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Abstract

In this work, we tackle the problem of single image-
based 3D shape retrieval (IBSR), where we seek to find
the most matched shape of a given single 2D image from
a shape repository. Most of the existing works learn to
embed 2D images and 3D shapes into a common feature
space and perform metric learning using a triplet loss. In-
spired by the great success in recent contrastive learning
works on self-supervised representation learning, we pro-
pose a novel IBSR pipeline leveraging contrastive learning.
We note that adopting such cross-modal contrastive learn-
ing between 2D images and 3D shapes into IBSR tasks is
non-trivial and challenging: contrastive learning requires
very strong data augmentation in constructed positive pairs
to learn the feature invariance, whereas traditional metric
learning works do not have this requirement. Moreover, ob-
ject shape and appearance are entangled in 2D query im-
ages, thus making the learning task more difficult than con-
trasting single-modal data. To mitigate the challenges, we
propose to use multi-view grayscale rendered images from
the 3D shapes as a shape representation. We then introduce
a strong data augmentation technique based on color trans-
fer, which can significantly but naturally change the appear-
ance of the query image, effectively satisfying the need for
contrastive learning. Finally, we propose to incorporate a
novel category-level contrastive loss that helps distinguish
similar objects from different categories, in addition to clas-
sic instance-level contrastive loss. Our experiments demon-
strate that our approach achieves the best performance on
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all the three popular IBSR benchmarks, including Pix3D,
Stanford Cars, and Comp Cars, outperforming the previous
state-of-the-art from 4% - 15% on retrieval accuracy.

1. Introduction

Multimedia retrieval including image retrieval and 3D
shape retrieval is one of the fundamental problems in com-
puter vision. Thanks to the development of deep learning
and 3D shape datasets with rich object categories such as
ShapeNet [7], 3D shape retrieval from single realistic im-
ages has recently gained more attention, owing to its wide
range of applications, including scene reconstruction, 3D
printing, virtual reality and e-commerce platforms.

However, despite significant progress achieved with pi-
oneering works, using single images to retrieve the corre-
sponding 3D shapes is still a challenging problem because
of the domain gap. In order to handle this gap, one common
direction in previous works is to address the retrieval task by
mapping 3D shapes and query images into a common em-
bedding space. [!5] embeds 3D shapes and 2D images into
a common low-level representation space using location
fields. [12] assigns a texture to a 3D shape based on a tex-
ture code encoded from the 2D image to generate hard sam-
ples. Both [15, 12] are modified from triplet loss [56] for
metric learning, which nearly always requires hard-negative
mining for good performance, as proved by [48].

[30] proves that triplet loss is a special case of the
contrastive loss when the numbers of positives and nega-
tives are both one, which means that batch contrastive ap-
proaches subsume or significantly outperform traditional



triplet loss. The use of many negatives in contrastive learn-
ing for each anchor helps the model achieve state of the
art performance without the need for hard-negative mining,
which can be difficult to tune properly. Therefore, we in-
troduce contrastive learning into the area of IBSR. The data
studied by traditional contrastive learning are all of the same
type, which is different from our task. [27, 28] perform
cross-modal retrieval by applying contrastive learning, and
aim to learn discriminative and modal-invariant features for
data from different modalities. However, the retrieval per-
formance will drop in the more fine-grained IBSR task if
different rendered images are mapped to the one center em-
bedding. Therefore, the introduction of contrastive learning
into the task of IBSR is worth exploring.

Data augmentation plays a critical role in defining effec-
tive predictive tasks with contrastive learning. In [10], it
is proved that contrastive learning needs stronger data aug-
mentation, which helps to avoid the high complexity of the
network architecture. It is also proved that it is critical to
compose cropping with color augmentation in order to learn
generalizable features. From another aspect, [12] finds that
objects in 2D images entangled with the color make the net-
work ineffective to push away negative pairs in the IBSR
task. In order to combine the above two mentioned points
at the same time, we introduce the color transfer mecha-
nism [44] as a simple but powerful solution, which applies
the colors of one image to another. The color transfer mech-
anism not only performs data augmentation on the input
query images, but also effectively decouples the object and
color in 2D images.

