial normal fields.
It fails to generate rich back side details and sometimes
causes block artifacts as shown in the fourth row of Fig. 5.
Image-space input is used in PIFuHD. It concatenates the
color image input with estimated image-space normal maps
and feeds them into Stack Hourglass for feature extraction.
While this method achieves the same level of quantitative
performance as our mesh refinement approach, its visual re-
sults are not as sharp as ours at both the front and the back
sides. A degenerated case of our mesh refinement method
is studied before in DeepHuman where they only estimate
front-view normal maps and therefore lack reconstruction
details at the back side.

6. Conclusion
In this paper, we revisit the major components in existing

deep implicit function based 3D avatar reconstruction. Our
method ARCH++ produces results which have high-level
fidelity and are animation-ready for many AR/VR applica-
tions. We conduct a series of comparisons with and anal-
ysis on the state of the art to validate our findings. For fu-
ture works, we plan to incorporate environment information
(e.g., lighting, affordance) to further understand the body
pose and appearance, and address current limitations.
Acknowledgements. We would like to thank Minh Vo and Niko-
laos Sarafianos for the discussions and synthetic data creation.
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Supplementary

A. Implementation Details
In this section, we provide the implementation details of

our proposed method.

A.1. Input Preprocessing

During both training and test time, the input images to
the network are normalized with regard to the human body
scale. In particular, we re-scale the image based on the 3D
skeleton estimation of the subject. The image is resized then
centered, such that the pelvis of the person is aligned with
the center of the image. Each pixel represents 1cm length
using an orthographic scene projection. In this way we en-
sure proper scaling of the body parts, which allows us to
capture the variations of different heights of people.

A.2. Network Architectures

Semantic-Aware Geometry Encoder is based on Point-
Net++ [59, 58], which consists of 3 Set Abstraction (SA)
layers. The configurations of each layer are SA(2048,
0.1, 16, 3, [16,16,32]), SA(512, 0.2, 32, 32, [32,32,64]),
SA(128, 0.4, 64, 64, [64,64,128]). The explanation of each
argument is (furthest point sampling size, point neighbor-
hood radius, point neighborhood size limit, input feature
channel, MLP output channels list). Namely, the multi-
scale point set sizes of Eq. (1) in the main paper are:
N1 = 2048, N2 = 512, N3 = 128. When extracting
spatially-aligned features for any given query point, we
leverage the point Feature Propagation (FP) layers defined
at the aforementioned 3 different point set scales: FP(32,
[32,32]), FP(64, [32,32]), FP(128, [32,32]). The explana-
tion of each argument is (input feature channel, MLP output
channels list). Therefore, the dimensions of our spatially-
aligned geometry features fg in Eq. (3) of the main paper
are 96 = 32 ∗ 3. Please refer to [59] for further details.

Pixel-Aligned Appearance Encoder adopts the archi-
tecture from Stack Hourglass Network [53]. The layer con-
figuration is the same as PIFu(HD) and ARCH [62, 63, 28],
which is composed of a 4-stack model and each stack uses
2 residual blocks. The output latent image feature length
is 256. Therefore, the dimensions of our pixel-aligned ap-
pearance features fa in Eq. (3) of the main paper are 256.
Please refer to [53, 62, 63, 28] for further details.

Joint-Space Occupancy Estimator is a two-branch
multilayer perceptron (MLP). Each branch takes the
spatially-aligned geometry features fg and pixel-aligned ap-
pearance features fa described above, and estimates one-
dimension occupancy oa or ob using Tanh activation. oa is
the occupancy probability in the canonical space and ob is
the one in the posed space. Similar to [62], we design the
MLP with four fully-connected layers and the numbers of
hidden neuron sizes are (1024, 512, 256, 128). Each layer
of MLP has skip connections from the input features.

Initial 3D Human 
Estimation

Optimization with 
OpenPose

Optimized 3D 
Human

Figure 10. Postprocessing of 3D human body estimations. We ob-
serve the initially estimated 3D human body does not perfectly
align with the 2D body landmarks (e.g., face, hands, feet) and we
thus implement an additional optimization script to further min-
imize the distance between the re-projected 2D landmarks (red)
and OpenPose detected 2D landmarks (blue), leading to a better
3D human body estimation.

Normal and Texture Image Translation both use a net-
work architecture designed by [32] using 9 residual blocks
with 4 downsampling layers. The same network is also used
in PIFuHD [63] for normal maps estimation. In our work
we extend this architecture to back side texture inference
by adding GAN losses.

