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Abstract

Human motion prediction is a challenging task due to
the stochasticity and aperiodicity of future poses. Recently,
graph convolutional network has been proven to be very ef-
fective to learn dynamic relations among pose joints, which
is helpful for pose prediction. On the other hand, one can
abstract a human pose recursively to obtain a set of poses at
multiple scales. With the increase of the abstraction level,
the motion of the pose becomes more stable, which benefits
pose prediction too. In this paper, we propose a novel Multi-
Scale Residual Graph Convolution Network (MSR-GCN)
for human pose prediction task in the manner of end-to-end.
The GCNs are used to extract features from fine to coarse
scale and then from coarse to fine scale. The extracted fea-
tures at each scale are then combined and decoded to ob-
tain the residuals between the input and target poses. In-
termediate supervisions are imposed on all the predicted
poses, which enforces the network to learn more represen-
tative features. Our proposed approach is evaluated on two
standard benchmark datasets, i.e., the Human3.6M dataset
and the CMU Mocap dataset. Experimental results demon-
strate that our method outperforms the state-of-the-art ap-
proaches. Code and pre-trained models are available at
https://github.com/Droliven/MSRGCN.

1. Introduction

Human motion prediction plays a critical role in many
fields, such as human-computer interaction, autonomous
driving, and video completion. Simple periodic motion pat-
terns can be tackled by traditional methods such as hid-
den Markov model [3], linear dynamic system [36], re-
stricted Boltzmann machine [43], Gaussian process latent
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Figure 1. A human pose can be abstracted step by step to obtain a
series of poses from fine to coarse scale, by grouping joints in close
proximity together and replacing the group with a single joint.

variable models [45] and random forests [24], while more
complex motion is intractable for these methods. The latest
approaches are almost all data-driven methods with deep
learning. However, considering the stochasticity and aperi-
odicity of human motion, it still remains a challenging task
to predict accurate future motion in long term giving ob-
served arbitrary poses. The main difficulty is how to model
the spatiotemporal dependencies of human poses.

Lots of prior efforts with Convolutional Neural Networks
(CNNs) [49, 28], Recurrent Neural Networks (RNNs) [9,

,41,42,37, 11, 5, 2], and Generative Adversarial Net-
works (GANs) [53, 10, 21, 12, 6, 44, 23], have been
made for tackling the challenging task. However, they
neglect the inner-frame kinematic dependencies between
body joints. Although they have achieved success in some
cases, the prediction accuracy depends on the size of con-
volution filters and the stability of the frame-by-frame pre-
diction. Nowadays, Graph Convolution Networks (GCNs)
have been widely used in various fields as well as in the
task of human motion prediction [33, 27, 7, 25, 29, 52, 39],
which work very well for non-grid graph-structured data es-
pecially for skeleton-based 3D human pose sequences. Re-
cently, Mao et al. [33] jointly model spatial structure by
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GCNs with learnable connectivity and temporal informa-
tion via discrete cosine transformation (DCT) to predict hu-
man motion. Li et al. [27] propose a dynamic multi-scale
graph neural network within an encoder-decoder framework
to extract deep features at multiple scales. Although these
two works exhibit promising results on benchmark datasets,
there is still space to be explored for more high-quality hu-
man motion prediction.

In this paper, we propose a Multi-Scale Residual Graph
Convolution Network (MSR-GCN), as illustrated in Fig-
ure 3, for 3D human motion prediction. By treating a hu-
man pose as a fully connected graph whose vertices are the
pose joints, we employ graph convolution networks to dy-
namically learn the relations between all pairs of joints flex-
ibly regardless of the physical distance between them. But
GCN alone cannot capture the hierarchical structure of hu-
man pose [33]. That is, as shown in Figure 1, one can ab-
stract a human pose by grouping joints in close proximity
together and representing the group by just one joint, yield-
ing a coarser pose. Since a group of joints usually come
from the same body part, gradually abstracting body parts
in this way can significantly stabilize the motion pattern of
the body. We find that the motion in the coarser level is
more stable for which the pose prediction is easier. It is
promising to predict the poses in the coarsest level firstly,
and then go up to finer levels gradually.

Based on the above analysis, we compensate GCN with
the capacity of modeling hierarchical and contextual infor-
mation of human pose by designing multiple GCNs with a
multi-scale architecture. A group of the GCNs forms a de-
scending path to extract features from fine to coarse scale,
followed by another group of GCNs that extract multi-scale
features inversely along an ascending path. Based on these
features, we predict poses at all scales and impose interme-
diate supervision for more representative features. We also
add residual connections between the input and the output
poses as suggested by [33], making the whole framework
learn residuals instead of the target poses directly.

Note that Li et al. [27] have also observed this natural hi-
erarchical structure of human pose, but they aim to extract
rich features with the help of the multi-scale joint abstrac-
tion and then decode the future poses from the multi-scale
features with a recurrent decoder. In contrast, the encoder
and decoder in our method are organized in a U-Net-like
multi-scale manner equipped with intermediate losses, dif-
fering from the multiscale strategy in [27].

In short, our main technical contributions are as follows:

* We propose a novel multi-scale residual graph convo-
lution network for human pose prediction in an end-
to-end manner, which consists of multiple GCNs orga-
nized in a multi-scale architecture.

* The well-designed descending and ascending GCN

blocks can extract features in both fine-to-coarse and
coarse-to-fine manners.

