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Abstract

Image Retrieval is a fundamental task of obtaining im-
ages similar to the query one from a database. A com-
mon image retrieval practice is to firstly retrieve candi-
date images via similarity search using global image fea-
tures and then re-rank the candidates by leveraging their
local features. Previous learning-based studies mainly fo-
cus on either global or local image representation learning
to tackle the retrieval task. In this paper, we abandon the
two-stage paradigm and seek to design an effective single-
stage solution by integrating local and global information
inside images into compact image representations. Specif-
ically, we propose a Deep Orthogonal Local and Global
(DOLG) information fusion framework for end-to-end im-
age retrieval. It attentively extracts representative local in-
formation with multi-atrous convolutions and self-attention
at first. Components orthogonal to the global image rep-
resentation are then extracted from the local information.
At last, the orthogonal components are concatenated with
the global representation as a complementary, and then ag-
gregation is performed to generate the final representation.
The whole framework is end-to-end differentiable and can
be trained with image-level labels. Extensive experimental
results validate the effectiveness of our solution and show
that our model achieves state-of-the-art image retrieval per-
formances on Revisited Oxford and Paris datasets. 1

1. Introduction
Image retrieval is an important task in computer vision,

and its main purpose is to find out the images from a
large-scale database that are similar to a query one. It is
extensively studied by designing various handcrafted fea-
tures [25, 6, 50]. Owing to the development of deep learn-
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Figure 1: Illustration of current two-stage and our single-
stage image retrieval. Previous methods (a) firstly obtain
candidates similar to the query from the database via global
deep representation, and then local descriptors are extracted
for leveraged re-ranking. Our method (b) aggregates global
and local features via an orthogonal fusion to generate the
final compact descriptor, and then single-shot similarity
search is performed.

ing technologies, great progress has been achieved recently
[1, 29, 37, 9]. Representations (also named as descriptors)
of images, which are used to encode image contents and
measure their similarities, play a central role in this task. In
the literature of learning-based solutions, two types of im-
age representations are widely explored. One is global fea-
ture [4, 3, 44, 1] which serves as high-level semantic image
signature and the other one is local feature [5, 36, 29, 18]
which can comprise discriminative geometry information
about specific image regions. Generally, the global feature
can be learned to be invariant to viewpoint and illumination,
while local features are more sensitive to local geometry
and textures. Therefore, previous state-of-the-art solutions
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[38, 29, 9] always work in a two-stage paradigm. As shown
in Figure 1(a), candidates are retrieved via global feature
with high recall, and then re-ranking is performed with lo-
cal features to further improve precision.

In this paper, we also concentrate on the field of image
retrieval with deep networks. Though state-of-the-art per-
formance has been achieved by previous two-stage solu-
tions, they need to rank images twice, and the second re-
ranking stage is conducted using the expensive RANSAC
[13] or AMSK [42] for spatial verification with local fea-
tures. More importantly, errors exist inevitably in both
stages. Two-stage solutions would suffer from error accu-
mulation which can be a bottleneck for further performance
improvement. To alleviate these problems, we abandon the
two-stage framework and attempt to find an effective uni-
fied single-stage image retrieval solution, which is shown
in Figure 1(b). Previous wisdom has implied that global
features and local features are two complementary and es-
sential elements for image retrieval. Intuitively, integrating
local features and global features into a compact descriptor
can achieve our goal. A satisfying local and global fusion
scheme can take advantage of both types of features to mu-
tually boost each other for single-stage retrieval. Besides,
error accumulation can be avoided. Therefore, we techni-
cally answer how to design an effective global and local fu-
sion mechanism for end-to-end single-stage image retrieval.