A.3. Hyper-Parameters

When training the joint-space occupancy losses Lo, we
use 0.5, 0.5, 0.05 to weight the canonical/posed space oc-
cupancy estimation losses Locc

o as well as the contrastive
regularizer Lcon

o . When supervising the normal and tex-
ture image translation losses Ln,Lt, we set the weights of
the L1 reconstruction losses Lrec and the perceptual losses
Lvgg to 5.0 and 1.0, respectively. Particularly, the GAN
losses (i.e. generator, discriminator) used in back-side tex-
ture hallucination is weighted by 0.1.

A.4. Computation Cost

Empirically, when using a single Tesla V100 GPU for
training and one batch of 4 images (each image with 20480
pairs of query points), the forward pass takes around 1.4s
and the backward propagation takes around 0.6s.

B. Inference on Images in the Wild
To perform inference on in-the-wild images, our staged

pipeline involves person instance segmentation, parametric
3D human body estimation and the proposed 3D avatar re-
construction. The total pipeline takes around 5 seconds to
reconstruct a fully colored animation-ready avatar from an
unconstrained photo (RGB image) using one Tesla V100
GPU. In comparison, PaMIR [81] takes over 40 seconds.
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Figure 11. 3D human body prior is crucial for our task, without which the reconstructions might look like squeezed relief sculpture due to
wrong poses and shapes.

Note our current implementation lets all modules run se-
quentially and the intermediate results (e.g., masks, 3D hu-
man body parameters) are mostly exchanged through CPU
memory and file IO, which leaves room for optimization.
For our proposed avatar reconstruction framework alone,
we could run 1) Semantic-Aware Geometry Encoder, 2)
Pixel-Aligned Appearance Encoder and 3) Normal and Tex-
ture Refinement Networks in parallel to greatly boost the
efficiency.

B.1. Person Instance Segmentation
Similar to most existing implicit surface function based

methods, our occupancy estimation module also requires
the person segmentation mask. Such mask is used to re-
move redundant and erroneous estimated occupancy in the
background regions and serves as a visual hull prior sim-
ilar to multiple view stereo. In this paper, we utilize one
state of the art semantic instance segmentation [36], which
is able to generate per-person segmentation mask. Note we
are able to handle multiple people in the same image with
such a detection-and-segmentation method. We set a mini-
mum detection score 0.5 and minimum bounding box size
100× 100 to filter out people instances with too small reso-
lution and guarantees the proper scale used for our proposed
avatar reconstruction approach.

B.2. Parametric 3D Human Body Estimation
Underlying 3D human body serves as an important se-

mantic cue for our approach. In this paper, we adopt a simi-
lar way as ARCH [28] to estimate the parametric 3D human
body from the input image. We first run DenseRaC [74]
to obtain the initial estimation of 3D human pose and
shape parameters. Furthermore, we observe that when re-
projecting such estimated 3D human body back to the input
image, the body landmarks (e.g., joints, face, hands, feet)

do not align with the input image well. We thus implement
an additional optimization script using pytorch to compute
the offsets between the re-projected body landmarks and
detected body landmarks from OpenPose [12] and back-
propagate to the estimated 3D human pose and shape pa-
rameters (see Fig.10). The optimization is run over 200
iterations and we obtain better-aligned 3D human body in
this way.

B.3. 3D Avatar Reconstruction
Given the intermediate results obtained from the mod-

ules above, we are able to run our proposed approach and
obtain the jointly reconstructed avatars in both the original
posed space and the canonical space.

C. Extended Experiments
In this section, we show some interesting conclusions we

obtained along the way and extended experiments as well
as comparisons (e.g., user studies, applications of avatar an-
imations and video-based fusion, failure cases). Note we
remove the background for all images for better visualiza-
tion of the inputs.

C.1. 3D Human Body Prior is Crucial for Our Task
In Fig. 11 we show that reconstruction results of PI-

FuHD [63] fail to capture the underlying correct body
shapes and poses. PIFuHD and our method are trained us-
ing the same set of RenderPeople clothed human meshes,
which consist of mostly upstanding poses. While ob-
taining large-scale ground truth clothed avatars with var-
ious poses and shapes is still an open problem, we can
leverage parametric body shape estimation networks (e.g.
DenseRaC [74] and HMR [34]) whose training data is eas-
ier to obtain. This motivates our design of learning both



PIFuHD OursInput

Figure 12. Moulding-based Surface Refinement Obtains Better
Consistency across Views. Our reconstruction results contain more
full-body surface details (e.g., belt around the waist and clothing
wrinkles on the back/legs) than the competing methods.