* The intermediate supervision imposed at each scale
enforces to learn more representative features, bene-
fiting high-quality future prediction.

2. Related work

Human motion prediction. Many deep learning based
methods have been proposed to handle human motion pre-
diction. Existing CNN-based works like [49, 28] treat a
pose sequence as a two-dimensional matrix where one axis
is the spatial axis and another one indicates the tempo-
ral axis, then spatiotemporal convolutional filters can be
used to the pose data like what has been done for an im-
age. However, pose data, in essence, is very different
from images, lacking repeated elements that give a high
response to the same filter, thus reducing the effective-
ness of the convolutions. Although RNN-based methods
like [9, 34, 41, 42, 37, 11, 5, 2] have advantages in deal-
ing with time-related tasks, the discontinuity and error ac-
cumulation problems often happen because of the frame-by-
frame prediction manner. Also, the training of RNN models
is easy to collapse with gradient explosion or disappearing.
What’s more, these networks neglect the inner-frame kine-
matic dependencies between body joints. Generative adver-
sarial networks [53, 10,21, 12, 6,44, 23] are deemed to gen-
erate realistic data whose pattern is similar to the training
data. Nevertheless, they are vulnerable and require skillful
training. Transformer-based networks like [4, 1] are sup-
posed to be capable of capturing long-range temporal de-
pendencies directly but usually have quite high computing
costs.

Graph Convolution Networks (GCNs) are suitable for
tasks with non-grid and graph-structural data, e.g., biolog-
ical gene, point cloud, human social network [48], and hu-
man motion prediction for the graph-structure nature of the
human skeleton. They have been successfully applied to
many applications like visual recognition [16, 13, 15, 14,

, 32, 31, 17], object detection [46, 19], action localiza-
tion [50, 20], trajectory prediction [38], and image caption-
ing [8]. In particular, since graph convolution is more in-
clined to capture spatial information, Si et al. [40] combines
it with LSTM to enhance its capability of modeling tempo-
ral dependencies between human skeleton joints. Works of
[33, 26, 7] allow graph convolution network to learn rela-
tions between any pair of human joints. Mao et al. [33]
design a fully connected GCN to adaptively learn the nec-
essary connectivity for the motion prediction task and ap-
ply discrete cosine transformation (DCT) to handle tempo-
ral information. Cui et al. [7] enhance the role of natural
connectivity of human joints among all the edges of the
fully connected graph. Li et al. [27] propose a graph neural



network with a multi-scale graph computational unit where
features are extracted at a single individual scale and then
fused across scales. Differently, we use GCNs at different
scales to extract features for these scales separately.

3. Methodology

Human pose prediction is a task to produce future pose
sequence given the currently observed frames. Supposing
the historical poses are X1.7;, = [X1, ..., X7,,] € R/*DP*Th
with T}, frames, among which X; depicts a single 3D hu-
man pose with J joints in the D-dimensional space (here
D is 3) at time ¢. Similarly, the future pose sequence with
Ty frames is defined as X, y1.7,+1,. We need a model
Fpredict(-) to predict the future unknown pose sequence
XTh,+1:Th,+Tf' giving X;.7,, that approximates the ground
truth X7, 41.73, +7, as much as possible. We fulfill this task
by proposing a novel Multi-Scale Residual Graph Convolu-
tion Network called MSR-GCN, as illustrated in Figure 3.

In the following, the basic GCN model for pose predic-
tion is introduced firstly, then the multi-scale architecture
used to obtain superior prediction accuracy is shown.

3.1. Basic GCNs

Firstly, we reformulate our prediction objective by re-
arranging the input and output pose sequences. Instead
of performing prediction based on X;.7,, we replicate the
last pose X7, for Ty times, obtaining a sequence of length
T = Ty + Ty. We then use this sequence as the input to
predict the future pose sequence comprising of X 1.7, and
XTh+1;Th+Tf. According to [33], this prediction task can
be translated to compute a residual vector between X 1.7
and the ground truth X;.7, which we also find very effec-
tive to improve the prediction accuracy.

For pose prediction, it has been proven very useful to
model the spatial structure of the poses [33, 7]. This is be-
cause the spatial dependencies between human joints ex-
hibit inherent and consistent characteristics over the whole
action period, which is of great importance for human pose
prediction. The dependencies that can be utilized are not
confined to joints with kinematic links such as between el-
bow and wrist, but any pair of joints can affect each other.
For example, when a person walks, the hands vibrate peri-
odically, so it is essential to explore the dependencies of two
hands for their predictions. GCN [22] is good at discovering
these relationships by viewing a pose as a fully-connected
graph with K nodes, where K = J x D, and an adjacency
matrix A € RE*X which represents the strength of edges
of the graph is learned by the GCN.

A GCN is usually composed of a set of graph convo-
lutional layers that are sequentially stacked together. For-
mally, let H' ¢ REXF " be the input to a graph convo-
lutional layer, A' € RX*X the adjacency matrix, and

Global Residual Connection

X6

J\

&

j\ 1
Start GCN  Residual GCNs
Figure 2. The basic GCN model for pose prediction comprising a
start GCN, 6 residual GCNs, and an end GCN. The start GCN
maps the input from pose space to feature space, the residual
GCN s are used to extract features in the feature space, and finally,
the end GCN maps the features back to the poses. A residual con-

nection is added between the input and output poses, making the
whole network learn residuals rather than the target poses directly.