With the help of contrastive learning accompanied by the
color transfer mechanism, we propose an efficient approach
to image-based 3D shape retrieval task from both instance
and category levels. 3D shapes are first converted into
multi-view grayscale images. Instead of mapping multi-
view images of the same object into one center embed-
ding, our approach processes them by an attention mecha-
nism with query image into query-specific embeddings. In-
spired by [30], we design an instance loss based on self-
supervised contrastive loss to pull augmented embeddings
of query image closer to embeddings of its ground-truth 3D
shape renderings than embeddings of all other 3D shapes.
The instance loss ensures the exact shape retrieval accuracy.
Similar to the instance loss, the category loss pulls embed-
dings of 3D shape renderings with the same category label
as query image closer than embeddings of 3D shapes with
different labels. The category loss is a cross-modal super-
vised loss, which effectively leverages the label information
to push apart embeddings from different categories. In such
a way, both instance and category losses avoid hard example
mining existing in the triplet loss.

In order to evaluate the performance of our novel image-
based 3D shape retrieval approach, we evaluate it on three

challenging real-world datasets: Pix3D [50] (bed, chair,
sofa, table), Comp [55] (car), and Stanford [55] (car).
Quantitative results show that our approach significantly
outperforms the state-of-the-art.

In summary, the key contributions of this work are:

* We propose a novel approach with a cross-modal
Instance-Category loss, which is based on contrastive
learning from instance and category levels, for image-
based 3D shape retrieval.

* We introduce the color transfer mechanism into con-
trastive learning, which is a more powerful color aug-
mentation that augmenting training images. It applies
another training image as a reference, improving the
robustness of the network and helping the network ex-
tract color-independent features.

* Our proposed novel approach outperforms the previ-
ous state-of-the-arts (SOTASs) on standard real-world
benchmark datasets by 4% - 15% on the retrieval ac-
curacy.

2. Related Work

3D shape retrieval from a single image has received sig-
nificant attention in computer vision and graphics. Many
previous works discussed how to improve the accuracy of
shape retrieval by learning some critical image/shape fea-
tures or reasonable embedding space with metric learning.
A complete survey is beyond the scope of this paper; please
refer to [51, 59] for more comprehensive discussions. In
this section, we focus our discussion on recent works of 3D
shape retrieval, metric learning and contrastive learning.

3D Shape Retrieval There have been growing interests
in 3D shape retrieval algorithms, which include two main
streams: 1) 3D model-based shape retrieval; 2) image-based
shape retrieval. The first stream s3D model-based shape re-
trieval aims to retrieve 3D shapes based on a query shape.
These methods [8, 17, 26] extract the representative 3D
shape features and measure the similarity of these features,
which achieve high performance (retrieval accuracy) on 3D
shape retrieval or 3D shape classification tasks. However,
these methods always need a 3D query shape for retrieval,
which is not easy to obtain in the real world.

The second stream is image-based shape retrieval, which
generally renders 3D shapes in a single view manner by es-
timating 3D poses from 2D images [5, 14]. [50, 31, 4]
combine 2.5D sketches and a shape prior learned from past
experience to reconstruct a full 3D shape for retrieval. [14]
recovers the object pose using a PnP algorithm and ren-
ders depth images from 3D shapes under the estimated pose.



Although the above methods could achieve satisfactory re-
sults, 2.5D sketches prediction is itself still an open prob-
lem. Another direction in IBSR is to render 3D shapes
in a multi-view manner [49, 33, 21] and then jointly map
3D shapes and RGB images into a common embedding
space [34, 3, 15, 42, 52] to reduce domain gap. However,
both these methods are only trained on synthetic data, and
thus do not generalize well to real data due to the domain
gap between query images and rendered images. [!5] em-
beds 3D shapes and 2D images into a common low-level
representation space using location fields. Despite that lo-
cation fields have rich information, they are position sen-
sitive and image location field prediction is also an open
problem. [15, 12], the previous SOTA, are based on triplet
loss, which has the need for hard-negative mining. More-
over, in order to consider texture information, [12] applies
a texture synthesis module for 3D shapes to generate hard-
negative mining, which is a learning-based network that re-
quires additional training. Since not all 3D shapes contain
color/texture information, we focus on extracting a feature
from a single image, which is able to describe the 3D shape
information or disentangle the appearance and shape infor-
mation from the 2D images.