Specifically, we proposed a Deep Orthogonal Local and
Global feature fusion model (DOLG). It consists of a lo-
cal and a global branch for learning two types of features
jointly and an orthogonal fusion module to combine them.
In detail, the local components orthogonal to the global
feature are decomposed from the local features. Subse-
quently, the orthogonal components are concatenated with
the global feature as a complementary part. Finally, it is ag-
gregated into a compact descriptor. With our orthogonal fu-
sion, the most critical local information can be extracted and
redundant components to the global information are elimi-
nated, such that local and global components can be mu-
tually reinforced to produce final representative descriptor
with objective-oriented training. To enhance local feature
learning, inspired by lessons from prior research, the lo-
cal branch is equipped with multi-atrous convolutions [10]
and self-attention [29] mechanisms to attentively extract
representative local features. We think alike FP-Net [31]
in terms of orthogonal feature space learning, but DOLG
aims at complementary fusion of features in orthogonal
spaces. Extensive experiments on Revisited Oxford and
Pairs [32] show the effectiveness of our framework. DOLG
also achieves state-of-the-art performance on both datasets.
To summarize, our main contributions are as follows:

• We propose to retrieve images in a single-stage
paradigm with a novel orthogonal global and local
feature fusion framework, which can generate a com-

pact representative image descriptor and is end-to-end
learnable.

• In order to attentively extract discriminative local fea-
tures, a module with multi-atrous convolution layers
followed by a self-attention module is designed for im-
proving our local branch.

• Extensive experiments are conducted and comprehen-
sive analysis is provided to validate the effectiveness
of our solution. Our single-stage method significantly
outperforms previous two-stage state-of-the-art ones.

2. Related Work
2.1. Local feature

Prior to deep learning, SIFT [25] and SURF [6] are two
well-known hand-engineered local features. Usually such
local features are combined with KD trees [7], vocabu-
lary trees [28] or encoded by aggregation methods such as
[49, 22] for (approximate) nearest neighbor search. Spatial
verification via matching local features with RANSAC [13]
to re-rank candidate retrieval results [2, 30] are also shown
to significantly improve precision. Recently, driven by the
development of deep learning, remarkable progresses have
been made in learning local features from images such as
[48, 16, 15, 5, 36, 29, 18]. Comprehensive reviews of deep
local feature learning can be found in [51, 12]. Among these
methods, the state-of-the-art local feature learning frame-
work DELF [29], which proposes an attentive local feature
descriptor for large-scale image retrieval, is closely related
to our work. One of the design choices of our local branch,
namely attentive feature extraction, is inspired by its merit.
However, DELF uses only a single-scale feature map and
ignores various object scales inside natural images. Our lo-
cal branch is designed to simulate the image pyramid trick
used in SIFT [25] by multi-atrous convolution layers [10].

2.2. Global feature

Conventional solutions obtain global feature by aggre-
gating local features by BoW [39, 33], Fisher vectors [24]
or VLAD [23]. Later, aggregated selective match kernels
(ASMK) [42] attempts to unify aggregation-based tech-
niques with matching-based approaches such as Hamming
Embedding [21]. In deep learning era, global feature is
obtained by such differentiable aggregation operations as
sum-pooling [43] and GeM pooling [34]. To train deep
CNN models, ranking based triplet [8], quadruplet [11], an-
gular [46] and listwise [35] losses or classification based
losses [45, 14] are proposed. With these innovations, nowa-
days, most high performing global features are obtained
with deep CNNs for image retrieval[4, 3, 44, 1, 17, 34, 35,
29, 27, 9]. In our work, we leverage lessons from previous
studies to use ArcFace loss [14] in the training phase and
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Figure 2: Block diagram of our deep orthogonal local and global (DOLG) information fusion framework. Taking ResNet
[19] for illustraction, we build a local branch and a global branch after Res3. The local branch uses multi-atrous layers
to simulate spatial pyramid to take into consideration of scale variations among images. Self-attention is leveraged for
importance modeling following lessons of existing works [29, 9]. The global branch generates a descriptor, which is fed
into an orthogonal fusion module together with the local features for integrating both types of features into a final compact
descriptor. “P”, “C” and “X” denote pooling, concatenation and element-wise multiplication, respectively.

to explore different pooling schemes for performance im-
provement. Our model also generates a compact descriptor,
meanwhile, it explicitly considers fusing local and global
features in an orthogonal way.