End GCN

W' e RF'F™" the trainable parameters, the output of the
graph convolutional layer is:

H*! = o (A'TH'W!), (1)

where H'T! € REXF"™ and o(+) is an activation function.

To map the input pose sequence to the target pose se-
quence, we design one start GCN, one end GCN, and 6
residual GCNss, the architecture of which is shown in Fig-
ure 2. The start GCN has 2 graph convolutional layers, pro-
jecting the input pose sequence from the space of R¥*7T
to REXF with FF = 256 in this paper. Following are 6
residual GCNs each containing 2 graph convolutional lay-
ers which accept features in space R *¥" and also output
features in the same space. Finally, the end GCN, also con-
taining 2 graph convolutional layers, projects the features
in space RX* ¥ to the target pose sequence in space R *7T',
The whole network learns the residual vector between the
input and target pose sequences by adding a global skip con-
nection as shown in Figure 2.

Note that the above pose prediction network with ba-
sic GCNs is similar to the method proposed in [33] ex-
cept for the Discrete Cosine Transform (DCT) and inverse
DCT for data representation transformation. In this paper,
we abandon the DCT transformations since directly com-
puting global residuals between padded input poses and the
target poses without translating to DCT coefficients is ef-
fective enough and computationally more efficient. In the
following, we show how the basic architecture in Figure 2
can be further improved by taking advantage of the multi-
scale properties of human pose [27].

3.2. Multi-scale Residual GCNs

Intuitively, a human pose can be simplified step by step
to obtain a set of fine-to-coarse poses. With the increase of
the coarse-scale, the motion of the pose becomes more sta-
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Figure 3. The architecture of the proposed MSR-GCN comprising one start GCN, four descending GCNs (D0, D1, D2, D3), four as-
cending GCNs (A0, A1, A2, A3), and four end GCNs (E0, E'1, E2, E3). The start GCN takes the black poses at scale 0 as input. Then
descending and ascending GCNss are stacked sequentially to extract features for each scale twice. The combined features at each scale are
finally fed into the corresponding end GCN for decoding. Residual connections are added after every end GCN that add the ground truth
poses to the output of each GCN, making the network learn residuals rather than the target poses directly.

ble, which usually means the pose prediction in this scale
is easier than a finer scale. This motivates us to propose
a Multi-scale Residual Graph Convolution Network (MSR-
GCN), in which we perform prediction at the coarsest level
firstly, and then go up to higher levels step by step. As
shown in Figure 3, our MSR-GCN is composed of four
kinds of GCNs: one start GCN, a set of descending and
ascending GCN blocks, and a set of end or decoding GCNs.

Before introducing MSR-GCN, let us describe how we
abstract a human pose. As shown in the leftmost picture of
Figure 1, the finest pose has 22 joints. We abstract the finest
pose recursively to obtain 3 poses with 12, 7, and 4 joints
respectively. The subplots in the second row of Figure 1
(from left to right) depict how to combine the joints at the
finer level, while those in the first row show the obtained
poses at the next levels correspondingly. Note that we also
tried other grouping manners, but found this scheme yields
the most stable motion at the coarsest level (see compar-
isons in Section 4.4).

Start GCN is composed of 2 convolutional layers, map-
ping the input poses into the feature space. The pose space
is RE*T as defined above, and the feature space is R¥* %
with F' = 256. We use the finest-scale pose sequence as
the input to the start GCN while the pose sequences at other
scales are only used at end GCNss to calculate residuals.

Descending and ascending GCN blocks. Since we
have abstracted the human pose in four levels, we use
four descending and four ascending GCN blocks, namely
D0, D1, D2, D3 and A3, A2, A1, A0, to extract features at
the four scales. Each of these blocks loops a residual GCN 6
times, and each GCN has 2 graph convolutional layers. The
eight GCN blocks are sequentially stacked together. Along
the whole descending and ascending path, the feature di-
mension F' is always kept as 256, but the pose dimension K
changes between adjacent descending or ascending blocks.
For example, DO extracts features in space R¥0*F" with
Ky =22 x3 =66, while K; = 36, Ko = 21 and K3 = 12
for D1, D2 and D3. We use a downsampling layer to trans-
form the features outputted by DO into the space of R¥1* ¥,
The descending blocks gradually reduce the pose dimension
which is then gradually increased by the ascending blocks
with upsampling layers. We concatenate the features ex-
tracted by a descending GCN block and the corresponding
ascending GCN block together and deliver them to the end
GCNes for decoding.

End GCNs are used for decoding the concatenated fea-
tures extracted by descending and ascending blocks to
poses. Like start GCN, an end GCN is also composed of
2 graph convolutional layers. But instead of just one start
GCN, we design 4 end GCNs, namely EO, E'1, E2, E3, to



decode combined features at four different scales, respec-
tively. Intermediate supervisions by computing the L2 dis-
tances between the decoded poses and their ground truth at
all scales are used to train the whole network, which is a
commonly adopted strategy in many works [47, 51]. Ab-
lation experiments show that with the intermediate supervi-
sions, better prediction accuracy can be obtained, which we
conjecture is due to the reason that it helps extract more rep-
resentative features in coarser levels and enforce the whole
network to learn the prediction from coarse to fine scale.
The output of “E0” is the predicted target pose sequence.
Residual Connections. Besides the residual connec-
tions in descending and ascending GCNs, we add a residual
connection after each end GCN. That is to say, we add the
input pose sequence (at different scales) to the output of the
end GCN. In this way, the MSR-GCN learns the residual
vector between the input and ground truth at all levels.

