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Abstract

Modeling the hand-object (HO) interaction not only re-
quires estimation of the HO pose, but also pays attention to
the contact due to their interaction. Significant progress has
been made in estimating hand and object separately with
deep learning methods, simultaneous HO pose estimation
and contact modeling has not yet been fully explored. In this
paper, we present an explicit contact representation namely
Contact Potential Field (CPF), and a learning-fitting hy-
brid framework namely MIHO to Modeling the Interaction
of Hand and Object. In CPF, we treat each contacting HO
vertex pair as a spring-mass system. Hence the whole sys-
tem forms a potential field with minimal elastic energy at
the grasp position. Extensive experiments on the two com-
monly used benchmarks have demonstrated that our method
can achieve state-of-the-art in several reconstruction met-
rics, and allow us to produce more physically plausible
HO pose even when the ground-truth exhibits severe in-
terpenetration or disjointedness. Our code is available at
https://github.com/1ixiny/CPF.

1. Introduction

It is essential to model hand-object interaction from a
single image for understanding the human activities, in
which simulating a physically plausible grasp is also cru-
cial for VR/AR, teleoperation, and grasping applications.
Given an image as input, the problem aims to not only es-
timate proper hand-object pose but also to recover a natu-
ral grasp configuration. While estimating hand [39, 33, 61,

, 20, 59] or object [21, 24, 15, 57, 58] alone has made a
considerable success over the past decades, simultaneously
estimating hand-object pose [25, 54, 24, 30, 13] with inter-
action has only emerged in the past few years.

Previous works on joint hand-object estimation usually
treat the contact as a result of the correct pose estimation
[24, 31, 47]. Apparently, if the hand and object can be
perfectly recovered, the contact between them will also be
satisfied. Yet, such perfection cannot be achieved in prac-
tice. Since contact can provide rich cues to guide accurate
pose and natural grasp, more attention has been recently
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Figure 1. Illustration of the proposed Contact Potential Field.
The contacts between hand and object vertices are modeled as the
attractive (right) and repulsive (left) springs that connect paired
vertex on them.

drawn to the contact modeling [5, 7] and contact repre-
sentation [28, 6]. And several contact datasets [5, 7, 53]
have been released to the community. However, a solu-
tion of properly integrating contact modeling into the cur-
rent hand-object pose estimation pipeline has remained an
open research question. The existing methods either exploit
distance-based attraction and repulsion [25, 28] to mitigate
disjointedness and interpenetration, or refine the predicted
pose in virtue of physics simulators [30, 31, 18]. While the
both solutions are considered to be irrelevant to contact se-
mantics, which we will explain later, the latter solutions also
lack flexibility on hand pose and shape.

To model the contact, we propose an explicit represen-
tation named Contact Potential Field (CPF, §4). It is built
upon the idea that the contact between a hand and an ob-
ject mesh under grasp configuration is multi-point contact,
which involves multiple hand-object vertex pair affinities.
These affinities are regarded as the contact semantics, which
depict the pairing of the hand-object vertices that come into
contact with each other during the interaction. When noisy
predicted hand and object are disjointed from each other,
we shall apply an attraction to pull these vertex pairs close;
While the hand and object are intersected, we shall have a
repulsion to push them away. Contacts of those affinitive
vertex pairs are the result of equilibrium between the at-
traction and repulsion. In this paper, we treat each contact-
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ing HO vertex pair as a spring-mass system. First, the two
end-points of spring is a counterpart of the two HO vertices
in affinity. Second, the spring’s elastic property is another
counterpart of the intensity of the vertex pair affinity. In this
way, we can model the HO interaction with a potential field,
as we call it CPF, which is determined by minimal elastic
energy at the grasp position. Therefore, estimating the HO
pose under contact is equivalent to minimizing the elastic
energy inside CPF. Representing contact as CPF has two
main advantages. First, compared with contact heuristic
with proximity metrics [1, 55] or distance field [28, 6], CPF
is able to assign per-vertex contact semantics (contact points
on different hand part) to object mesh. Second, by mini-
mizing the elastic energy, CPF can uniformly avoid inter-
penetration and control the disjointedness. Based on CPF,
we also propose a novel learning-fitting hybrid framework
namely for Modeling the Interaction of Hand and Object,
as we call it MIHO (§5).

Another problem with the existing methods is the rep-
resentation of the hand model. Most researches adopted a
skinning model, MANO [50], to represent hand. MANO is
considered to be flexible and deformable with its pose and
shape parameters. However, fitting on these high DoFs pa-
rameters is prone to anatomical abnormality. Researches in
the robotics community adopted a dexterous hand [31, 18]
in the off-the-shelf grasping software [38], which can al-
most guarantee a valid pose. But the rigidity of those rod-
like hand is less suitable for applications in CV/CG. To
make the best of both worlds, we propose a novel anatomi-
cally constrained hand model namely A-MANO (§3). It in-
herits the formulation of the skinning model and constrains
the hand joints’ rotation within a proposed twist-splay-bend
frame (Fig. 2).

For evaluation, we report our scores on FHB [19] and
HO3D [23, 22] dataset in terms of reconstruction and phys-
ical quality metrics. Note that, the ground truth of FHB is
noisy and suffers from severe interpenetration [28]. Since
our method can avoid the penetration in the first place, our
results are more visually and physically plausible. There-
fore, we argue that, in this dataset, a higher reconstruction
score does not necessarily benchmark the performance of
the method. While on HO3D, we achieve state-of-the-art
performance on both reconstruction and physical metrics.
The contributions of this paper are as follows.

* We highlight contact in the hand-object interaction

modeling task by proposing an explicit representation
named CPF.

¢ We introduce A-MANO, a novel anatomical-
constrained hand model that helps to mitigate pose’s
abnormality during optimization.

e We present a novel framework, MIHO, for modeling
hand-object interaction. It can achieve state-of-the-art
performance on several benchmarks.

2. Related Work

3D Hand Reconstruction. Most of the existing 3D hand
reconstruction methods [4, 61, 2] adopted a parametric skin-
ning hand, e.g. MANO [50] as a template. To drive MANO,
it is crucial to obtain joint rotation along hand kinematic
tree. Boukhayma er al. [4] firstly proposed to regress the
PCA components of the rotations. Later, directly regress-
ing the full rotations from 3D positions [61, 59] has shown
better performance. However, those high DoF regression
is prone to pose abnormality. Thus, Spurr ef al. [52] ex-
ploited biomechanical constraints over hand joints in train-
ing scheme. Different from [52], we apply rotation con-
straints over the axes and angles in the proposed twist-splay-
bend coordinate frame.