2.3. Joint local and global CNN features

It is natural to consider local and global features jointly,
because feature maps from an image representation model
can be interpreted as local visual words [38, 40]. Joint learn-
ing local matching and global representation may be bene-
ficial for both sides. Therefore, distilling pre-trained local
feature [15] and global feature [1] into a compact descrip-
tor is proposed in [37]. DELG [9] takes a step further and
proposes to jointly train local and global features in an end-
to-end manner. However, DELG still works in a two-stage
fashion. Our work is essentially different from [29, 9] and
we propose orthogonal global and local fusion in order to
perform accurate single-stage image retrieval.

3. Methodology
3.1. Overview

Our DOLG framework is depicted in Figure 2. Follow-
ing [29, 9], it is built upon state-of-the-art image recogni-
tion model ResNet [19]. The global branch is kept the same
as the original ResNet except that 1) the global averaging
pooling is replaced by the GeM pooling [34]; 2) a FC layer
is used to reduce feature dimension when generating the
global representation fg ∈ RC×1. Specifically, let us de-
note the output feature map of Res4 as f4 ∈ RC4×h×w,
then the GeM pooling can be formalized as

fg,c =

 1

hw

∑
(i,j)

fp
4,(c,i,j)

1/p

c=1,2,...,C4

, (1)

where p > 0 is a hyper-parameter and p > 1 pushes the
output to focus more on salient feature points. In this pa-
per, we follow the setting of DELG [9] and empirically set
it to be 3.0. To jointly extract local descriptors, a local
branch is appended after the Res3 block of ResNet. Our
local branch consists of multiple atrous convolution layers
[10] and a self-attention module. Then, a novel orthogonal
fusion module is designed for aggregating fg and the local
feature tensor fl ∈ RC×H×W obtained by the local branch.
After orthogonal fusion, a final compact descriptor, where
local and global information is well integrated, is generated.

3.2. Local Branch

The two major building blocks of our local branch are the
multi-atrous convolution layers and the self-attention mod-
ule. The former building block is to simulate feature pyra-
mid which can handle scale variations among different im-
age instances, and the latter building block is leveraged to
performance importance modeling. The detailed network
configurations of this branch is shown in Figure 3. The
multi-atrous module contains three dilated convolution lay-
ers to obtain feature maps with different spatial receptive
field and a global average pooling branch. These features
are concatenated and then processed by a 1 × 1 convolu-
tion layer. The output feature map is then delivered to the
self-attention module for further modeling the importance
of each local feature point. Specifically, its input is firstly
processed using a 1 × 1 conv-bn module, then the subse-
quent feature is normalized and modulated by an attention
map generated via a 1×1 convolution layer followed by the
SoftPlus operation.

3.3. Orthogonal Fusion Module

The working flow of our orthogonal fusion module is
shown in Figure 4a. It takes fl and fg as inputs and then
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calculates the projection f
(i,j)
l,proj of each local feature point

f
(i,j)
l onto the global feature fg . Mathematically, the pro-

jection can be formulated as:

f
(i,j)
l,proj =

f
(i,j)
l · fg
|fg|2

fg, (2)

where f (i,j)
l · fg is dot product operation and |fg|2 is the L2

norm of fg:

f
(i,j)
l · fg = ΣC

c=1f
(i,j)
l,c fg,c (3)

|fg|2 = ΣC
c=1(fg,c)

2. (4)

As demonstrated in Figure 4b, the orthogonal component is
the difference between the local feature and its projection
vector, therefore, we can obtain the component orthogonal
to fg by:

f i,j
l,orth = f

(i,j)
l − f

(i,j)
l,proj . (5)

In this way, a C × H × W tensor where each point is
orthogonal to fg can be extracted. Afterwards, we append

to each point of this tensor with the C×1 vector fg and then
the new tensor is aggregated to be a Co×1 vector. Finally, a
fully connected layer is used to produce a 512×1 descriptor.
Typically, C equals 1024 in ResNet [19]. Here, we simply
leverage the pooling functionality to aggregate the concate-
nated tensor, that is to say, “A” in Figure 4a is pooling in
our current implementation. Actually, it can be designed to
be other learnable modules to aggregate the tensor. We will
further analysis on this in Section 4 and 5.