Deep Metric Learning (DML) The task of DML is to
learn to embed the input to an embedding space such that
the distribution in the embedding space is closest to the dis-
tribution of inputs for the given task, with the help of deep
neural networks. The key to the success of DML involves
setting appropriate sampling strategy and loss function. The
deep neural model is expected to be able to distinguish dif-
ferent types of objects across the entire data set. However,
we usually apply mini-batches in the training stage, which
makes it difficult for the model to learn the global distribu-
tion of the data well, especially for relatively large data sets.
Many methods have been proposed to make the mini-batch
more expressive [45, 48] and some efforts try to use prox-
ies [39] to speed up training process. Various losses have
been used in recent work. Triplet loss [48], its extension to
soft triplet [43], hierarchical structure [13], and classifica-
tion based loss [36, 57] show superiority in the task of clas-
sification and retrieval. However, [30] proves that triplet
loss is a special case of the contrastive loss when the num-
bers of positives and negatives are both one, which means
that batch contrastive approaches subsume or significantly
outperform traditional triplet loss.

Contrastive Learning Contrastive learning is a self-
supervised learning technique to learn the general features
by making the network learn to distinguish the data, which
means the similarity or difference between two data sam-
ples. Recently, thanks to the capability of self-learning on
the data without any annotations or labels, especially for

the applications where labels need to be annotated in a pro-
fessional and time-consuming way, the contrastive learning
makes a great success and draws significant attention on 2D
tasks and 3D tasks. There are many works [10, 18, 22, 23,

, 38, 54, 53, 58] that make use of the contrastive learn-
ing to learn an embedding space which can make similar
points cluster together and different points contrast. Follow-
ing this, recent works attempt to develop the self-supervised
learning representation on some 2D/3D tasks, such as un-
paired image translation [2, 40], image generation [11, 32,

, 29], image segmentation/classification [6, 9], 3D-base
shape retrieval/classification [47, 16], object detection [60],
shape analysis and understanding [01]. Inspired by the re-
cent contrastive learning based works, our work leverages
the devised category-level contrastive loss to distinguish the
objects from different categories and incorporates the tradi-
tional instance-level loss, which jointly teaches the model
which data is similar or different from category level to in-
stance level. We refer to the survey [25] for more compre-
hensive discussions on contrastive learning.

3. Proposed Approach

We propose a novel framework for the single image 3D
shape retrieval task by jointly training multiple modalities
using the proposed Instance-Category loss with contrastive
learning. An overview of the proposed approach is illus-
trated in Figure 1. Given a single query image and 3D shape
databases, the task is to retrieve a 3D shape for the object in
the image. For this purpose, a 3D shape is firstly converted
into multi-view grayscale images by flat shading. The task
is then transferred into the retrieval from the image to the
image set.

3.1. Review of Color Transfer

The most commonly used method to generate positive
and negative examples on input data is data augmentation
[18, 10]. However, the contribution of common data aug-
mentation, such as affine transformation, is not enough in
the image-based 3D shape retrieval task because the net-
work often learns color-related features. In order to mini-
mize the impact of the color on retrieval, the color transfer
mechanism [44] is introduced for applying the colors of one
image to another. The goal of this mechanism is to do color
augmentation in a simple but more realistic way, and the
core strategy is to choose a suitable color space and then
to apply simple operations there. Ruderman et al. [46] de-
veloped a color space, called [a3, which minimizes corre-
lation between channels for many natural scenes compared
to RGB space. This space is based on data-driven human
perception research that assumes the human visual system
is ideally suited for processing natural scenes. In order to
apply color in the [« space, the image in RGB space needs
to be converted into [a space described in [44]. The trans-
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Figure 1. The pipeline of our proposed approach. Our network
contains one query image encoder, one rendered image encoder
and a learnable attention module. The query image is augmented
with color transfer which uses the color of another training image
as a reference before being embedded. Query encoder takes in one
query image and its mask to generate query embeddings. Ren-
dering encoder takes in one view of renderings of a 3D shape to
generate view-specific embeddings. The attention module takes in
one query embedding and multi-view embeddings of a 3D shape
to merge multi-view embeddings into one query-specific embed-
ding. With the category and instance level losses, the proposed
framework can pull and push the embeddings of 3D shapes. The
ground-truth shape is pulled at both category and instance levels.
The 3D shapes with different categories are pushed at both cate-
gory and instance levels. The 3D shapes with the same category
are pushed at the instance level while pushed at the category level.