Hand-object Pose Estimation. In a wide range of topics in
modeling hand-object interaction, the most commonly re-
ferred one is HO pose estimation [25, 24, 13, 17, 54]. In this
regard, the earlier methods focused on either hand [46, 48,

] or object [56] pose alone, or estimated hand in grasping
pose with knowing object shape prior [16, 8, 9, 10]. Jointly
estimating hand and object pose was firstly presented by
Romero et al. [49] via searching for nearest neighbors in a
large database. Recently, learning-based frameworks have
emerged in this area. Hasson ef al. [25, 24] proposed two
learning frameworks to recover hand-object meshes, one by
synthesizing HO data under manipulation [25] and the other
by exploiting photometric consistency over video sequence
[24]. Doosti et al. [13] employed the graph neural networks
[17] to lift the 2D HO keypoints into 3D space. Tekin et
al. [54] adopted 3D YOLO [44] to predict HO pose in one
stage. Korrawe et al. [28] recovered HO model in a form of
Signed Distance Function [42].

Contact Heuristic. Exploiting contact heuristic in hand-
object interaction can be traced back to several decades be-
fore [45, 14, 36]. Early works utilized some shape-specified
contact physics (e.g. cones and blocks [45]) or predefined
grasp [36] as prior. Studies on capturing [32] or imitating
[3] HO interaction also leveraged contact to satisfy the re-
ality. Later, the studies on grasping synthesis [60, 18, 31]
and tracking [41, 34] turned to physical simulators to cir-
cumvent model’s intersection. Multi-point contact formu-
lation was proposed in [29, 27, 1], which we found use-
ful when applying physical constraints, e.g. [29, 27] used
contact points to resolve penetration. For unified attraction
and repulsion, most works employed heuristic such as prox-
imity metric [25, 1, 55], signed distance function [28, 6],
predefined contact pattern [47, 6], or turned to simulator
[30, 31] for simplicity. Recently, Antotsiou et al. [ 1] refined
the grasp by attracting fingers to its nearest point on object
surface w.r.t distance-based energy. Hasson et al. [25] ap-
plied well-designed interaction losses which are also based
on proximity metric. Although our method differs from all
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Figure 2. Illustration of the proposed A-MANQO. Left: the sub-

division of hand regions and anchors attached to it. Right: the
proposed twist-splay-bend frame.

of the previous methods in terms of contact heuristic, we
consider that both [1] and [25] are still strong baselines.
Thus we will compare our contact heuristic with theirs.

3. Anatomically Constrained A-MANO

The proposed A-MANO inherits from a parametric skin-
ning hand model, MANO [50], which drives an articulated
hand mesh with pose parameters 6 and shape parameters
B. 8 € R¥*3 is 15 joint rotations along the hand kine-
matic tree. And 3 € R represents the PCA components
of hand shape. The main differences of A-MANO from
MANO are: 1) the restriction on the joints’ rotation axes
and angles within the twist-splay-bend frame; 2) the anchor
representation in the subdivision of hand region.

The Twist-splay-bend Frame. Fitting on 15 joint rota-
tions of MANO requires high DoFs regression which may
cause abnormal hand posture as shown in Fig. 7. Since the
human hand can be modeled in a kinematic tree, and the
majority of the joints only have one DoF about the bend
axis, we can impose constraints over the rotation about the
unwanted axes. Therefore the proposed twist-splay-bend
Cartesian coordinate frame can be assigned to each joint
along the kinematic tree. The frame’ s z, y, z axes are coax-
ial to the 3 revolute directions: twist, splay, and bend direc-
tion on the basis of hand anatomy (Fig. 2 right). Then we
can impose axial constraints in the rwist and splay axes, and
impose angular constraints w.r.t the bend angle. Details of
the twist-splay-bend frame are elaborated in Supp A.1.

Anchors. Since the hand mesh of different subjects are
almost identical in the subdivision of hand region (e.g. pha-
langes), we can interpolate several representative points
(later we call it anchors) on hand mesh to largely reduce
the number of HO vertex pairs. Instead of attaching springs
from object mesh to all the affinitive vertices on hand mesh,
we only attach them on the several hand subregion centers,
as we call it anchors (Fig. 2 left). According to the statis-

tics [25, 7] on the contact frequency of different hand parts,
we first divide the full hand palm into 17 subregions: 3 for
each phalange of 5 fingers, 1 for metacarpals, and another
for carpals. Then, we interpolate up to 4 anchors for each
subregion. We ignore all the vertices on the back side of the
hand. Details of subregion division and anchors interpola-
tion are described in Supp A.2, A.3.

4. Contact Potential Field

Contact as Spring-Mass System. A single contact is
modeled as a spring-mass system which consists of a spring
and two mass points on each side (hand and object). When
the spring is at its rest position, it does not store energy,
whilst it is stretched or compressed, according to Hooke’s
Law', it will store the elastic potential energy with the form:
1k|Al?, where k is the spring elasticity, and | Al| is a cer-
tain “distance” metric w.r.t. the spring’s rest position.

In CPF, we define two types of spring: attractive spring
and repulsive spring. The goal of attractive spring is to pull
the hand vertex v" toward the object vertex v° based on
a given HO vertex pair affinity. And the goal of repulsive
spring is to push the v" away from v° along the v° ’s nor-
mal if the v" is in the vicinity of v°. Apart from these defi-
nitions, we should also point out that the attractive spring is
bound with a certain pair of HO vertex affinity, while the re-
pulsive spring only takes effect in the neighborhood of HO
vertex pairs at some point.