With Normal Refinement Without Normal Refinement

Figure 13. Normal refinement can enhance photorealistic render-
ing at different viewpoints. These images use the same mesh tex-
tures for rendering in order to demonstrate the effect of refined
normals. The input image is the same as the bottom row in Fig. 12.

semantic-aware geometry features and pixel-aligned ap-
pearance features. The geometry features encode shape and
pose priors of the underlying parametric body mesh, while
the appearance features provide image evidence for fine-
scale clothing wrinkles and surface details reconstruction.

C.2. Moulding-based Surface Refinement Obtains
Better Consistency across Views

For previous methods like PIFu [62], ARCH [28] and PI-
FuHD [63], we often observe the reconstructed surface de-

tails only look plausible from the input camera view. Once
we change the camera view to preview the reconstructed
avatar from other view points, the rendered results contain
fewer surface details and are less realistic. Such quality
inconsistency limits the applicability of the prior works to
AR/VR applications that require free viewpoint rendering.

Based on the aforementioned observations, we conclude
that such phenomenon is caused by the suppression of oc-
cluded region hallucination. Although PIFuHD generates
detailed back-side surface compared to PIFu and ARCH by
leveraging inferred normal maps, its final rendering qual-
ity remains less sharp than our moulding-based refinement
approach. Besides the results shown in the main paper,
we provide more results with zoom-in in Fig. 12 to fur-
ther demonstrate the improvement on reconstruction de-
tails. Moreover, the normal refinement step enhances pho-
torealistic rendering results by enabling fine-grained shad-
ing effects. In Fig. 13, we show the rendered images with
and without the refined normals using the same mesh tex-
tures. With the normal refinement, the rendered images
show more plausible clothing wrinkles at different views
than the ones without normal refinement.

C.3. GAN Improves Back-Side Texture Estimation
In our experiments, we found that GAN losses help to

enhance the realism of back-side texture maps. In Fig. 14,
we demonstrate that the estimated textures with GAN train-
ing contain more plausible texture details and better lighting
effect than those without GAN.

C.4. Estimating Shaded Textures Preserves More
Details

Notably PIFu and ARCH all choose the albedo color
space to predict. This requires the neural network to implic-
itly learn to compensate light/shading from the given shaded
input images. However our current data scale seems insuf-
ficient to capture such a complicated space and might pro-
duce erroneous reconstructed textures. We believe our best
strategy is to “reconstruct the texture as similar/compatible
as the input image“. We conduct ablation studies on learn-
ing different color spaces and the results are shown in
Fig. 15. It can be observed that estimating back-side shaded
textures, in comparison with albedos, preserves more details
and overall generates similar and consistent color space to
the input images.

C.5. Inpainting Is a Needed Step for Avatar Recon-
struction

Compared with PIFu and ARCH, we propose to utilize
the image space characteristics to better refine the recon-
structed geometry. Our insight is that such features are nat-
urally encoded in the image and there are already lots of
powerful generative models in the literature which can solve
similar tasks. However, one issue when trying to estimate
the surface normals and textures lies in the missing surfaces



With 

GAN

Without 

GANInput
With 

GAN

Without 

GAN
Input

With 

GAN

Without 

GANInput

Figure 14. Texture Map Estimation With and Without GAN. The hallucinated back-side texture maps with GAN contain more surface details
(e.g., clothing patterns/wrinkles, hairs) and more realistic (directional) lighting effect than those without GAN.
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Figure 15. Texture Map Estimation With and Without Shading (Albedo). We study whether the shaded texture or the albedo space are easier
to learn. Results show when trying to predict albedos, we lose lots of clothing details and textured patterns.

cannot be ray traced from either the front or the back side,
e.g., the occluded clothes by the arms in Fig. 16. As a re-
sult, we believe such missing surfaces could be formulated
and solved as an inpainting task. As shown in the figure, we
are able to inpaint those missing surfaces (marked as gray
regions) using the context. We could also observe that the
final reconstructed avatar in the canonical space looks more
complete and realistic than the one obtained by ARCH via
implicit color field interpolation.

C.6. More Normal Refinement Results

We show more qualitative results on the testing sets (e.g.,
DeepHuman, AXYZ, RenderPeople and Unsplash) for peo-
ple in different camera views, poses and clothes in Fig. 18.
It can be observe that our normal refinement results achieve
high fidelity.