ferred image in laf space is calculated by the following
equation:

l
g
l =;Z(l—ui)+ui

’ O'a o o
o = —c(o—py) + pg (1)
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’ g
B = —L(B— )+ 1l
Os

laf and l/o/ﬁl are colors before and after color transfer.
 and o stand for means and standard deviations respec-
tively. The subscripts s and ¢ mean the source color im-
age and the target geometry image respectively. Finally, the
transformed augmented image is then converted back into
the RGB space.

3.2. Problem Formulation

Assuming dataset S contains | S| instances where the i-th
instance s; consists of a query image ¢;, multi-view render-
ing image r; including M views, and a semantic label y;.

Formally,

ri={tfma @

are M views of rendered images for the
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In which, {#"}M_,
1-th instance.

In order to make each query image ¢; obtain a different
source color during each epoch, the source color of each
query image is randomly selected from other query images
g; within the same batch in a mini-batch. Here both 4 and
7 belong to B, which is the size of mini-batch. The trans-
ferred image is denoted as ¢; from g;.

Unlike r;, whose contents are clean, g¢; contains much
redundant information, which may prevent the embedding
module from extracting the key information, including
structure of contents. For the redundant information from
the background, we calculate the mask of ¢; by Mask R-
CNN [19] and OCRNet [62] as a guidance for its attention
to the corresponding 3D shape in the 2D image. The mask
of g; is denoted as k;. Therefore, the expression in Eq. 2 can
be re-described as follows within a mini-batch situation:

- {Sl}z 1’81 = (%arlayivk ) Ty = {tm}m 1 3)
3.3. Contrastive Learning from Two Levels

We first extract the embeddings of the input query im-
age ¢; by the image encoder f,(,). Since the model needs
to extract color-invariant embeddings of the query image,
the input to f,(,) is the augmented image ¢;. This process
can be expressed as v} = f,(q,0,). 0, and v stand for
the network parameters of f,(-,-) and the embeddings of ¢;
respectively.

The embeddings collection of the multi-views rendering
images r; is extracted by another image encoder f,1(,).
This process can be described as v = f.1(7;,0:1). 01
and v} stand for the network parameters of f,.(-,) and the
embeddings of r; respectively.

Since v} is now a collection of embeddings, we merge
the multi-view embeddings and get the instance-wise query-
specific embeddings of r; through an attention mod-

ule fra(, ) This process can be described as vj; =
fra(vl, v? i 60,2). 6,0 and vy; stand for the network parame-
ters of f,1 (-, -) and the embeddlngs of r; for the query image

q; respectively.

Instance Loss:  The core of image-based 3D shape re-
trieval is to pull the embeddings of the query image v
closer to the embeddings of its corresponding rendered im-
ages vj; than embeddings of rendered images from differ-
ent instance v7; where j € S\ {S;}. This motivation
fits well with contrastive self-supervised learning, which re-
quires that the features from the same class are pulled closer
together than the features from different classes. In formu-

lation, v is closer to v’ o where j = ¢, while further when



j € B\ {B;} in a mini-batch. Inspired by self-supervised
contrastive learning (e.g., [30]), the instance loss takes the
following form.

exp(vd - vl /T
znst - Zl “/ )

i€B jGB exp( ;.1/7—)

“4)

Here, the - symbol denotes the inner (dot) product, which
is an implementation of the similarity metric. 7 € R™ is
a scalar temperature parameter. Note that for each query
image g;, there is one positive pair r; and |B| — 1 negative
pairs r;, where j € B\ {B;}.

Category Loss:  Some datasets provide labels at the cat-
egory level. In order to distinguish similar objects from
different categories, we leverage category labels to im-
prove the accuracy of category retrieval on cross-category
datasets. Inspired by the supervised contrastive learning
work [30], we introduce a category loss here. The category
loss takes the following form:

Lets = Y o T e L

2 PSR

Here, P(:) means {j|j € B\ {B;} and y; = y;}. Note that
for each query image ¢;, there can be many positive pair r;
and many negative pairs 7; in category level compared to
only one positive pair in the instance level loss. The overall
loss of the proposed approach is as follows:

Ltotal = Linst + Bl ' Lcats (6)
where (31 denotes weights that balances two loss terms.