- Attractive Spring. We define the rest length of attrac-
tive spring as 0 in which the hand vertex and object vertex
are in perfect contact, and the distance metric |Al| as Eu-
clidean distance. Given a HO affinity that includes a vertex
pair: v/" and v?, the | A" is equal to ||v] — v;-’H2. The
potential energy of the current attractive spring is given by:

1
By = ki« ALy M

- Repulsive Spring. We hope that the repulsion energy
is high when v/ is penetrating or in the vicinity of v7, but
gradually decays as the v moves away from the object,
and finally becomes negligible at certain distance. Given a
proximate HO vertex pair: v/ and v7, We define a repulsive
spring to model this behavior. Supposing that the repulsive
spring has the rest position at 400 away along the object
normal n?. We adopt a heuristic distance metric |Al| =

rpl rpl
e 1ALT T _g=o0 = ¢~ |ALS | where |Alzr-§)l| = ('Uzh_vjo')'njo'
is the projection of the (vl — v?) on the object normal nf.
Thus, the potential energy of the current repulsive spring is

r 1 r — tpliy 2
By = gk x (e7141) @

In literature, adopting repulsive effect along surface normal

lhttps://en.wikipedia.orq/wiki/Hookesilaw
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Figure 3. The architecture of the hybrid model MIHO. The MIHO consists of three submodules: the first HONet estimates coarse poses
of HO meshes, the second PiCR learns to recover the CPF and the last GeO retrieves the refined poses based on the CPE.

can be found in [6, 23]. [23] (Eq. 10) also discussed that
e~ () is an efficient heuristic concerning sub-sampled set of
vertices.

Grasping inside Contact Potential Field. By collecting
all the attractive and repulsive springs, to form a natural
grasp is equivalent to minimize the elastic energy:

Betast = Z Z EX* + BT 3)

As discussed in §3, the hand vertices can be simplified to
subregion anchors, which will largely relax the difficulty
of learning and fitting inside the CPF. Thus, for attractive
spring, we replace the Al;; in Eq.l to Alj; = a; — v},
where a; is the closest anchor to v!. Besides, we would
like to have the repulsion force be only applied to those HO
affinity pairs that are of vertices in vicinity. Thus we set zero
the repulsion energy when the vertex distance [[v9 — v}[|
is greater than a threshold ¢,;; = 20 mm.

Annotation of the Attractive Springs (k**"). While the
attraction energy is bound with certain HO affinities, the re-
pulsion energy is rather ambient and affinity-agnostic. To
integrate the CPF into learning framework, we only con-
sider the k:fJ“ as the prediction of neural network. To en-
able this, network shall have the abilities of 1) pairing the
hand anchors and object vertices into HO affinity pair, e.g.
(a;, v;’); and 2) regressing the intensity of those affinity
pairs, e.g. katr. These require annotation of the attractive
springs k3,

Given the ground-truth (gr.) HO pose and their mesh
model, we automatically annotate each k:;‘jtr based on a
heuristic of the (a;, v$) pair distance. Since each a; may
be included in several affinity pairs, we hope the attraction
energy stored in each spring at gz. HO pose is well bal-
anced. Thus we assign the gz. I%fjtr a value that is inverse-

proportional to the gt. |Ai§;r |. In order to train the network,
we also bound the magnitude of l;:atr by 0 and 1. Here we

only provide a glimpse of the annotation heuristic of katr.
2™ = 0.5 cos (f | ALT]) 4+ 0.5 4

Empirically, we set the scale factor s = 20 mm and reject
those HO affinities with gz. |AL%"| > 20 mm. As for the

elasticity of repulsive spring, we empirically set all k;rpl

1x10~3. Detailed analysis of the gt. k*tr and the attraction-
repulsion equilibrium are provided in Supp B.1, B.2,

5. Hybrid Framework — MIHO

With respect to the proposed CPF (§4), our approach
MIHO models the hand-object interaction in three stages,
namely HoNet (§5.1), PiCR (§5.2), and GeO (§5.3).

As shown in Fig.3, firstly, given an RGB image Z, HoNet
predicts a coarse pose of hand mesh V" = {v! € R3 | i <
Ny} and object mesh V° = {v? € R® | j < N,}, where
Ny, and N, are the number of the vertex of hand and object
respectively. Then, PiCR learns to construct the CPF and
collect the elastic energy Felast in it. Finally, GeO mini-
miies Eelast in CPF to yield the refined HO meshes *V°,
R

5.1. Hand-object Pose Estimation Network, HoNet

The HoNet first predicts coarse poses of HO meshes by
the baseline model MeshRegNet as in [24]. The outcomes
from the baseline comprise in total 37 coefficients: object
6D pose P, € se(3) (R®), hand wrist 6D pose P, € se(3),
PCA components of MANO pose 0., € R'® and shape
B € R0, With these coefficients, HoNet could place the
HO meshes into camera frame. Details of the baseline can
be referred to [24].
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Figure 4. Illustration of assigning Vertex Contact, Contact Region
and Anchor Elasticity onto object surface.

5.2. Pixel-wise Contact Recovery Module, PiCR

With the coarse meshes of hand and object in HoNet,
PiCR learns to recover the CPF by firstly paring the hand
anchors and object vertices into HO affinity pairs and then
regressing the spring elasticities that describe the affinities.
To achieve this, PiCR yields three cascaded outcomes: 1)
Vertex Contact (VC) decides which vertices on object are
in contact with hand; 2) Contact Region (CR) decides the
subregion that is most likely to contact with those vertices
in VC; 3) Anchor Elasticity (AE) represents the elasticities
of the attractive springs. With VC, CR, and AE, we can then
recover the CPF as illustrated in Fig. 4.

Vertex Contact. PiCR’ s first outcome VC € R"° stands
for the contact probability of object vertices. More specifi-
cally, VC[j] is a probability that implies the j-th object ver-
tex v¢ is in contact with hand. The loss function of VC is

J
defined as a binary focal loss [35]:

No
Lve ==Y 17 xa;(1- f;) log(f;) (5
J
where f; = p; if the gt. 0§ belongs to any HO affinity, oth-
erwise f; = (1—p,), and the p; is the predicted probability
at VC[j]. IL;mg denotes whether the vertex v is projected
inside the image. «; is inverse class frequency and +y is em-
pirically set to 2.

Contact Region. PiCR’s second outcome CR € RNox17
stands for the subregion probabilities of object vertices.
More specifically, for the j-th query, CR[j] contains 17
probabilities that indicates v7 ’s affinity toward 17 hand
subregions. The loss function Lok is defined as a multi-
class focal loss.
N,
Lor=— Z ]l}/c # 15" % (1 —my) " log(my)  (6)
J
where the m; = > (p; * t;) in which p; = CR[j] € R'" is
the predicted per-subregion probabilities through softmax,
and t; € R'7 is the gt. subregion affinity of 07 as a one-hot

vector. ]l}/c denotes that the gr. VC of v7 is positive.