3.4. Training Objective

Following DELG [9], the training of our method in-
volves only one L2-normalized N class prediction head
Ŵ ∈ R512×N and just needs image-level labels. ArcFace
margin loss [14] is used to train the whole network:

L = − log

 exp
(
γ ×AF

(
ω̂T
t f̂g, 1

))
∑

n exp (γ ×AF (ω̂T
n ĝ, yn))

 (6)

where ω̂i refers to the ith row of Ŵ and f̂g is the L2-
normalized version of fg . y is the one-hot label vector and
t is the groundtruth class index (yt = 1). γ is a scale factor.
AF denotes the ArcFace-adjusted cosine similarity and it
can be calculated as AF (s, c):

AF (s, c) =

{
cos (a cos (s) +m) , if c = 1

s, if c = 0
(7)

where s is the cosine similarity, m is the ArcFace margin
and c = 1 means this is the groundtruth truth class.

4. Experiments
4.1. Implementation Details

Datasets and Evaluation metric Google landmarks
dataset V2 (GLDv2) [47] is developed for large-scale and
fine-grained landmark instance recognition and image re-
trieval. It contains a total of 5M images of 200K different
instance tags. It is collected by Google to raise the chal-
lenges faced by the landmark identification system under



real industrial scenarios as much as possible. Researchers
from the Google Landmark Retrieval Competition 2019 fur-
ther cleaned and revised the GLDv2 to be GLDv2-clean.
It contains a total of 1,580,470 images and 81,313 classes.
This dataset is used to train our models. To evaluate our
model, we mainly use Oxford and Paris datasets with revis-
ited annotations [32], referred to be Roxf and Rpar in the
following, respectively. There are 4,993 (6,322) images in
the Roxf (Rpar) dataset and a different query set for each,
both with 70 images. In order for a fair comparison with
state-of-the-art methods [29, 9, 27], mean average precision
(mAP) is used as our evaluation metric on the Medium and
Hard splits of both datasets. mAP provides a robust mea-
surement of retrieval quality across recall levels and has
shown to have good discrimination and stability.

Implementation details All the experiments in this pa-
per are trained based on GLDv2-clean dataset. We ran-
domly divide 80% of the dataset for training and the rest
20% for validation. ResNet50 and ResNet101 are mainly
used for experiments. Models are initialized from Ima-
geNet pre-trained weights. The images first undergo aug-
mentations by randomly cropping / distorting the aspect ra-
tio; then, they are resized to 512 × 512 resolution. We use
batch size of 128 to train our models on 8 V100 GPUs with
16G memory per card asynchronously for 100 epochs. One
complete training phase takes about 3.8 days for ResNet50
and 6.3 days for ResNet101. SGD optimizer with momen-
tum of 0.9 is used. Weight decay factor is set to 0.0001 and
cosine learning rate decay strategy is adopted. Note that we
train our models with 5 warming-up epochs and the initial
learning rate is 0.05. For the ArcFace margin loss, we em-
pirically set the margin m as 0.15 and the ArcFace scale γ
as 30. For GeM pooling, we fix the parameter p as 3.0.

As for feature extraction, following previous works [29,
9], we use an image pyramid at inference time to produce
multi-scale representations. Specifically, we use 5 scales,
i.e., 0.3535, 0.5, 0.7071, 1.0, 1.4142, to extract final com-
pact feature vectors. To fuse these multi-scale features, we
firstly normalize them such that their L2 norm equals 1, then
the normalized features are averaged and finally a L2 nor-
malization is applied to produce the final descriptor.

4.2. Results

4.2.1 Comparison with State-of-the-art Methods

We divide the previous state-of-the-art methods into three
groups: (1) local feature aggregation and re-ranking; (2)
global feature similarity search; (3) global feature search
followed by re-ranking with local feature matching and spa-
tial verification (SP). From some point of view, our method
belongs to the global feature similarity search group. The
results are summarized in Table 1 and we can see that our
solution consistently outperforms existing solutions.