3.4. Framework Architecture

Image Encoder: The query image encoder, denoted as
f4(,), applies ResNet50 [20] as backbone architecture to
extract the representation embedding for the query image
q;- The first convolution layer is revised from 3 channels
into 4 channels to make one more channel for accepting
mask image k;. The last fully-connected layer consists of
one batch-normalization layer and one linear layer with our
desired output dimension, which is 128 here. The rendered
image encoder, denoted as f,1(, ), applies ResNet34 [20] as
backbone architecture to extract the representation embed-
dings for the multi-view rendered images ;. The modifica-
tions here are the same as the query image encoder, except
that the channel number of the first layer is changed to one.
The view number M is 12 in our implementation.

Attention Module: The multi-view embeddings are
merged into one query-image-specific embedding with the
dimension of 128-d using attention mechanism instead of a

query-irrevelant center embedding. This attention module
contains one MLP layer before dot product with multi-view
embeddings to generate weighted embeddings of each 3D
shape for a specific query image.

3.5. Retrieval Process

In the retrieval process, the query image would be em-
bedded into a vector directly by the image encoder without
the color transfer module. Then the shape whose rendered
images are embedded with highest similarity to the embed-
dings of the query image is picked as the matched model.

4. Experiments

Datasets:  To validate our proposed method, we perform
experiments on three challenging real world datasets with
different object categories: Pix3D [50] (bed, chair, sofa,
table), Comp [55] (car), and Stanford [55] (car) following
the experiment setting of [15, 12]. For Pix3D datasets, the
masks are generated by OCRNet [62] trained in Pix3D. Ex-
periments were conducted on categories that contain more
than 300 non-occluded and non-truncated samples. There-
fore, there are 5,118 images and 322 shapes, with 2,648
for training and 2,470 for evaluation. For Comp Cars and
Stanford Cars, we directly use the Mask R-CNN [19] pre-
trained on COCO [35] to generate the masks. Stanford Cars
and Comp Cars focus more on challenging fine-grained re-
trieval. The two datasets already provide a train-test split.
Stanford Cars provides 134 3D car shapes with 16,185 im-
ages (8,144 for training and 8,041 for evaluation). There
are 94 3D shapes with 5,696 images (3,798 for training and
1,898 for test) in Comp Cars. Additionally, we also provide
evaluation results for 3D shape retrieval using query images
from seen datasets and shapes from unseen datasets, such
as ShapeNet [7].

4.1. Implementation Details

Training Details. The size of the input images of the im-
age encoder is 224 x 224. Each 3D shape contains 12 views
of rendered images. We choose temperature 7 = 0.1 and
£1 = 0.2. We use the Adam optimizer with a learning rate
of 5 x 10~°, betas of (0.5,0.999) and batch size of 60. The
total training epoch number is 500. We implemented our
network on PyTorch [41].

Evaluation. For images with corresponding 3D shape an-
notations, Accrop-1 and Accrep-10 are used to measure the
retrieval accuracy. Accrop-1 means the ratio of the first 3D
shape predicted being the same as the annotation. Accrop-10
stands for the ratio of the ground truth shape within first 10
predicted shapes. To measure the distance between two 3D
shapes, we adopt two metrics, HAU (mean modified Haus-
dorff Distance) and IoU (Intersection over Union) as sug-
gested in [15] to report.