3.3. Implementation Details

We choose Adam as the optimizer with the initial learn-
ing rate of 2e-4, which decays by 0.98 every two epochs and
train the network on an NVIDIA RTX 3090 GPU card.

4. Experiments

To verify the effectiveness of MSR-GCN, we run experi-
ments on two standard benchmark motion capture datasets,
including Human3.6M (H3.6M) and CMU Mocap dataset.
Here we first introduce the two datasets, the evaluation met-
ric and the baselines we compare with, then present experi-
mental results and ablation analysis.

4.1. Datasets Setup

The H3.6M dataset [18] consists of seven subjects S1,
S5, S6, S7, S8, S9, and S11, and each one contains 15 action
categories. We transform the original data from exponential
mapping (expmap) format to the 3D joint coordinate space,
downsample the original pose sequence by 2 along the time
axis, and choose 22 body joints from the original 32 joints
of a single pose. Like [34, 27, 33], we use the data of S5 and
S11 as test and validation dataset respectively, and the rest
data is used for training. We use four scales in descending
and ascending section, which contains 22, 12, 7, and 4 joints
respectively.

The CMU Mocap dataset is another commonly used
dataset for human pose prediction, which includes 8 action
categories. A single pose has 38 body joints in the original
dataset, among which we choose 25 and abstract to 12, 7,
and 4 joints. Other details are similar to H3.6M.

4.2. Comparison Settings

Maetrics. Mean Per Joint Position Error (MPJPE) in mil-
limeter is the most widely used evaluation metric. Suppos-

ing the predicted pose sequence is X1, and the correspond-
ing ground truth is X;.7, then the MPJPE loss is

T J
1 .
Lipspe = TXT Z Z 1Ps¢ — pist

t=1 j=1

2 )

where p;; € R3 represents the predicted j-th joint position
in frame ¢, and p; ; is the corresponding ground truth.

Baselines. We compare our approach with three state-
of-the-art baselines, i.e., denoted as Residual sup. [34],
DMGNN [27], and Traj-GCN [33], respectively. The [34] is
based on RNN, and the rest two are based on GCNs. Specif-
ically, [27] builds a dynamic multi-scale graph convolution
neural network, and [33] transforms the original data from
3D coordinate space to frequency space.

Random test batch vs. full test set. All the compared
three works [34, 27, 33] evaluate their methods on just one
randomly selected single batch data of size 8 for each action
category. We argue that such little test data is not enough to
accurately evaluate the performance of the compared ap-
proaches. This has also been questioned in [35]. To al-
leviate this problem, we modify their published codes and
retrain the networks to use the whole test dataset in 3D co-
ordinate space to evaluate the MPJPE. Experimental results
with the same evaluation manner from prior works can also
be found in the supplemental material.

Unifying input and output length. Methods of [34, 27]
require 50 historical observed poses to predict 25 future
poses, while [33] predicts 25 future poses by just 10 poses.
All the experiments in this paper follow the way of [33].

4.3. Results

To validate the prediction performance of MSR-GCN,
we show the quantitative and qualitative results of MSR-
GCN for 400ms short-term (i.e., 10 frames) and 1000ms
long-term (i.e., 25 frames) predictions on H3.6M and CMU
Mocap, and compare MSR-GCN with the state-of-the-art
methods.

Results on H3.6M. The quantitative comparisons for
both short-term and long-term prediction results are pre-
sented in Table 1 and Table 2 respectively. Apparently,
the three GCN-based approaches are much better than the
RNN-based method Residual sup. [34], which validates
the effectiveness of GCNs for human motion prediction.
Among the three GCN-based methods, Traj-GCN is better
than DMGNN, while MSR-GCN is better than Traj-GCN,
overall. For a more intuitive comparison, we plot the av-
erage prediction error over all kinds of actions at different
forecast times in Figure 4, which clearly shows that MSR-
GCN outperforms the compared three methods. Figure 5
shows an example of the predicted poses for different meth-
ods. In this example, with the increase of the forecast time,
the result of MSR-GCN becomes better than those of the
others.



Table 1. Comparisons for short-term prediction on 15 action categories of H3.6M and the averages. The best results are highlighted in bold.