Anchor Elasticity. PiCR’s third outcome AE€ R™° stands

Algorithm 1: Procedure of recovering CPF

Input: V°, V" VC, CR,AE
Output: E.at: elastic energy
1 recovery anchors: A <« linear_interpolation(V");
2 foreach j € {j | j < N,, VC[j] > tic} do
3 recover subregion id: 7 < argmaz(CR[j]);
4 foreach a; € A, (anchors in subregion r) do
5 L recover elasticity: ki{" < AE[j];

1 atr o||2.
Eelast + 3 * kij Haz — VU 9

6 J

7 foreach i € {i|i < Ny, va — vf”i < typi1} do

2
8 Eolast + + % * k:g’l| exp(—('uf —vg)- n}’)| ;

for the predicted elasticity of attractive springs k*'*. More
specifically, AE[j] is the elasticity k" of an attractive
spring that connects v7 to its affinitive anchor a; in the pre-
dicted subregion: argmax(CR[j]). The loss function L4 5
is defined as a binary cross-entropy (BCE):
N,
Lap =Y 1791 «BCE(KY", k") (D)

J
where the I%?J“ is the gt. elasticity described in §4.

With the predicted VC, CR and AE, as well as the coarse
meshes V°, V" in HoNet, PiCR finally recovers the CPF and
collects the elastic energy Ej,s; as described in Algm.1.
We empirically set the probability threshold of VC: ¢, =
0.8 and the distance threshold: ¢, = 20 mm.

PiCR’s Framework. The proposed PiCR consists of a
backbone b that extracts features from image, an encoder
p that converts image features to object vertex features, and
3 heads hyc, her and h,e which sequentially convert those
features into VC, CR, and AE. As illustrated in Fig. 3, the
process of feature extraction in PiCR can be expressed as:

F = [1(=0),0@), 200 F=p(F) ®
where b(-) is the hourglass networks [40], 7(-) is the per-
spective camera projection, and f(-) stands for aligning
V° ’s 2D projection 7(V°) with the image features b(7)
through bilinear sampling. Inspired from Eq.(1) in [51],
we also append the object’s root-relative z value z(V°) at
the end of f(-) to form the pixel-wise features 7'. Next, a
PointNet [43] encoder p(-) is adopted to convert F’ to its
point-wise features F.

The process of three PiCR’s heads can be expressed as:
VC = hyo(F); CR = hey(VC, F); AE = hao(CR, F) (9)

where all the heads are presented as multi-layer perceptrons.
We provide implementation details in Supp D.1.



5.3. Grasping Energy Optimizer, GeO

The fitting part: Grasping Energy Optimizer (GeO) aims
to refine the HO pose w.r.t. the recovered CPF. For the ob-
ject part, we adjust its 6D pose P, € se¢(3). For the hand
part, we jointly adjust the A-MANO’ s 15 joint rotations
{R; €s0(3) | j <15} and a wrist pose P,, € se(3).

In order to mitigate the abnormal hand posture during
optimization, we also define an anatomical cost function
L anat that penalizes the unwanted axial components and an-
gular values of the 15 rotations in the proposed twist-splay-
bend coordinate frame. First, for the joints along hand kine-
matic tree, we penalize the component of rotation axis a™*
on twist direction: n****, since any component that causes
the finger twisting along its pointing direction is prohibited.
Second, for the joints that do not belongs to 5 knuckles,
we also penalize the component of a”! on splay direction:
n®Ple¥_ Last, we penalize the rotation angle $**"? that re-
volves about the bend axis if it is greater than 7 /2. The total
anatomical cost can be written as:

z:rot twist z: "ot splas
Lanat — aj ) njuu.s + a}o . n;p ay

je€all j¢knuck

+ Z max ((qﬁg’-e"d — g),o)

j€all

(10)

We also penalize the offset of the refined hand-object ver-
tices *V°, *V! from their initial estimation V", V° in form
of 12 distance: Logset. We implement GeO in PyTorch with
Adam solver. The whole optimization process can be ex-
pressed as:

*Vov *Vh — argmin (Eelast + Eanat + Eof‘fset) (1 1)
Poypvaj

6. Experiments and Results
6.1. Datasets

We would like to train and evaluate MIHO w.r.t. the real-
world dataset that involves human hand interacting with
textured object. In the community, there exist mainly four
datasets that contain images and ground-truth 3D HO anno-
tation, namely ObMan [25], FHB [19] and HO3D [22, 23]
and ContactPose [7]. However, only FHB and HO3D sat-
isfy our requirements in this study.

First-person Hand Action Benchmark, FHB. FHB is a
first-person RGBD video dataset of hand in manipulation
with objects. The ground-truth of hand poses was captured
via magnetic sensors. In our experiments, we use a subset
of FHB that contains 4 objects with a scanned model and
pose annotation. We adopt the action split following the
protocol given by [24, 54], and filter out the samples with a
minimum HO distance greater than 5 mm, which yields us
7223 samples for training and 7373 for testing.

HO3D. HO3D is another dataset that contains precise
hand-object pose during the interaction. Due to historical
reasons, there is two versions of HO3D, namely vl [22]
and v2 [23]. In our experiments, we mainly compare our
methods with the baseline [24] on HO3Dv1, but also con-
duct several comparisons with the recently released pre-
trained model of [24] on HO3Dv2. Similar to FHB, we
filter out samples with distance threshold Smm. It’s also
worth mentioning that, since our method requires a known
object model, as well as a stable grasping configuration,
nearly 5448 samples in HO3Dv?2 test set are not suitable for
our methods to report. Therefore, we manually select 6076
samples in HO3dv2 test set to compare MIHO with [24].
We call this split by HO3Dv2™. Besides, training HO3Dv1
in previous methods [22, 24] requires an extra synthetic
dataset that is not publicly available. Thus we manually
augment the HO3Dv]1 training set (referred as HO3Dv1™)
and reproduce the results (referred as [24]7) comparable
with those in [24]. Details of HO3Dv2~ selection and the
augmentation procedures are provided in Supp C.1, C.2.

6.2. Metrics

Modeling the HO interaction requires not only a proper
pose of both hand and object but also a natural grasp con-
figuration. Here, we report 5 metrics in total that cover both
reconstruction and grasp quality. Note that, since consider-
ing either of those metrics alone may yield misleading com-
parison, we consider them together for evaluation.
MPVPE. We compute the mean per vertex position error
for both hand and object in camera space to assess the qual-
ity of pose estimation.