seen 3D models unseen 3D models
Method Dataset | Category P vor— e d dis dn
UDF-CGI [1] 19.4% 46.6% 0.0821 0.3397 | 0.0960 0.2487
Grabner et al. [14] Pix3D bed 35.1% 83.2% 0.0385 0.5598 | 0.0577 0.3013
LED [15] 64.4% 89.0% 0.0152 0.8074 | 0.0448  0.3490
HEG-TS [12] 65.3% 95.4% 0.0122 0.8213 | 0.0425 0.3684
Ours 73.3% 96.1% 0.0093 0.8927 | 0.0408 0.3999
UDF-CGI [1] 17.3% 49.1% 0.0559 0.3027 | 0.0843  0.1334
Grabner et al. [14] Pix3D chair 41.3% 73.9% 0.0305 0.5469 | 0.0502  0.1965
LED [15] 58.1% 81.8% 0.0170 0.7169 | 0.0375  0.2843
HEG-TS [12] 87.9% 97.9% 0.0041 0.9063 | 0.0152 0.7482
Ours 79.4% 96.3% 0.0080 0.8661 | 0.0190 0.6384
UDF-CGI [1] 21.7% 52.2% 0.0503 0.3824 | 0.0590 0.3493
Grabner et al. [14] Pix3D sofa 44.1% 89.9% 0.0197 0.7762 | 0.0294 0.6178
LED [15] 67.0% 94.4% 0.0075 0.9028 | 0.0178  0.7472
HEG-TS [12] 72.8% 97.7 % 0.0047 0.9070 | 0.0156  0.7963
Ours 80.7 % 97.1% 0.0045 0.9329 | 0.0151 0.8017
UDF-CGI [1] 12.0% 34.2% 0.1003 0.1715 | 0.1239  0.1047
Grabner et al. [14] Pix3D table 33.9% 66.1% 0.0607 0.4500 | 0.0753  0.1730
LED [15] 53.3% 80.1% 0.0288 0.6383 | 0.0482  0.2573
HEG-TS [12] 73.7% 92.4% 0.0170  0.7667 | 0.0228  0.4391
Ours 76.9 % 93.5% 0.0168 0.8088 | 0.0213 0.4701
UDF-CGI [1] 17.6% 45.5% 0.0722  0.2991 | 0.0908  0.2090
Grabner et al. [14] . 38.6% 78.3% 0.0374 0.5832 | 0.0531 0.3222

Pix3D mean

LFD [15] 60.7% 86.3% 0.0171 0.7663 | 0.0370  0.4095
HEG-TS [12] 74.9% 95.8% 0.0095 0.8503 | 0.0240 0.6081
Ours 78.9% 96.1% 0.0086 0.8746 | 0.0202 0.6317
UDF-CGI [1] 2.4% 18.2% 0.0207 0.7224 | 0.0271 0.6344
Grabner et al. [14] Comp car 10.2% 36.9% 0.0158 0.7805 | 0.0194  0.7230
LED [15] 20.5% 58.0% 0.0133 0.8142 | 0.0165 0.7707
HEG-TS [12] 67.1% 93.7% 0.0035 0.9256 | 0.0092 0.8591
Ours 77.8% 94.1% 0.0023  0.9399 | 0.0080 0.9053
UDF-CGI [1] 3.7% 20.1% 0.0198 0.7169 | 0.0242  0.6526
Grabner et al. [14] Stanford car 11.3% 42.2% 0.0153 0.7721 | 0.0183  0.7201
LED [15] 29.5% 69.4% 0.0110 0.8352 | 0.0150 0.7744
HEG-TS [12] 68.4% 92.1% 0.0034 0.9210 | 0.0074  0.8735
Ours 83.4% 96.4% 0.0021  0.9431 | 0.0060 0.9217

Table 1. Results on the Pix3D, Comp Cars, and Stanford Cars datasets for image-based 3D shape Retrieval. Seen parts have ground
truth so that retrieval accuracy is main metric. For evaluation on unseen shapes on the ShapeNet, Haus-distance and 3D IoU are the main
measurement criteria. We also test the unseen model on the ShapeNet [7] dataset.

4.2. Benchmark Performance

Quantitative Results. We compare our approach to base-
lines [1, 14] and SOTA methods [15, 12] in Pix3D, Comp
and Stanford Cars, which is reported in Table 1. In General,
the retrieval performance of our method on these three seen
datasets far exceeds baselines and SOTAs over all metrics.
For Top-1 accuracy metrics, it outperforms the SOTA by
about 4% — 15% across all three datasets. We notice that
HEG-TS [12] achieves better performance in chair category
on Pix3D dataset. We find that chairs in most of the query
images on Pix3D dataset almost show one color as a whole,
which is very close to the style of the result converted by
TSM in [12] (see Fig. 3 in [12]). For other category in
Pix3D or other datasets with more fine-grained color pat-
terns, the performance of [12] drops significantly. For cars

datasets, our approach still has almost 80% Top! retrieval
accuracy while the performance of both previous SOTAs
reduces substantially compared to Pix3D dataset. For un-
seen dataset ShapeNet, our approach achieves much better
IoU and HAU compared with previous SOTAs.