scenarios walking eating smoking discussion
millisecond (ms) 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400
Residual sup. [34] | 29.36  50.82  76.03  81.51 | 16.84  30.60 5692  68.65 | 22.96 42.64  70.14  82.68 | 3294 61.18 9092  96.19
DMGNN [27] 17.32  30.67 5456 6520 | 1096 2139  36.18  43.88 897 17.62  32.05 4030 | 17.33 3478  61.03  69.80
Traj-GCN [33] 1229 23.03  39.77  46.12 836 1690 33.19 4070 | 7.94 1624 3190 3890 | 1250 2740 5851 71.68
MSR-GCN 12.16 22.65 38.64 45.24 | 8.39 17.05  33.03  40.43 8.02 1627 31.32 3815 | 1198 26.76 57.08 69.74
scenarios directions greeting phoning posing
millisecond (ms) 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400
Residual sup. [34] | 3536 57.27 7630  87.67 | 3446 6336 124.60 14250 | 37.96 69.32 11500 126.73 | 36.10 69.12 13046 157.08
DMGNN [27] 13.14 2462 6468  81.86 | 2330 5032 107.30 132.10 | 12.47 2577  48.08 5829 | 1527 2927 71.54  96.65
Traj-GCN [33] 897 19.87 4335 5374 | 18.65 38.68 7774 9339 | 1024 21.02 4254 5230 | 13.66 29.89  66.62  84.05
MSR-GCN 8.61 19.65 4328 5382 | 1648 3695 7732 9338 | 10.10 20.74 41.51 51.26 | 12.79 2938 6695  85.01
scenarios purchases sitting sittingdown takingphoto
millisecond (ms) 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400
Residual sup. [34] | 36.33 6030  86.53 9592 | 42.55  81.40 13470 151.78 | 47.28 8595 14575 168.86 | 26.10 47.61 8140 9473
DMGNN [27] 21.35 38.71 75.67 9274 | 11.92  25.11 4459 5020 | 1495 3288  77.06  93.00 | 13.61 2895 4599  58.76
Traj-GCN [33] 15.60 32778 6572  79.25 | 10.62 2190 4633 5791 | 16.14 3112 6147 7546 | 9.88 20.89 4495  56.58
MSR-GCN 1475 3239  66.13  79.64 | 10.53 2199  46.26  57.80 | 16.10 31.63 6245 7684 | 9.89 21.01 44.56  56.30
scenarios waiting walkingdog walkingtogether Average
millisecond (ms) 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400
Residual sup. [34] | 30.62 57.82 10622 121.45 | 64.18 102.10 141.07 164.35 | 26.79 50.07  80.16 9223 | 3466 6197 101.08 115.49
DMGNN [27] 1220 2417  59.62 7154 | 47.09 9333 160.13 171.20 | 1434 26.67 50.08 63.22 | 1695 33.62 6590  79.65
Traj-GCN [33] 11.43 2399 50.06 6148 | 23.39  46.17 8347 9596 | 1047 21.04 3847 45.19 | 12.68 26.06 5227  63.51
MSR-GCN 10.68 23.06 4825  59.23 | 20.65 42.88 80.35 93.31 | 10.56 20.92 3740 43.85 | 12.11 25.56 51.64  62.93

Table 2. Comparisons for long-term prediction on 5 action categories of H3.6M and the averages. The best results are highlighted in bold.

scenarios walking Eating Smoking Discussion Directions average
millisecond (ms) 560 1000 560 1000 560 1000 560 1000 560 1000 560 1000
Residual sup.[34] 81.73 100.68 79.87 100.20 94.83 137.44 121.30 161.70 110.05 152.48 97.56 130.50
DMGNN [27] 73.36 95.82 58.11 86.66 50.85 72.15 81.90 138.32 110.06 115.75 74.85 101.74
Traj-GCN [33] 54.05 59.75 53.39 77.75 50.74 72.62 91.61 121.53 71.01 101.79 64.16 86.69
MSR-GCN 52.72 63.04 52.54 77.11 49.45 71.64 88.59 117.59 71.18 100.59 62.89 86.00
180
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Figure 4. Comparison of average prediction error over all action
categories at different forecast times on the H3.6M dataset.

Results on CMU Mocap. The same comparisons are
conducted on the CMU Mocap dataset, as shown in Table
3 and Table 4. MSR-GCN gets the best average perfor-
mance at all short-term forecast times. For long-term pre-
diction, i.e., predicting the frame up to 1000ms, MSR-GCN
achieves the best results on four kinds of actions. For other
actions, the prediction errors of our method are always the
second best and are very close to the best ones.

Performance gains analysis and reasoning. The above
results show that MSR-GCN outperforms the compared
methods. Here, we explain in detail the reasons and sources
of performance gains.

Figure 5. Visualization of predicted poses of different methods on
a sample of the H3.6M dataset.

Firstly, during experiments, we find that inferring resid-
uals between input and target poses is much easier than pre-
dicting the target poses. The average errors on the CMU
dataset in Table 5 show that global residual (GR) leads to
noticeable performance gains for both Traj-GCN and our
method (MSR-GCN). Nevertheless, ours without GR still
clearly outperforms other baselines without GR (Traj-GCN
w/o residual and DMGNN), showing the significance of our
model design.

Secondly, we compare our method with Traj-GCN, Traj-
GCN w/o DCT, and a single-scale version of our method
named MSR-GCN-1L on the CMU dataset. As shown in
Table 6, the performance gain led by DCT is 0.55, while



Table 3. Comparisons for short-term prediction on 8 action categories of the CMU Mocap dataset. The best results are highlighted in bold.

scenarios basketball basketball signal directing traffic jumping
millisecond (ms) 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400
Residual sup. [34] | 15.45 26.88 4351 49.23 | 20.17 3298 42775 44.65 | 20.52 40.58 75.38 90.36 | 26.85 48.07 93.50 108.90
DMGNN [27] 1557 2872 59.01 73.05 5.03 9.28 2021 26.23 | 10.21  20.90 41.55 5228 | 3197 5432 96.66 119.92
Traj-GCN [33] 11.68  21.26 40.99 50.78 333 6.25 13.58 17.98 692  13.69 30.30 39.97 | 17.18 3237  60.12 72.55
MSR-GCN 10.28 1894  37.68 47.03 3.03 5.68 12.35 16.26 592 12.09 28.36 38.04 | 1499 28.66 55.86 69.05
scenarios running soccer walking washwindow
millisecond (ms) 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400
Residual sup. [34] | 25.76 4891 88.19 100.80 | 17.75 31.30 5255 61.40 | 4435 76.66 12683 15143 | 22.84 4471 86.78 104.68
DMGNN [27] 1742 2682 3827 40.08 | 1486 2529 5221 6542 9.57 1553 26.03 30.37 793 14.68 3334 44.24
Traj-GCN [33] 1453 2420 3744 41.10 | 13.33 2400 4377 53.20 6.62 10.74 17.40 20.35 596 11.62 24.77 31.63
MSR-GCN 12.84 2042 30.58 3442 | 1092 19.50 37.05 46.38 6.31 10.30 17.64 21.12 549 11.07 25.05 32.51