Penetration Depth (PD). To measure how deep that the
hand is penetrating the object’s surface, we calculate the
penetration depth that is the maximum distance of all the
penetrated hand vertices to their closest object surface.
Solid Intersection Volume (SIV). To measure how much
space intersection that occurs during estimation, we vox-
elize the object mesh into 802 voxels, and calculate the sum
of the voxel volume inside the hand surface.
Disjointedness Distance (DD). We also encourage stable
HO contact, which can be depicted as attracting fingertips
onto the object surface. Therefore, we define the disjoint-
edness metrics as the average distance of hand vertices in 5
fingertips region to their closet object surface.

Simulation Displacement (SD). We further evaluate the
grasp stability in a modern physics simulator [ 1]. We mea-
sure the average displacement of object’s center over a fixed
time period by holding the hand steadily and applying grav-
ity to the object [25].

6.3. Comparison with State-of-the-Arts

For the FHB dataset, we compare our methods with the
previous SOTA [24, 25] of hand-object reconstruction. For



Datasets | FHB | HO3Dv1+ | HO3Dv2~
Method ‘ Ourst  Ours? gt. [24] ObMan* ‘ Ourst  Ours? gt. 4t ‘ Ourst [24]
Hand MPVPE (mm) | 21.16  19.54 0 17.51 18.42 2456  23.99 0 24.80 - -
Object MPVPE (mm) | 21.06  21.57 0 21.06 21.17 18.10  19.15 0 18.10 | 7328 7577 °
Penetra. depth (mm) | 16.13 1692 1955 20.63 19.76 11.87 1142 7.55 18.57 16.47 20.02
Solid intersec. vol. (ecm?) | | 12.56 11.76  20.41 21.10 16.16 3.63 3.46 3.57 9.62 7.44 9.25
Disjoint. distance (mm) |, 2454 2241 3728 3740 27.95 11.71 11.83 1453 18.62 37.04 41.41
Displacement (mm) | 58.79 58.02 63.40 6548 59.41 28.16 27.66 1237  25.68 39.33 41.03

Table 1. Quantitative results and detailed comparison with the previous state-of-the-art [24, 25] on the FHB and HO3D datasets.
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Figure 5. Qualitative Comparison with ground-truth and previous arts on the FHB and HO3D datasets.

[24], we select the results under the setting of full data su-
pervision. Since [24] didn’t exploit any repulsion and at-
traction loss during training, direct comparisons on inter-
section and disjointedness may not be convincing enough.
While the contact losses were considered in another work
named ObMan [25], it only represented the genus 0 object
mesh as a deformable icosphere, which is also not directly
comparable with ours (known object model). To ensure ra-
tional comparisons, we migrate the repulsion loss and at-
traction loss from ObMan to the MeshRegNet in [24], and
reproduce the results on par with it. We call this adaptation:
ObMan*. For the HO3Dv1 dataset, we compare our results
with the reproduced [24]7.

We report our results under two experimental settings: 1)
hand-alone that fixes the object at the initial prediction in
HoNet, and only optimizes the hand pose in GeO; 2) hand-
object that jointly optimizes the hand and object poses in
GeO. In Tab.1 we show our comparisons with the previous
SOTA in all 5 metrics. For FHB dataset, as analyzed in [7],
its ground-truth suffers from frequent interpenetration. We
find that lower vertex error does not necessarily benchmark
a higher reconstruction quality. Indeed, as shown in Tab.1
(col. 4, 5), either ground-truth or [24] reveals substantial

solid intersection volume, penetration depth and disjoint-
edness. We find that MIHO outperforms [24] by a mar-
gin of 3.71 mm in penetration depth, 9.34 cm? in solid
intersection volume, and 14.99 mm in disjointedness dis-
tance, while only suffers from minor performance cost in
hand MPVPE of 2.03 mm and object MPVPE of 0.51 mm.
In the mean time, our simulation displacement also demon-
strates the stability of our predicted grasp. These are consis-
tent with our expectation that the CPF can by nature repulse
intersection away and attract disjointedness to touch. As
for HO3Dv1 testing set, our method also outperformed the
previous SOTA over the most metrics. In terms fo simula-
tion displacement, we found [24]7 slightly outperforms us
by 1.98 mm. Based on our inspection in the Bullet [11]
simulator, their stability are mainly attributed to the forces
resulting from the intersection that balance each other. Vi-
sual comparisons are shown in Fig. 5. As for HO3Dv2,
since we only test MIHO on the subset: HO3Dv2™, our
results are not directly suitable for submitting to its online
evaluation server. Thus, we only report the object 3D ver-
tex errors on HO3Dv2™ based on the given annotation. We
firstly align the predicted object vertex to the predicted hand
wrist joint, then compute the wrist-relative object vertex er-
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Figure 7. Example to illustrates the efficacy of our proposed A-
MANO with anatomical constraints (Lanat ).

ror with those in ground-truth. Detailed comparisons are in
Tab. 1 (col. 11, 12).

6.4. Ablation Study

In this experiment, we further evaluate the effectiveness
of the proposed CPF and A-MANO. In the main text, we
include three of the most representative studies. The abla-
tion studies are mainly conducted on the FHB test set with
action split. For more studies on 1) impact from the mag-
nitude of &'P'; 2) A-MANO with PCA pose; 3) unwanted
twist correction; please visit Supp D.2.

Comparison with simple Distance-based Contact
Heuristics. To show the superiority of the CPF over the
distance-based contact heuristics, we compare the fitting
stage of MIHO with two simple yet strong baselines: (a)
Vanilla Contact that removes the E.j,s term in Eq. 11
and purely attracts the anchors on fingertips to its nearest
object vertex (similar to [1]) in a given threshold which we
set as 20 mm; (b) ObMan Contact that replaces Ej,s¢ in
Eq. 11 by the well-designed interaction losses in ObMan
[25]. All the three experiments start from the same HO
pose predicted by HoNet (§5.1). We show in Tab. 2 that
by exploiting CPF, MIHO can surpass the simple baselines
on most of the metrics. Note that, since both (a) and (b)
directly optimize the disjointedness term, their results show
better resistance on it. The last column in Tab. 2 shows
that our methods can save average time per iteration by
46% compared with ObMan Contact. We also conduct
two qualitative comparisons in Fig. 6. The first one shows
that CPF can learn the contact semantics to guide the
optimization that better matches visual cues, whereas the
Vanilla Contact fails to form a valid grasp. The second

| Scores | beer(ms)

Settings

| HEL OE| PD| SIV]| DD |
MIHO (ours full) 19.54 2157 1692 11.76 2241 55.77
(a) Vanilla Contact | 24.01 24.29 18.36 15.64 16.32 45.40
(b) ObMan Contact | 22.15 22.54 15.13 1620 11.97 103.41

Table 2. Ablation study on the different contact heuristics. HE, OE
stands for 3D hand and object vertex error. PD, SIV and DD are
the abbreviation of metrics in §6.2

Settings | PDL SIV] DDJ
with E'P! (ours full) | 16.92 11.76 2241
without EP! 1779 13.76  20.27
gt. FHB 19.55 2041 37.28

Table 3. Ablation study on the repulsive springs.

shows that CPF can maintain subtle interaction, as no
attraction will be applied on those non-affinitive vertex
pairs (see ring and pinky fingers when unscrewing the juice

cap).