Qualitative Results. Visualization results of some query
image by our retrieval approach on ShapeNet dataset are
reported in Figure 2. It shows that our proposed approach
could retrieve shapes that are similar to the target.

4.3. Ablation studies

Contrastive Learning vs. Triplet Loss:  We first discuss
the benefit of the introduction of contrastive loss into IBSR
task. We do experiment with the traditional triplet loss com-
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Figure 2. Qualitative results of shape retrieval on ShapeNet.
RGB query images and ground-truth are in the first and second
columns. The top-5 ranked models retrieved are shown in the fol-
lowing five columns.

Dataset \ Aug \ Instance \ Category \ Accrop—1 ‘
Pix3D CT | Contrastive v 78.9%
Pix3D X Contrastive v 75.2%
Pix3D | HSV | Contrastive v 76.6%
Pix3D CT | Contrastive X 74.7%
Pix3D X Contrastive X 71.4%
Pix3D CT Triplet v 66.5%
Pix3D CT Triplet X 62.7%
Comp CT | Contrastive N/A 77.8%
Comp | HSV | Contrastive N/A 73.0%
Comp X Contrastive N/A 67.3%
Comp CT Triplet N/A 64.0%
Stanford CT Contrastive N/A 83.4%
Stanford | HSV | Contrastive N/A 81.5%
Stanford X Contrastive N/A 81.7%
Stanford | CT Triplet N/A 80.3%

Table 2. Results of ablation studies on augmentation method,
instance loss and category loss. ‘Aug’ and ‘CT’ are the abbre-
viation of augmentation and color transfer. v/ and x in Category
means with category and without category loss. X in Aug means
that only the traditional affine transformation is used for data aug-
mentation instead of any other data augmentation algorithm about
color. We can see that CT + Contrastive instance loss + Category
loss is the best choice on cross category dataset and CT + Con-
trastive instance loss is the best choice on single category datasets.

Dataset \ Category \ AcCrop-i \ Acceas ‘

Pix3D v 789% | 96.1%
Pix3D X 75.2% | 95.9%

Table 3. Results of ablation studies on the rationality of exis-
tence of category loss. v' and x in ‘Category’ means with and
without category loss respectively. We apply Top-1 retrieval ac-
curacy at both instance and category levels to evaluate the perfor-
mance of category loss.

pared to our method across all 3 datasets. As mentioned
in FaceNet [48], it is crucial to select hard and semi-hard

bed sofa chair sofa
bed table chair table

ik

Figure 3. Visualization of similar shapes with different cate-
gory labels in Pix3D dataset. The shape pairs in this figure are
hard to distinguish from instance level. With the category level
label information, the shape pairs could be distinguished.

—_—

triplets, that are active and can therefore contribute to im-
proving the network. For a fair comparison, we design a
similar Instance-Category loss with efficient sample strat-
egy for triplet loss. For each query image, we search all
shapes to find all semi-hard and hard samples at the in-
stance level in one mini-batch. We could not consider all
the shapes of different categories like our previous proposed
approach in category level because triple loss uses one posi-
tive and one negative as input while our approach uses many
positive and many negative samples. As a remedy, we con-
strain the farthest embeddings of 3D shapes with the same
category and the nearest embeddings of 3D shapes with the
different category label to form a tuple of category level
triplets for each query image. The experimental results are
shown in Table 2. The Top-1 retrieval accuracy of triplet
loss combined with category supervision and color trans-
fer mechanism is 66.5%, which is about 10% lower than
our method. It proves that the contrastive loss fits better
than triplet loss in IBSR task. The number of positive and
negative pairs is the key distinctive statistic between triplet
loss and contrastive loss. Triplet loss uses exactly one posi-
tive and one negative pair per anchor while contrastive loss
could apply many positive and many negative pairs per an-
chor. This means that contrastive loss could contain more
information and avoid relying on hard example mining.