Table 4. Comparisons for long-term prediction at 1000ms on 8
action categories of the CMU Mocap dataset.

scenarios basket bas_sig dir_tra jumping
Residual sup.[34] 72.83 60.57 153.12 162.84
DMGNN [27] 138.62 52.04 111.23 224.63
Traj-GCN [33] 97.99 54.00 114.16 127.41
MSR-GCN 86.96 47.91 111.04 124.79

scenarios running soccer walking washwin
Residual sup.[34] 158.19 107.37 194.33 202.73
DMGNN [27] 46.40 111.90 67.01 82.84
Traj-GCN [33] 51.73 108.26 34.41 66.95
MSR-GCN 48.03 99.32 39.70 71.30

Table 5. Effects of the global residual on the CMU Mocap dataset.
DMGNN [27] [ Traj-GCN [33] w/o GR [ Traj-GCN [33] | Ours w/o GR [ Ours
5305 | 932 [ 3975 | 4692 [37.28

Table 6. Comparison between the multi-scale architecture of

MSR-GCN and the DCT components of Traj-GCN [33] on CMU
dataset.
Traj-GCN [33] w/o DCT | Traj-GCN [33] | MSR-GCN-IL | MSR-GCN
40.30 | 39.75 | 40.43 [ 3728
20 .
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Figure 6. Average performance gain over Traj-GCN [33] of joints

on H36M (left) and CMU (right).

that of our multi-scale strategy is 3.15, manifesting the ef-
fectiveness of our multi-scale architecture.

Thirdly, we examine the performance gain of MSR-GCN
over Traj-GCN for each joint, finding that larger perfor-
mance gains are achieved for joints of limbs, as shown in
Figure 6 where deeper red color means higher performance
gain. Since joints on the limbs usually have higher motion
frequency, the figure indicates that our method can better
handle high-frequency motions.

More analysis can be found in the supplemental material.

4.4. Ablation Study

The influences of several key elements of our proposed
model, such as the number of the scale levels, the interme-
diate supervision losses, the residual GCNs, and the multi-

scale grouping manner, are investigated on the CMU Mocap
dataset to provide a deeper understanding of our approach.
Specifically, we modify MSR-GCN to obtain five ablation
variants of it: (1) MSR-GCN w/o inter-loss: the MSR-GCN
without intermediate supervision losses, (2) MSR-GCN-3L:
the MSR-GCN with three pose scales (note that the original
MSR-GCN has four scales), (3) and (4) MSR-GCN-2L, and
MSR-GCN-1L with two scales and one scale respectively,
(5) MSR-FCL.: replace the residual GCNs by residual fully
connected layers.

Effects of multi-scale architecture. To study the ef-
fectiveness of the multi-scale mechanism of the proposed
architecture, we conduct experiments on the three-scale,
two-scale and one-scale variants of MSR-GCN. The com-
parison results are shown in Table 7. Please see the
rows corresponding to MSR-GCN, MSR-GCN-3L, MSR-
GCN-2L, and MSR-GCN-1L. In most cases, MSR-GCN is
the best, followed by MSR-GCN-3L, MSR-GCN-2L, and
MSR-GCN-1L. As an example, for the action of running,
the prediction error of the four variants at time 320ms are
30.58, 35.87, 38.95, and 39.06, respectively. These exper-
iments demonstrate the effectiveness of our multi-scale ar-
chitecture.

Effects of intermediate supervisions. The effects of
intermediate losses are analyzed by removing the “End
GCNs” of the second, the third, and the fourth scale from
MSR-GCN. Please see the two rows corresponding MSR-
GCN and MSR-GCN w/o inter-loss in Table 7 to compare
the two variants. In most cases, MSR-GCN is better than
MSR-GCN w/o inter-loss, which demonstrates the neces-
sity of the intermediate supervisions. Although some ex-
ceptions happen on “walking” and “jumping”, the differ-
ences between the two variants are very small.

Effects of residual GCNs. We replace all the residual
GCNs with plain networks comprising residual fully con-
nected layers (FCL) to analyze the effects of the residual
GCNs. Please see the rows corresponding to MSR-GCN
and MSR-FCL of Table 7. The experimental results show
that MSR-GCN is better than MSR-FCL by a large margin.
This strongly validates the importance of GCNs for high-
quality pose prediction.