Effectiveness of Repulsive Springs. To measure the effi-
cacy of repulsive springs in CPF, we remove all the repul-
sion energy E™P! induced by them, leaving the attraction as
the unique type of energy applied on hand and object. As
we expected, the result in Tab. 3 witnesses the accumulation
of PD and SIV. To note, even without the repulsive springs,
we still witness a remarkable improvement of PD and SIV
over the FHB ground-truth. This is attributed to the repul-
sive behavior of the attractive springs: when hand is inside
the object surface, the energy stored in the attractive springs
will act as repulsion that pushes out the hand.

Effectiveness of the Anatomical Constraints. We fur-
ther highlight the efficacy of adopting the anatomical con-
straints. We conduct a contrastive experiment whose only
difference is the absence of L,,,¢. Both experiments start
from a zero (flat) hand and minimize the Fj,s; based on
the same predicted CPF. We show in Fig. 7 that the anatom-
ical constraints are able to effectively prevent abnormality
during the optimization.

7. Conclusion

In this work, we propose a novel contact representation
named CPF and a learning-fitting hybrid framework MIHO
to help modeling hand and object interaction. Comprehen-
sive evaluations show that our methods, while being able
to recover precise hand-object pose, can also effectively
1) avoid interpenetration and control disjointedness, and 2)
prevent abnormality in hand pose. We hope CPF can serve
as an effective contact representation for future works on
hand-object interaction. Later, we also plan to develop for
an object-agnostic representation of CPF, for the interaction
in general cases.
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Appendix
In the supplemental document, we provide:

§A Anatomically Constrained A-MANO.

§B Detailed Analysis of the Spring’s Elasticity.
§C Detailed Analysis of the HO3D Dataset.
§D More Experiments and Results.

§E More Qualitative Results.

A. Anatomically Constrained A-MANO
A.1. Derivation of Twist-splay-bend Frame.

In this section, we introduce the proposed twist-splay-
bend frame of A-MANO. Both the original MANO [50]
and our A-MANO hand model are driven by the relative
rotation at each articulation. To mitigate the pose abnor-
mality, we apply constraints on the rotation axis-angle’.
We intend to decompose the rotation axis into three com-
ponents to the three axes of a Euclidean coordinate frame,
in which each component depicts the proportion of rotation
along that axis. Obviously, there have infinity choices of the
three orthogonal axes. MANO adopts 16 identical coordi-
nate frames whose 3 orthogonal axes are not coaxial to the
direction of the hand kinematic tree (Fig. 8 left). Different
from MANO, we follow the Universal Robot Description
Format (URDF) [37] that describe each articulation along
the hand kinematic tree as a revolute joint’. Nevertheless, a
revolute joint only has one degree of freedom, which is not
enough to drive the motion of a real hand. Thus, we assign
each articulation with three revolute joints, named as fwist,
splay and bend (Fig. 8 right),

Here, we elaborate the conversion from the MANO’s all
identical coordinate system of to our twist-splay-bend frame
in three steps. For each articulation, we first compute the
twist axis as the vector from the child of the current joint to
itself. Then we employ MANO’s y (up) axis and derive the
bend axis that is calculated from cross product on the twist
and y axes. Finally, we obtain the splay axis by applying
cross product on the bend and twist axes. We illustrate the
above procedures in Fig. 9.

A.2. Hand Subregion Assignment

As introduced in main text §3 (Anchors.), we divide the
hand palm into 17 subregions, and interpolate the vertices
in each subregion into representative anchor / anchors. In
this part, we will firstly discuss how we assign hand vertices
to several subregion.

According to hand anatomy, the linkage bones consists
of carpal bones, metacarpal bones, and phalanges, where

2Rotation cay be represented as rotating along an axis by an angle.
3htt]os ://en.wikipedia.org/wiki/Revolute_joint
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Figure 8. Visual comparison of MANO’ s coordinate system to the
proposed twist-splay-bend system.
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Figure 9. Illustration of converting MANO’ s coordinates system
to the proposed twist-splay-bend system.

phalanges can be further divided into three kinds: proximal
phalanges, intermediate phalanges, and distal phalanges.
Here we assume the link between MANO joints are a coun-
terpart of linkage bones on hand. We now assign the ver-
tices of MANO into 17 subregions based on the linkage
bones. The subregions’ names and abbreviations are de-
fined in Fig. 10. For clarity, we number the MANO links
from 1 to 20 as illustrated in Fig. 11 (left).

To assign the MANO vertices to its corresponding re-
gion, we need firstly assign the vertices to the link that lies
inside the region. This is achieved by control points. For
link 0-3, 5-7, 9-11, 13-15, 17-20, we set one control point
at the midpoint of the link’s ends, while for link 4, 8, 12,
and 16, we set two control points at the upper and lower
third of the link’s ends. For clarity, we also number the con-
trol points from O to 23 as shown in Fig.11 (middle). After
a list of control points are obtained, we label each hand ver-
tex to one of these control points by querying which control
point it has the least distance from. Finally, we merge the
vertices that belong to control points 0, 5, 10, 15, and 20
to derive subregion of Palm Metacarpal, and merge those
vertices that belong to control points 4, 9, 14, 19 to derive
subregion of Carpal .

A.3. Hand Anchor Selection

Here we elaborate on how we select the anchors based on
the subregions and their control points. To ensure these an-
chors can be used in a common optimization framework and
keep their representative power during the process of opti-
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Palm Metacarpal

Carpal

Figure 10. Hand subregions with names and abbreviations.

71 Anchors

Joint Link ~ eJoint 0 Control Point ID

Figure 11. Left: joint links with ID; Middle: control points with
ID; Right: anchors

mization, we propose the following three protocols: a) An-
chors should be located on the surface of the hand mesh.
b) Anchors should distribute uniformly on the surface of
the region it represents. ¢) Anchors can be derived from
hand vertices in a differentiable way.