Comparison with local feature based solutions. In the

local feature aggregation group, besides DELF [29], it is
worth mentioning that current work R50-How [43] provides
a manner for learning local descriptors with ASMK [42] and
outperforms DELF. It achieves a boost up to 3.4% on Roxf-
Medium and 1.4% on Rpar-Medium. However, the com-
plexity of this work is considerable, where n=2000 shows
it finally uses 2000 strongest local keypoints. Our method
outperforms it by up 1.1% on Roxf-Medium and 8.21% on
Rpar-Medium with the same ResNet50 backbone. For the
hard samples, our R50-DOLG achieves 58.82% and 77.7%
in mAP on the Roxf and Rpar respectively, which is sig-
nificantly better than 56.9% and 62.4% achieved by R50-
How. The results show that our single-stage model is better
than existing local feature aggregation methods which are
enhanced by a second re-ranking stage.

Comparison with global feature based solutions. Our
method completes image retrieval with single-stage and the
global feature based solutions do the same. It can be found
the global feature learned by DELG [9] performs the best.
Especially when the models are trained using the GLDv2-
clean dataset. Our models are also trained on this dataset
and they are validated to be better than DELG. The per-
formance is significantly improved by our solution. For
example, with Res50 backbone, the mAP is 80.5% v.s.
77.51% on Roxf-Medium and 58.82% v.s. 54.76% on Rofx-
Hard. Please note that, our R50-DOLG performs better than
R101-DELG. These results well demonstrate the superior-
ity of our framework.

Comparison with global+local feature based solu-
tions. In the solutions where global feature is followed
by a local feature re-ranking, R50/101-DELG is still the
existing state-of-the-art method. Compared with the best
result of DELG, our method R50-DOLG outperforms the
R50-DELG with a boost of up to 1.42% on Roxf-Medium,
1.03% on Rpar-Medium, 0.42% on Roxf-Hard and 1.5%
on Rpar-Hard. Our R101-DOLG outperforms R101-DELG
with a boost of up to 0.3% on Roxf-Medium, 3.82% on
Rpar-Medium and 7.5% on Rpar-Hard. From these results,
we can see, although 2-stage solutions can well promote
their single stage counterparts, our solution combining both
local and global information is a better choice.

Comparison in mP@10. We compare mP@10 in Table
2. It shows the mP@10 performances of DOLG are better
than 2-stage DELGr on both RPar and Roxf. Such results
validate our single-stage solution is more precise than state-
of-the-art 2-stage DELG, owing to the advantages of end-
to-end training and free of error accumulation.

“+1M” distractors. From Table 1, DOLG and 2-stage
DELGr outperform the official 2-stage DELG by a large
margin. This is reasonable. Firstly, the DELGr and our
DOLG are both trained for 100 epochs while the official
DELG is only trained for 25 epochs, so the original DELG
features are not so robust, (w/o 1M distractors, DELG-