Effects of different multi-scale grouping manners. In



Table 7. Ablation studies on the number of scale levels, intermediate losses, residual GCNs vs. residual fully connected layers, and different
grouping manners. Results are obtained on the CMU Mocap dataset. On average, all the designs of our model contribute to its accuracy.

running soccer
sl s2 83 s4 | inter-loss | GCB  FCL 80 160 320 400 1000 80 160 320 400 1000
MSR-GCN v v v v v v 12.84 2042 30.58 34.42 48.03 | 10.92 19.50 37.05 46.38 99.32
MSR-GCN w/o inter-loss | v v vV v 13.20 21.20 32.69 36.02 51.65 | 11.03 19.81 38.93 4884 101.36
MSR-GCN-3L v v v v v 13.60 2279 3587 39.58 49.60 | 11.02 19.84 3849 4826 107.17
MSR-GCN-2L v v v v 1430 2337 3895 45.11 7326 | 1093 19.62 38.44 48.30 106.35
MSR-GCN-1L v v v 1424 2421 39.06 43.60 7452 | 11.55 21.37 4326 55.00 123.69
MSR-FCL v v v v v v 13.33 2429 4358 50.01 61.90 | 12.16 22.83 4649 59.04 13247
walking jumping
sl s2 s3  s4 | inter-loss | GCB  FCL 80 160 320 400 1000 80 160 320 400 1000
MSR-GCN v v v v v v 6.31 1030 17.64 21.12 39.70 | 1499 28.66 55.86 69.05 124.79
MSR-GCN w/ointer-loss | v/ v vV v 6.36 1033 17.05 20.04  34.67 | 14.65 2822 5643 70.07 125.69
MSR-GCN-3L v v v v v 6.62 1091 18.10 21.19 4272 | 1498 2889 57.69 71.60 128.62
MSR-GCN-2L v v v v 7.87 1341 23.16 27.63 5231 | 1521 29.67 59.85 7431 128.10
MSR-GCN-1L v v v 6.73 11.09 17.94 20.95 37.21 | 1549 29.73 5894 73.10 131.72
MSR-FCL v v v v v v 7.19 12,58 23.15 28.00 52.77 | 15.14 29.89 6131 7649 139.01
Table 8. Comparison of average errors of different grouping man-
ners on the CMU dataset. or
G . 25-12-7-4 25-10-5-3
Touping Specified (default) [ Random 1 [Random 2 [Random 3 | Specified
Avg. Error | 37.28 [ 4115 | 4577 | 4704 | 4099 MSR-GCN
mmm MSR-GCN . w/o inter-loss
90| Hmmm MSR-GCN w/o inter-loss
=== MSR-GCN-3L | MSR.GON.AL
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3 MSR-GCN-1L
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Figure 7. Comparison of average errors over all kinds of actions of
different ablation variants at different forecast times on CMU.

default, we group the human joints in the way shown in Fig-
ure | for skeletons of H3.6M. The default grouping manner
for CMU can be found in the supplemental material. In
Table 8, we test the performance of our method with differ-
ent grouping strategies on CMU, including 25-10-5-3 which
means there are 25 joints for the finest-scale skeleton and 3
joints for the coarsest scale (please refer to the supplemental
material for the manually specified joint groups), and three
random groupings of the default 25-12-7-4. As shown, our
default grouping produces better average results.

More visualizations are shown in Figure 7 and Figure 8.
In Figure 7, we show the average prediction errors over all
kinds of actions of different ablation variants at different
forecast times on the CMU dataset. As can be seen, MSR-
GCN is always better than its variants. In Figure 8, we show
an example of the predicted poses of different ablation vari-
ants, which clearly demonstrate that MSR-GCN is much
better than MSR-GCN-2L, MSR-GCN-1L, and MSR-FCL,
verifying the necessity of both the building blocks of GCNs

Figure 8. Visualization of predicted poses of different ablation
variants on a sample of the CMU Mocap dataset.

and the multi-scale architecture.

5. Conclusion

In this paper, we build a multi-scale residual graph con-
volution network to effectively predict future human motion
from observed histories. Losses are added to all the scales
to provide intermediate supervision. We use a short ob-
served historical pose sequence of 10 frames as input to pre-
dict 25 frames in the future. We test and compare the pro-
posed method with previous state-of-the-art approaches on
the whole test dataset. Our approach outperforms the state-
of-the-art methods on two standard benchmark datasets. We
will further explore the multi-scale grouping manners in the
future.
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Appendices

A. Loss Function

We use /5 loss to optimize MSR-GCN. Let the 5" joint
position in the #*" frame at s*" scale be 5> and the corre-
sponding ground-truth be p? ,, then the loss function for N
training pose sequences each having J* joints and 7" frames
is written as

. N J T
s — m;;; (1554 _pj',tHQ' @)

The above loss is calculated at all S scales and added up to
optimize the proposed model, that is,

s
* : S S
P —argn%n;)\ﬁ, 4)

where P indicates network parameters, and A\ denotes hyper
parameters and we set them as 1 for all scales.

B. Model Structure

The detailed MSR-GCN model structure is shown in Ta-
ble 9. As mentioned in the paper, our proposed approach is
composed of three kinds of GCNs, called “Start GCNs”,
“Descending (D0-D3)/Ascending (A0-A3) GCNs”, and
“End GCNs (E0-E3)”.

The most basic building block is the Graph Convolution
Layer (GCL), which consists of a graph convolution layer,
a batch normalization layer, a tanh activation layer, and a
dropout layer (with rate 0.1). A graph convolution layer has
an adjacency matrix A and parameters .

Each GCN is composed of 2 GCLs. The size of A and
W of these GCLs are shown in the table. We use linear
layers for downsampling and upsampling. The sizes of the
parameters in these linear layers are also shown in the ta-
ble. In the third column of the table, we give the output
size of the corresponding layer. Please refer to the source
code at https://github.com/Droliven/MSRGCN for more in-
formation.