C.7. User Study on Reconstruction Photorealism
Shows Superior Quality of Our Method

We set up a user study to further evaluate the photore-
alism of our method against other state of the art. In our
study, we randomly pick 30 examples from our testing set
(i.e., RenderPeople, AXYZ, Unsplash) and run the compar-

ison methods [62, 28, 63] to obtain the results. For each
example, we showed the input image and side-by-side ren-
dered reconstruction results from two approaches in both
front and back views to the participants. We numerate
all pairs of approaches following a “similarity judgment”
design [46]. For each pair, the participants were asked
to choose the more realistic result (“Which reconstructed
avatar looks more real given the input image?”). They could
choose either results or indicate that they were equally real.
To avoid biases and learning effects, we randomized the or-
der of pairs as well as the position of the results while ensur-
ing that for each participant the same number of techniques
were shown on the left and the right sides. To evaluate the
results, we attribute the choice of one technique with +1
and the other with −1. Averaging over all results in a qual-
ity score for each pair of techniques. Using a t-test, we de-
termine the probability of the drawn sample to come from
a zero-mean distribution—zero-mean would indicate both
techniques to be of equal quality.

We recruited 22 participants from universities and re-
search institutes. Most participants are with medium to high
experiences for computer vision and graphics. The results
of the user study are summarized in Fig. 17. We conduct
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Figure 16. Inpainting Is a Needed Step for Avatar Reconstruction. Canonical space reconstruction inevitably contains unseen surfaces
from the input image. After applying a ray tracing and moulding, we identify those gray regions can be seen in neither front side nor
back side as occluded region and fill in those missing details using an off-the-shelf image inpainting algorithm. Compared with ARCH
which interpolates the per-point normal/texture using deep implicit functions, our moulding-inpainting approach obtains higher fidelity and
completeness.
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Figure 17. Results of our user study. Values > 0 show a preference of the first method over the second, i.e., Ours over PIFuHD, Ours over
ARCH and PIFuHD over ARCH. Note PIFuHD doesn’t reconstruct texture so we use PIFu instead for the texture reconstruction study.
Error bars show standard error.

two sessions with one studying the normal reconstruction
quality and the other one studying the texture reconstruc-
tion quality. We compute the p-value to indicates statistical
significant difference between the methods according to a t-
test (all significant results achieved at least p value < .001).
All three pair-wise comparisons showed significant results:

For normal reconstruction, Ours vs. PIFuHD (mean =
0.39697, std = 0.34625, t(21) = 4.02, p < .001), Ours vs.
ARCH (mean = 0.83636, std = 0.15535, t(21) = 25.25,
p < .001), and PIFuHD vs. ARCH (mean = 0.32121, std
= 0.27826, t(21) = 5.41, p < .001), with ours being sig-
nificantly better than other state of the art and PIFuHD be-
ing significantly better than ARCH.

For texture reconstruction, Ours vs. PIFu (mean =

0.49091, std = 0.21513, t(21) = 10.70, p < .001), Ours
vs. ARCH (mean = 0.74545, std = 0.21615, t(21) =
16.18, p < .001), and ARCH vs. PIFu (mean = 0.22424,
std = 0.21134, t(21) = 4.98, p < .001), with ours be-
ing significantly better than other state of the art and ARCH
being significantly better than PIFu.

C.8. Applications

When multi-view inputs are available (e.g., monocular
videos), our method naturally supports canonical space nor-
mal and texture fusion to recover a photorealistic and ani-
matable avatar thanks to the shared canonical space among
different poses. For mesh vertices that are co-visible under
multiple viewpoints we apply a simple yet effective normal-
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Figure 18. More normal refinement results from our approach on DeepHuman, AXYZ, RenderPeople and Unsplash datasets, covering
people with different camera views, poses and clothes.
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Figure 19. An application of social telepresence. Given an input video, our method can generate a fused 3D human avatar and further
animate it with pre-defined Mixamo motions [50].

Figure 20. Failure cases. Reconstruction with strong directional lights and rare poses could be further improved.

based linear blending scheme. For each vertex, the nor-
mal/texture fusion weights w.r.t. one visible view is deter-
mined by the angle between the (unrefined)normal of that
vertex and the camera direction. This is similar to Eq. (6)
and (7) of the main paper. Here we further extend them to
multiple views. Namely, one image that is facing towards
the surface is weighted higher than another image of a large
viewing angle. As show in Fig. 19, we fuse the normal and
texture from multiple frames, and further generate an ani-
mation sequence.

C.9. Failure cases
As shown in Fig. 20, there are some typical failure cases

due to strong directional lighting and challenging poses. To
tackle these issues we plan to add more lighting augmen-
tation for the back-side texture estimation Pix2Pix module
and also increase the size of our training scan set. For exam-
ple, compared with the widely used image classification and
detection datasets like ImageNet [16, 61] and COCO [42],
our training dataset is relatively small consisting of only
hundreds of 3D scans. Building a large-scale and high-
quality clothed human mesh dataset with sufficient clothes
types and human pose/shape variations is critical for push-
ing research works in image-based photorealistic avatar re-
construction.