Method Medium Hard
Roxf +1M Rpar +1M Roxf +1M Rpar +1M

(A) Local feature aggregation + re-ranking
HesAff-rSIFT-ASMK⋆ +SP[42] 60.6 46.80 61.40 42.30 36.70 26.90 35.00 16.80
HesAff-HardNet-ASMK⋆ +SP[26] 65.60 - 65.20 - 41.10 - 38.50 -
HesAff–rSIFT–ASMK⋆+SP→R[34]–GeM+DFS[20] 79.10 74.30 91.00 85.90 52.70 48.70 81.00 73.20
DELF-ASMK⋆ +SP[29, 32] 67.80 53.80 76.90 57.30 43.10 31.20 55.40 26.40
DELF-R-ASMK⋆ +SP[41] 76.00 64.00 80.20 59.70 52.40 38.10 58.60 58.60
R50-How-ASMK,n=2000[43] 79.40 65.80 81.60 61.80 56.90 38.90 62.40 33.70
(B) Global features
R101-R-MAC[17] 60.90 39.30 78.90 54.80 32.40 12.50 59.40 28.00
R101-GeM ↑[38] 65.30 46.10 77.30 52.60 39.60 22.20 56.60 24.80
R101-GeM-AP[35] 67.50 47.50 80.10 52.50 42.80 23.20 60.50 25.10
R101-GeM-AP (GLDv1) [35] 66.30 - 80.20 - 42.50 - 60.80 -
R152-GeM[34] 68.70 - 79.70 - 44.20 - 60.30 -
ResNet101-GeM+SOLAR† [27] 69.90 53.50 81.60 59.20 47.90 29.90 64.50 33.40
R50-DELG[9] 69.70 55.00 81.60 59.70 45.10 27.80 63.40 34.10
R50-DELG (GLDv2-clean)[9] 73.60 60.60 85.70 68.60 51.00 32.70 71.50 44.40
R50-DELG(GLDv2-clean)r[9] 77.51 74.80 87.90 77.3 54.76 50.40 73.82 61.01
R101-DELG[9] 73.20 54.80 82.40 61.80 51.20 30.30 64.70 35.50
R101-DELG(GLDv2-clean)[9] 76.30 63.70 86.60 70.60 55.60 37.50 72.40 46.90
(C) Global features + Local feature re-ranking
R101-GeM↑+DSM[38] 65.30 47.60 77.40 52.80 39.20 23.20 56.20 25.00
R50-DELG[9] 75.10 61.10 82.30 60.50 54.20 36.80 64.90 34.80
R50-DELG(GLDv2-clean)[9] 78.30 67.20 85.70 69.60 57.90 43.60 71.00 45.70
R50-DELG(GLDv2-clean)r[9] 79.08 75.90 88.78 77.69 58.40 52.40 76.20 61.60
R101-DELG[9] 78.50 62.70 82.90 62.60 59.30 39.30 65.50 37.00
R101-DELG(GLDv2-clean)[9] 81.20 69.10 87.20 71.50 64.00 47.50 72.80 48.70
R50-DOLG (GLDv2-clean) 80.50 76.58 89.81 80.79 58.82 52.21 77.7 62.83
R101-DOLG (GLDv2-clean) 81.50 77.43 91.02 83.29 61.10 54.81 80.30 66.69

Table 1: Results (% mAP) of different solutions are obtained following the Medium and Hard evaluation protocols of Roxf
and Rpar. “⋆” means feature quantization is used and “†” means second-order loss is added into SOLAR. “GLDv1”, “GLDv2”
and “GLDv2-clean” mark the difference in training dataset. r denotes our re-implementation. State-of-the-art performances
are marked bold and ours are summarized in the bottom. The underlined numbers are the best performances.

Model Roxf-M Roxf-H Rpar-M Rpar-H
R50-DELGr 90.79 69.00 95.57 92.00
R50-DOLG 92.52 71.14 98.43 93.71

Table 2: Results of mP@10 of different methods.

Globalr outperforms DELG-Global by 3.9 points in mAP
on Roxf-M and Re-ranking on Rpar is even slightly worse
than DELG-Global). When a huge amount of distractors
exist, less robust global and local feature will result in sev-
erer error accumulation (DELG-Globalr > 2-stage DELG
with “+1M”). As a consequence, significant performance
gap appears between our re-implemented DELG and its of-
ficial version. From the last two rows, we see DOLG still

outperforms 2-stage DELGr when +1M distractors exist.
Qualitative Analysis. We showcase top-10 retrieval re-

sults of a query image in Figure 5. We can see that state-of-
the-art methods with global feature will result in many false
positives which are semantically similar to the query. With
re-ranking, some false positives can be eliminated but those
with similar local patterns still exist. Our solution combines
global and local information and is end-to-end optimized,
so it is better at figuring out true positives.

4.2.2 Ablation Studies

To empirically verify some of our design choices, ablation
experiments are conducted using the Res50 backbone.

Where to Fuse. To check which block is better for the



Location Roxf Rpar
E M H E M H

Global only 90.65 78.21 56.31 95.65 89.00 76.17
Fuse f4-only 92.08 79.39 58.13 95.93 89.92 77.92
Fuse f3-only 93.17 80.50 58.82 95.95 89.81 77.70
both f3&f4 92.34 79.41 57.08 96.01 89.78 77.69

Table 3: Experimental results of DOLG variants where the
orthogonal fusion is performed at different locations.