Anchors are located on the surface of hand mesh (pro-
tocol a), so they must be located on some certain faces
of the hand mesh. We can use the vertices of the face on
which hand anchors reside to interpolate the anchors’ posi-
tion. Suppose the hand mesh has the form of M = (V, F),
where V is a set of all vertices and F is a set of all faces.
Considering one face f € F of mesh whose vertices are
stored in order: f = {ix},vx = Vl]ig], k € {1,2,3}. We
can get two edges of that face: e; = v —v1, €5 = v3 —v;.
Then the local position of the anchor a inside the face
can be represented by linear interpolation of e; and es:
a = xi1e; + xses, where the x1, o are some weights.
Finally, the global position of the anchor a will be a =
’Ul-l-d =v1t+x1€e1+r2es = (1—1’1—1’2)U1+.’E11)2+.’E2’03.
During the optimization process, we can use the precom-
puted face f and weights x1, z2, along with the predicted
hand vertices V to calculate the position of all the anchors.
As the anchor is a linear combination of hand vertices, any
loss that is applied to the anchors’ position can be back-
propagated to the vertices on the MANO surface, making
the anchor-bases hand mesh differentiable.

We utilize control points introduced in §A.2 to derive an-
chors. Since the anchor selection is independent of hand’s
configuration, we adopt a flat hand in the canonical co-
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ordinate system. As illustrated in Fig.11 (middle, right),
the control points are roughly uniformly distributed in each
subregion. Each control point will correspond to an anchor
of that subregion. The Carpal is an only exception: we se-
lect only 3 over 5 (ID: 5, 10, 20) of the control points in the
subregion of Carpal for anchor derivation.

To derive an anchor from a control point, we need to get
one face (consist of 3 integers) and two weights. 1) Non-tip
regions. For non-tip regions, we cast a ray that is orig-
inated from each control point in a certain subregion, and
pointing to the palm surface. We retrieve the first intersec-
tion of the ray with hand mesh. This intersection will be the
anchor that correspond to the control point, also the sub-
region. 2) Tip regions. For tip regions, we would select
three anchors of each control point to increase the density of
anchors in that subregion, as tip involves more contact in-
formation during manipulation. For the control point in tip
subregions, we first cast a ray originated from the control
point and get the intersection point on the hand mesh. Then
a cone is created with the control point as apex, the intersec-
tion point as the base center, and a base radius. The base ra-
dius is estimated by the maximum distance of vertices in the
subregion to their control point. Three generatrices equally
distributed on cone surface are selected as new ray casting
directions. We cast three rays from the control point in the
direction of the three generatrices and retrieve the intersec-
tion points with hand mesh. These intersection points will
be selected as anchors to that control point in the fingertip
regions.

B. Spring’s Elasticity
B.1. Elastic Energy Analysis

Here we illustrate elastic energy between a pair of points
v} and v7, denoting one vertex on hand surface and an-
other vertex on object surface respectively. The vertex on
object surface binds with a vector nf representing the nor-
mal direction at this vertex (also the direction of repulsion).
Then we compute the offset vector Al3j" = vl — v7, and

the projection of the offset vector on object normal nj:

|Alf-fl| = (v} —v9) - nf. |Al3»’1| is positive if v falls
outside the object, and negative if v falls inside the object.
We use an exponential function here to provide magnitude
and gradient heuristic for optimizer: a) the less |Allr-§’1| is,
the more v penetrates into the object. The gradient of re-
pulsive energy will be an exponential increasing function of

Al%’l. b) when v/ intersects into the object, both the re-
pulsion and the attraction will push v/ towards the surface;
when v is outside the object, the attraction and repulsion
will point to opposite directions, leading to a balance point
outside but in the vicinity to the object’s surface. We pro-
vide an intuitive illustration in Fig. 12.



Figure 12. Illustration of the elastic energy w.r.t. a pair of hand-
object vertices.

B.2. Anchor Elasticity Assignment

As discussed in main text §4 (Annotation of the Attrac-
tive Springs), we treat the elasticity of the attractive spring
as the network prediction. Here, we shall provide the an-
notation heuristics of the attractive spring k=T First, we set
the anchor a; - vertex v7 pair with ground-truth distance

|ALZ"| > 20mm as invalid contact and has l%?jtr = 0.
Second, for those anchor-vertex pairs within the distance
threshold 20 mm, an inverse-proportional kf}r is assigned
according to the |Aif”;r :

R = 0.5 % cos (=« |AEY]) +0.5 (12)
S

ij
where the scale factor s = 20 mm.

To note, we do not have a strict requirement on the func-
tion of l%f]“ Any other functions should also work when
satisfying: a) k = 1 when |Al| = 0; b) k is inverse propor-
tional to |Al| in the range of 0 to 20 mm; ¢) k is bounded
by 0 and 1. The choice of cosine function is simply due to
its smoothness.

C. HO3D Dataset
C.1. Analysis and Selection

As we mentioned in the main text §6.1, several samples
in the HO3D testing set do not suit for evaluating MIHO.
Firstly, since GeO requires the predicted 6D pose of the
known objects, all the grasps of the pitcher have to be re-
moved. Secondly, many interactions of hand and objects in
the testing set are not stable. For example, sliding the palm
over the surface of a bleach cleanser bottle, may cause a
strange contact and mislead the optimization in GeO. There-
fore, we only select the grasps that can pick up the objects
firmly. We show several unsuitable samples in Fig. 13. Ta-
ble.4 shows our final selection on HO3Dv?2 test set, as we
called HO3Dv2~.
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Figure 13. Unsuitable samples in HO3Dv2 testing set.

Sequences Frame ID
SM1 All
MPM10-14 30-450, 585-685
SB11 340-1355, 1415-1686
SB13 340-1355, 1415-1686

Table 4. HO3Dv2™ selection. We select 6076 samples in the
HO3Dv2 test set to evaluate MIHO.