Category Loss:  There are two ablation studies here for
the category loss. One is for the rationality of the existence
of the category loss. We design the category loss to help
distinguish similar objects from different categories. Fig-
ure 3 shows some similar objects with different categories.
The experimental results reported in Table 3 show that the
category loss leads to a better Top-1 retrieval accuracy in
both the instance and category level. We visualized the ag-
gregation of the embeddings of all shapes on Pix3D in 2D



Dataset | w/ ground-truth shape \ Accrop—1 ‘
Pix3D v 78.9%
Pix3D X 76.7%

Table 4. Results of ablation studies on the formulation of cate-
gory loss. ‘w/ ground-truth shape’ means whether to take ground-
truth shape corresponding to query image into consideration in
Eq. 5. v/ and X means with and without ground-truth shape re-
spectively. It shows that consideration with ground-truth shape at
the category level leads to a better result.

for one query image in Figure 4. We can see that with the
help of the category loss, shapes belonging to the same cat-
egory are pulled together in the embedding space, while si-
multaneously pushing apart different categories. The above
experiments prove the rationality of the category loss.
Another one is for the formulation of the category loss.
We notice that the positive pairs do not have a bias in [30]
while the ground-truth shape corresponding to the query im-
age has quite higher similarity than other shapes with the
same category label to query image. Formally, the question
is whether to remove exp(v§ - v};/7) from the denomina-
tor and the numerator in Eq. 5. The experiment result re-
ported in Table 4 shows that taking ground-truth shape has
a better performance. We think that the lack of constraint
on ground-truth label in the category level may cause the
proportion of ground-truth shape to decrease in all shapes,
which may drag down the performance of the instance loss.

Without Category Loss With Category Loss

Figure 4. Visualization of Category Loss. We visualized all em-
bedding spaces for a query image in Pix3D by t-SNE. The purple,
green, orange, blue and red represent bed, sofa, table, chair and the
query image. The query image belongs to table category. The left
is the result after without category loss, and the right is the result
with category loss. In this example, although the query image can
find the correct category in both the left and right methods (red
point covering orange point), we can see that the same category
points will gather closer and different categories will be far away
from each other in the entire space when category loss is used.

Color Augmentation: =~ We adjust the method of color
augmentation as shown in Table 2 to further demonstrate

the importance of it. All color augmentations are combined
with traditional augmentation, which includes affine trans-
formation, crop and flip. HSV augmentation is performed
with 0.5 probability to change hue, saturation and value of
the input image randomly. Results with the color transfer
mechanism is on average 3% better than that with HSV
across all datsets. The reasons for this results may lie in
that color transfer mechanism applies the colors of one im-
age to another to decouple objects and color in 2D images
while HSV does not use other images for augmentation.
What’s more, the La3 space of color transfer mechanism
helps de-correlate color space, where 3 channels are more
independent than that in HSV space. From the view of visu-
alization, the image transformed by the color transfer mech-
anism is more natural. Compared to only with common data
augmentation methods, our methods get 3%, 10% and 2%
retrieval accuracy gain. We notice that the gain in Comp
Cars is much larger than other 2 datsets. The reason is that
there are 2,700, 3,800 and 8,000 images in Pix3D, Comp
Cars and Stanford Cars datasets. The image amount is not
enough in Comp Cars. Despite of the fact that Pix3D only
has 2700, it contains 4 categories with more diversity. We
also notice that the HSV augmentation in Stanford Cars has
a 0.2% negative gain. As a result, we believe that when
the number of training set increases to a certain extent, a
simple HSV augmentation cannot improve the performance
of the network while the color transfer mechanism still has
an obvious effect with reference to other query images.
The above experiments prove that color transfer mechanism
plays an important role in our proposed method.

5. Conclusion

In this work, we present a novel approach with a cross-
modal Instance-Category loss, which is based on contrastive
learning from instance and category levels, for image-based
3D shape retrieval. We introduce the color transfer mecha-
nism as a strong data augmentation for contrastive learning
and decouple objects and color in 2D images. Experimen-
tal results show that our proposed method significantly im-
proves the performance of previous SOTA with the same
experiment settings. In future work, we will implement our
proposed approach in Jittor [24], which is a fully just-in-
time (JIT) compiled deep learning framework with higher
performance.
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