Pooling Roxf Rpar
Global Ortho E M H E M H
GeM GeM 92.62 78.28 55.30 96.20 89.50 76.99
AVG AVG 92.20 78.14 56.14 95.86 89.25 76.32
GeM AVG 93.17 80.50 58.82 95.95 89.81 77.70
AVG GeM 89.63 73.48 44.88 94.67 86.76 72.98

Table 4: Differences when different pooling functions are
used. “AVG” means ordinary global average pooling.

global and local orthogonal integration, we provide empir-
ical results to verify our choice. Specifically, shallow lay-
ers are known to be not appropriate for local feature repre-
sentations [29, 9], thus we mainly check the res3 and res4
block. We have implemented DOLG variants where the
local branch(es) is (are) originated from f4 only (both f3
and f4). Hence, fusing f3, f4 and fg means there are two
orthogonal fusion branches based on Res3 and Res4, and
the two orthogonal tensors generated from the two fusion
branches are concatenated with fg and pooled. The results
are summarized in Table 3. We can see that 1) without local
branch, the global only setting performs worse. 2) Fusing
f3 or f4 or both f3&f4 can improve the perform of “Global
only”. Fusing f3 obviously outperforms fusing f4 on Roxf
although it is slightly worse on Rpar. Fusing both f3 and
f4 does not provide improvement over f3-only but it is bet-
ter than f4-only. The above phenomena is reasonable. f3
is of sufficient spatial resolution and its network depth is
also sufficient, so it is better than f4 to serve as local fea-
tures. both f3&f4 will make the model more complicated.
Besides, fg is derived from f4 as well, then both f3&f4 set-
ting may put more emphasis on f4, therefore degrading the
overall performance. Overall speaking, f3-only is the best.

Impact of Poolings. In this experiment, we study how
GeM pooling [34] and average pooling will make a differ-
ence to our overall framework. We report results of DOLG
when the pooling function of the global branch and the or-
thogonal fusion module alters. With other settings kept the
same, the performances of R50-DOLG are presented in Ta-
ble 4. It is interesting to see that using GeM pooling for the
global branch while using average pooling for the orthogo-
nal fusion module results in the best combination.

Impact of Each Component in the Local Branch. A
multi-atrous block and self-attention block are designed in
our local branch to simulate the spatial feature pyramid
by dilated convolution layers [10] and to model the local
feature importance with attention mechanism [29], respec-
tively. We provide experimental results to validate the con-
tribution of each of these components by removing indi-
vidual component from the whole framework. The perfor-
mance is shown in Table 5. It is clear that fusing the local
features helps to improve the overall performance signifi-
cantly. The mAP is improved from 78.2% to 80.5% and
89.0% to 89.8% on Roxf-Medium and Rpar-Medium, re-
spectively. When Multi-Atrous module is removed, the per-
formance will slightly drop on the Medium and Hard splits,
especially for the hard split. For example, mAP is decreased
from 58.82% to 58.36% and 77.7% to 76.52% on Roxf-
Hard and Rpar-Hard, respectively. However, for easy cases,
Multi-Atrous will make the performance slightly worse, but
this make little difference because the mAP is already very
high and the retrieval performance drop is very limited for
easy case. Such results validate the effectiveness of Mutli-
Atrous module. When the self-attention module is removed
the performance also notably drops, which is consistent
with results obtained by [9].

Verification of the Orthogonal Fusion. In the orthogo-
nal fusion module, we propose to decompose the local fea-
tures into two components, one is parallel to the global fea-
ture fg and the other is orthogonal to fg . Then we fuse
the complementary orthogonal component and fg . To show
such orthogonal fusion is a better choice, we conduct ex-
periments by removing the orthogonal decomposition pro-
cedure shown in Figure 4a and concatenate the fl and fg
directly. We also try fusing fl and fg by Hadamard prod-
uct (also known as element-wise product), which is usually
used to fuse two vectors. We can find from the empirical re-
sults (see Table 6) that among the three fusion schemes, our
proposed orthogonal fusion performs the best. Such experi-
mental results are also within our expectation. With orthog-
onal fusion, the information relevant to the global feature
fg is excluded from each local feature point f (i,j)

l . In this
way, the output local feature points are the most informative
one and are orthogonal to fg . Not only will they provide