C.2. Data Augmentation

We augment the training sample in HO3Dv1 in terms
of poses and grasps. a) To generate more poses, we firstly
randomize a disturbance transformation to the hand and ob-
ject poses in the object canonical coordinate system. Then,
we apply the disturbance on the hand and object meshes
and render these meshes to image by a given camera intrin-
sic. b) To generate more grasps, we fit more stable grasps
around the object. Specifically, as we show in Fig. 14, the
generation procedure is achieved by 2 steps: 1) Manually
move the hand around the tightest bounding cuboid of the
object. 2) Refine the hand pose in the proposed GeO. Since
the attractive springs in CPF are unavailable here, we re-
place the attraction energy in main text Eq. 3 with the £ 4 in
[25] Eq. 4, and retain the repulsion energy and the anatom-
ical cost. The optimization process of grasping generation
can be expressed as:

VI — argmin(La + E™" + Lanat)
(Pw 7Rj)
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D. Experiments and Results
D.1. Implementation Details

In this section we provide more implementation details
about the HoNet, PiCR, and GeO module.

HoNet. The HoNet module employs ResNet-18 [26]
backbone initialized with ImageNet [I2] pretrained
weights. For FHB and HO3Dv2 dataset, we use the pre-
trained weights released from [24]. For the HO3Dvl
dataset, we train the HoNet with Adam solver and a con-
stant learning rate of 5 x 10~% in total 200 epochs.

PiCR. The PiCR module employs a Stacked Hourglass
Networks [40] (with 2 stacks) as backbone, a PointNet [43]
as the point encoder, and three multi-layer perceptrons as
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Figure 14. HO3D [22] Dataset augmentation. We demonstrate the process of generating synthetic training images. R stands for the

random transformation.

heads. The image features yield from the two hourglass
stacks are gathered together and sequentially fed into the
PointNet encoder and three heads. While the loss is com-
puted over the sum of two rounds prediction, both PointNet
encoder and the three heads have only one instance through-
out PiICR module. At the evaluation stage, we only use the
image features from the last hourglass stack to get the pre-
diction from three heads.

We train the PiCR module with two stages. 1) Pretrain-
ing. We pretrain the PiICR module with the input image
and the ground-truth object mesh in camera space. The
ground-truth object mesh are disturbed by a minor rota-
tion and translation shift. We employ Adam solver with
an initial learning rate of 1 x 1073, decaying 50% every
100 epochs. The total epochs during pretraining stage is
200. 2) Fine-tuning. At the fine-tuning stage, we feed PiCR
module with the object vertices predicted from HoNet. The
HoNet’s weights is freezed during PiCR fine-tuning. We
employ Adam solver and set the initial learning rate in fine—
tuning stage as 5 x 104, decayed to 50% every 100 epochs,
and finished at 200 epochs. In both stages, we set the train-
ing mini-batch size to 8 per GPU, and a total of 4 GPUs are
used.

GeO. The GeO is a fitting module based on the non-linear
optimization. For each sample, we minimize the cost func-
tion in 400 iterations, with a initial learning rate of 1 x 102,
reduced on plateau that the cost function has stopped de-
caying in 20 consecutive iterations. We implement GeO in
PyTorch thanks for its auto derivative, and an Adam solver
is employed when updating the arguments. To note, GeO
can also support any other optimization toolbox.

D.2. Ablation Study

As referred in main text §6.4 (Ablation Study), this sec-
tion contains another three ablation studies. all the follow-
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ing experiments are under the hand-object setting.

The Impact of the £'™”'.  While the elasticity k' of the
attractive springs are predicted in PiCR, the elasticity k*P!
of those repulsive strings are empirically set to 1 x 1073, In
order to measure the impact of the magnitude of £™' on re-
pulsion, we test our GeO with seven experiment settings in
which the k™! is set to {0.2, 0.6, 1.0, 1.4, 2.0, 4.0, 8.0} x
1073, respectively. The experiment with k™! = 1 x 1073
is in accord with the default experiment in main text. As
shown in Tab. 5, while the large kP! can reduce the solid in-
terpenetration volume, it may also push the attraction apart
thus is not preferable in the reconstruction metrics: hand
MPVPE and object MPVPE.

jrpl ‘ Scores

| HEL, OE|, PD| SIV|, DDJ
2.0x107% | 1949 2157 1777 1322 20.85
6.0 x 1074 | 19.51 2157 1722 1240 21.63
1.0x 1073 | 19.54 21.57 1692 1176 22.41
1.4x1073 | 19.59 21.58 1675 11.00 23.24
2.0x 1073 | 19.69 2159 1641 10.09 24.55
4.0 x 1072 | 2003 21.63 1509 7.65 29.33
8.0x 1073 | 2095 2192 1286 427  40.79

Table 5. Ablation results: the impact of the magnitude of £**".
HE stands for hand mean per vertex position error (mm); OE
stands for object mean per vertex position error (mm); PD stands
for penetration depth (mm); SIV stands for solid intersection vol-
ume (cm®); D stands for disjointedness distance (mm).

A-MANO with PCA Pose. Since the MANO can also be
driven by the PCA components of joint rotation, we further
conduct experiments to demonstrate the superiority of our
full MANO ( MANO with 15 relative joint rotations) over
the PCA MANO (MANO with 15 PCA components of ro-
tations). Tab. 6 shows that our full MANO can achieve a
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Figure 15. Example to show that our A-MANO can mitigate the
unwanted twist (see thumb) exhibited in ground-truth.

notable decrease in the hand MPVPE. We attribute this to
the fact that the PCA MANO tends to recovery a hand that
is inclined to the mean flat pose, while our full version im-
poses higher flexibility on the hand pose.

However, fitting on the 15 rotations in forms of s0(3)
brings 15 x 3 = 45 degree of freedoms, which is less stable
against pose abnormality. Hence in order to fully exploit
the advantages when fitting on the rotations of 15 joints, we
have to combine the anatomical constrains with it.

‘ Scores
| HEL, OE] PD] SIV] DDJ

Full MANO | 19.54 21.57 1692 11.76 2241
PCAMANO | 2332 2441 2247 1190 26.72

Settings

Table 6. Ablation results: the MANO with PCA pose.

Unwanted Twist Correction. In this part, we show the
effectiveness when fitting the 15 rotations with anatomical
constrains. We observe an unwanted twist of thumb in the
ground-truth pose of HO3Dv1 testing set. As shown in Fig.
15, since A-MANO imposes constraints on the twist com-
ponent of the rotation axis, it can achieve a more visually
pleasing result in such case.

E. More Qualitative Results

We demonstrate the qualitative results of MIHO in Fig.
16 on both the FHB [19] and HO3D dataset [23]. Note
that the ground truth of the test set in HO3Dv2™ [23] is not
available.
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Figure 16. Qualitative results on FHB [19], HO3Dv1[22] and HO3Dv2™ [23] datasets. The last row shows the failure cases.

16