C. Different Multi-Scale Grouping Manners

The default grouping manner for CMU can be found in
Figure 9 in which there are 25 joints at the finest level and
12, 7, 4 joints in the subsequent coarser levels. We also
trained MSR-GCN on CMU with other grouping manners,
including three random grouping manners under the 25-12-
7-4 manner, and the “manually specified 25-10-5-3” man-
ner as shown in Figure 10. The performance of MSR-GCN
under different grouping manners can be found in the paper.

Table 9. Detailed architecture of MSR-GCN.
Module Layers | Output Size Operations
GCL 66 X 64 GCL, A(66 X 66), W(35 X 64)

Start GCN GCN 66 X 64 res-GCN with 2-layer GCLs
A(66 x 66), W(64 X 64)
Do GCNs 66 X 64 3 X res-GCN each has 2-layer GCLs

A(66 X 66), W(64 X 64)
linear transformation, W(66 X 36)
linear transformation,W(64 x 128)

3 X res-GCN each has 2-layer GCLs
A(36 x 36), W(128 x 128)
linear transformation, W(36 X 21)
linear transformation,W(128 X 256)
3 X res-GCN each has 2-layer GCLs
AQ21 x 21), W(256 x 256)
linear transformation, W(21 x 12)
linear transformation,W(256 x 512)
3 X res-GCN each has 2-layer GCLs
A(12 x 12), W(512 x 512)

3 X res-GCN each has 2-layer GCLs
A(12 x 12), W(512 x 512)
linear transformation, W(12 x 21)
linear transformation,W(512 x 256)
3 X res-GCN each has 2-layer GCLs
A1 x 21), W(256 x 256)
linear transformation, W(21 X 36)
linear transformation,W(256 x 128)
3 X res-GCN each has 2-layer GCLs
A(36 x 36), W(128 x 128)
linear transformation, W(36 X 66)
linear transformation, W(128 x 64)
3 X res-GCN each has 2-layer GCLs
A(66 X 66), W(64 X 64)

res-GCN with 2-layer GCLs
E0 GON | 66 64 A(66 X 66), W(64 X 64)
GCL 66 X 35 GCL, A(66 X 66), W(64 X 35)
res-GCN with 2-layer GCLs
El GCN | 36 x 128 A(36 X 36), W(12y8 % 128)
GCL 36 x 35 GCL, A(36 x 36), W(128 X 35)
res-GCN with 2-layer GCLs
E2 GCN | 21 x 256 AGL X 21), W(256 x 256)
GCL 21 x 35 GCL, A(21 x 21), W(256 x 35)
res-GCN with 2-layer GCLs
E3 GCN | 12 x 512 A2 x 12),W(51y2x512)
GCL 12 x 35 GCL, A(12 X 12), W(512 x 35)

Linearl 36 x 64
Linear2 | 36 X 128

D1 GCNs | 36 x 128

Linearl 21 x 128
Linear2 | 21 x 256

D2 GCNs | 21 x 256

Linear]l | 12 x 256
Linear2 | 12 x 512

D3 GCNs 12 x 512

Downsampling 0

Downsampling 1

Downsampling 2

A3 GCNs 12 x 512

Linearl | 21 x 512
Linear2 | 21 x 256

A2 GCNs | 21 x 256

Linearl | 36 x 256
Linear2 | 36 x 128

Al GCNs 36 x 128

Linearl | 66 x 128
Linear2 66 X 64

A0 GCNs 66 X 64

Upsampling 2

Upsampling 1

Upsampling 0

Scale 0 Scale 1 Scale 2 Scale 3

Figure 9. The default grouping manner of 25-12-7-4 for the CMU
Mocap dataset.

D. More Results

Comparison with Traj-GCN using error bar. We have
trained our method and Traj-GCN [33] five times with ran-
dom seeds in order to compare their performance more
thoroughly. As shown in Table 10, the average predic-
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Figure 10. The manually specified 25-10-5-3 grouping manner for
the CMU Mocap dataset.

Table 10. Comparison of average prediction error with Traj-GCN
[33] using error bar

H3.6M CMU
Traj-GCN [33] 59.93 £ 091 40.56 £ 0.51
Ours 58.37+ 0.43 37.52 £+ 0.48

Table 11. Comparison with Traj-GCN at different forecast times.

Time (ms) 80 160 320 40 560 1000
Human3.6M 0.56 0.51 0.64 0.58 0.46 0.09
CMU 1.22 2.19 3.98 2.84 2.40 3.23

Table 12. Average prediction errors using the evaluation method
of [33].

H3.6M CMU
short-term | Tong-term short-term | Tong-term
Traj-GCN [33] 37.35 59.02 29.13 45.06
Ours 36.36 57.84 24.81 40.81

tion errors of our method are 58.37+0.43 and 37.52+0.48
on the datasets of Human3.6M and CMU. In comparison,
[33] reports higher predictor errors and larger variances than
our method, which are 59.93+0.91 on the Human3.6M and
40.56+0.50 on the CMU dataset respectively.

Comparison with Traj-GCN at different forecast
times. We also compared MSR-GCN and Traj-GCN at dif-
ferent forecast times. As verified in Table 11, our method
performs better than Traj-GCN in handling challenging
long-term motion prediction.

Comparison using the evaluation method of [33]. In
[33], the performance is evaluated on randomly selected 8
samples per action. The average prediction errors using the
same evaluation method as [33] are shown in Table 12. As
can be seen, MSR-GCN also outperforms Traj-GCN.