Config Roxf Rpar
E M H E M H

w/o Local 90.65 78.21 56.31 95.65 89.00 76.17
w/o MultiAtrous 93.48 80.48 58.36 96.66 89.27 76.52
w/o Self-ATT 90.64 78.15 55.34 95.73 89.48 77.16
Full Model 93.17 80.50 58.82 95.95 89.81 77.70

Table 5: Ablation experiments on components of the local
branch in our framework.
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Figure 5: Demonstration of top-10 retrieved results. The top-5 retrieved images are all correct and are excluded in this figure.
Results of DELG global, DELG global+local and our DOLG are shown from top to bottom. Green and red boxes denote
positive and negative images, respectively.

Method Roxf Rpar
E M H E M H

Concatenation† 91.29 78.40 56.55 95.88 89.37 76.80
Hadamard 92.21 79.20 56.76 95.94 89.91 77.40
orthogonal 93.17 80.50 58.82 95.95 89.81 77.70

Table 6: Comparison of orthogonal fusion with other fu-
sion strategies. Concatenation and Hadamard product are
explored. † with m = 2.0, γ = 30 for the ArcFace margin
loss, otherwise the training does not converge.

complementary information to better describe a image, but
also they will not put extra emphasis on global feature fg
because of their irrelevance.

5. Discussions

Here, we would like to have some discussion on our cur-
rent implementations and model complexity. First of all,
we have not extensively studied and tuned on many hyper-
parameters, such as p for GeM, γ and m for ArcFace margin
loss, and the dilation rate s settings of dilated convolution
layers. Instead, we directly follow the practices in DELG
[9] and ASPP [10]. We do so in order to show the effec-
tiveness of our proposed building blocks instead of tuning
for better models, although we believe tuning on these pa-
rameters may obtain better performance. The other thing
worthy of mention is the orthogonal fusion module. We pay
our attention to developing single stage solution by aggre-
gating orthogonal local and global information. The design
choice of the aggregation operation denoted as “A” in Fig-
ure 4a is simply chosen from GeM and average pooling for
proof-of-concept purpose. Note that average pooling is a

linear operation, in this case, the orthogonal fusion mod-
ule is equivalent to pool the local feature at first and then
perform the projection and subtraction, so its computation
can be further simplified. In short, our current orthogo-
nal fusion module is sufficiently simple yet effective. We
believe exploring more complicated learning based aggre-
gation “A” in Figure 4a is promising and it is left as our
future work. As for the complexity, compared to DELG
[9] and DELF [29], extra computational cost comes from
the Multi-Atrous module and the orthogonal fusion module.
The former one is composed of a few dilated convolution
layers meanwhile the latter one can currently be reduced to
Pool(fl) − (Pool(fl) · fg)fg/|fg|2. Therefore, the over-
head of our solution is quite limited. Besides, our retrieval
process can be finished in a single-stage.

6. Conclusion

In this paper, we make the first attempt to fuse local
and global features in an orthogonal manner for effective
single-stage image retrieval. We have designed a novel
local feature learning branch, where multi-atrous module
is leveraged to simulate spatial feature pyramid to handle
scale variation among images and self-attention module is
adopted to perform significance modeling for each local de-
scriptor. We also design a novel orthogonal fusion module
in order to combine complementary local and global infor-
mation, to mutually reinforce each other and produce a rep-
resentative final descriptor via objective-oriented training.
Extensive experimental results have been shown for proof-
of-concept purpose, and we also significantly improve state-
of-the-art performance on Roxf and Rpar.
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Pérez. Aggregating local descriptors into a compact repre-
sentation. 2
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search with selective match kernels: aggregation across sin-
gle and multiple images. International Journal of Computer
Vision, 116(3):247–261, 2016. 2, 5, 6

[43] Giorgos Tolias, Tomas Jenicek, and Ondřej Chum. Learn-
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