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Abstract

Instance-level image retrieval is the task of searching
in a large database for images that match an object in a
query image. To address this task, systems usually rely on
a retrieval step that uses global image descriptors, and a
subsequent step that performs domain-specific refinements
or reranking by leveraging operations such as geometric
verification based on local features. In this work, we pro-
pose Reranking Transformers (RRTs) as a general model
to incorporate both local and global features to rerank the
matching images in a supervised fashion and thus replace
the relatively expensive process of geometric verification.
RRTs are lightweight and can be easily parallelized so that
reranking a set of top matching results can be performed in
a single forward-pass. We perform extensive experiments
on the Revisited Oxford and Paris datasets, and the Google
Landmarks v2 dataset, showing that RRTs outperform pre-
vious reranking approaches while using much fewer local
descriptors. Moreover, we demonstrate that, unlike exist-
ing approaches, RRTs can be optimized jointly with the fea-
ture extractor, which can lead to feature representations tai-
lored to downstream tasks and further accuracy improve-
ments. The code and trained models are publicly available

at github.com/uvavision/RerankingTransformer.

1. Introduction

Instance recognition is a challenging task that aims to vi-
sually recognize an object instance. This is distinct from
category-level recognition that identifies only the object
class. Instance recognition is important in e-commerce
where it is often desired to find a specific product in a large
image collection, or in place identification where the objec-
tive is to infer the identity of a public landmark. As the
number of instances is much larger than the number of ob-
ject categories, instance recognition is typically cast as im-
age retrieval instead of classification, and usually involves
both metric learning and local feature based reranking.

Over the last decade, instance recognition continues to
be a major focus of research. Pioneering systems lever-
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Figure 1. Top performing instance recognition methods often rely
on reranking the top results using a score such as the number of
inlier correspondences from geometric verification. We propose
to replace this step with a Reranking Transformer (RRT) that can
be learned with the underlying representations of the images.

aged hand-crafted local descriptors and matching algo-
rithms [54, 44]. More recent approaches incorporate both
global and local descriptors extracted from deep learning
models [4, 39]. Global descriptors summarize an image
into a single vector, leading to a compact representation
for large-scale search. Local descriptors encode detailed
spatial features for patch-level matching, and are shown to
be important for high retrieval precision [58, 10]. The best
methods typically use a global descriptor to reduce the solu-
tion space to a set of candidate matching images, and local
descriptors to re-rank the nearest images [53, 10]. While
extensive progress has been made to improve image re-
trieval using global features, fewer efforts have been made
to develop similarity metrics based on local features. State-
of-the-art approaches still rely on classic matching tech-
niques, such as geometric verification [44] and aggregated
selective match kernels (ASMK) [57]. Geometric verifica-
tion assumes object instances are rigid and local matches
between images can be estimated as a homography using
RANSAC [22]. Tt is also an expensive process that requires
iterative optimization on a large set of local descriptors.
ASMK aggregates the similarities of features without mod-
eling the geometric alignment, but requires offline cluster-
ing and encoding procedures. It was mainly used as a global
retrieval technique in previous literature. Both geometric
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verification and ASMK require large amounts of local de-
scriptors to ensure retrieval performance.

In this work, we propose Reranking Transformers
(RRTs), which learn to predict the similarity of an im-
age pair directly. Our method is general and can be used
as a drop-in replacement for other reranking approaches
such as geometric verification. We conduct detailed ex-
periments showing that as either a drop-in replacement or
trained together with a global retrieval approach, the pro-
posed method is the top-performing across the standard
benchmarks for instance recognition. RRTSs leverage the
transformer architecture [61] which has led to significant
improvements in natural language processing [18, 32] and
vision-and-language tasks [30, 13, 35]. Most recently, it
has also been used for purely vision tasks, notably for im-
age recognition [20] and object detection [11]. To the best
of our knowledge, our work is the first to adapt transformers
for a visual task involving the analysis of image pairs in the
context of reranking image search results.

Reranking Transformers are lightweight. Compared
with typical feature extractors which have over 20 million
parameters (e.g. 25 million in ResNet50 [26]), the proposed
model only has 2.2 million parameters. It can also be easily
parallelized such that re-ranking the top 100 neighbors re-
quires a single pass. As shown in Fig. 1, our method directly
predicts a similarity score for the matching images, instead
of estimating a homography, which may be challenging un-
der large viewpoint changes or infeasible for deformable
objects. Our method requires much fewer descriptors but
achieves superior performance, especially for challenging
cases. In current state-of-the-art models, the feature ex-
traction and matching are optimized separately, which may
lead to suboptimal feature representations. In this work, we
first perform experiments using pretrained feature extrac-
tors, then demonstrate the benefit of jointly optimizing the
feature extractor and our model in a unified framework.

Contributions. (1) We propose Reranking Transformers
(RRTs), a small and effective model which learns to predict
the similarity of an image pair based on global and local
descriptors; (2) Compared with existing methods, RRTs re-
quire fewer local descriptors and can be parallelized so that
reranking the top neighbors only requires a single forward-
pass; (3) We perform extensive experiments on Revisited
Oxford/Paris [46], Google Landmarks v2 [63], and Stan-
ford Online Products, and show that RRTs outperform prior
reranking methods across a variety of settings.

2. Related Work

Feature learning for instance recognition. Hand-crafted
local descriptors [36, 34] were widely used in earlier in-
stance retrieval work [54, 38]. Recently, local features ex-
tracted from convolution neural networks (CNN) are shown
to be more effective [39, , 53, , 40, 41].  Some

of these works learn feature detection and representation
jointly by non-local maximum suppression [21, 58], or at-
tention [39, 56, 10]. The detected local descriptors are usu-
ally used for geometric verification [44] or ASMK [57].
Compared to local features, global descriptors provide a
compact representation of an image for large-scale search.
Current global descriptors are typically extracted from CNN
models [4, 60, 45, 23] by spatial pooling [3, 28, 60, 45, 37],
which may not be ideal for modeling region-wise relations
across images. Recent systems either use global descriptors
to reduce the solution space and then local descriptors to
re-rank the nearest neighbors, or encode local descriptors
using a large visual codebook, followed by image matching
with an aggregated selective match kernel [57, 56, 58]. This
work mainly follows the retrieve-and-rerank paradigm.
Reranking for instance recognition/retrieval. Geomet-
ric verification is the dominant image reranking approach
and widely used in both traditional [44] and more recent
works [53, 39, 10]. Inspired by text retrieval, query ex-
pansion techniques have also been introduced for image re-
trieval [15, 14, 59, 24]. These methods differ from geomet-
ric verification and our work as they rely on analysing the
local nearest neighbor graph for each query during testing.
Diffusion based approaches [19, 65, 27, 6, 5] aim to learn
the structure of the data manifold by similarity propagation
over the global affinity graph built on a query and all the
gallery images, which is nontrivial to scale. Overall, the
motivation of image reranking is to make better use of test-
time knowledge to refine retrieval results. Our work shares
the same vision with this line of research but focuses more
on learning the similarity of an image pair directly.
Transformers for visual tasks. Transformers have be-
come the dominant architecture for representing text [18,
]. Recently, it has also been introduced to vision-and-
language [30, 35] and pure vision tasks [42, 11, 29]. As
the key ingredient of the transformer architecture, the self-
attention mechanism has also been studied for visual recog-
nition [7, 47, 66]. These works apply transformers for single
image predictions while we leverage transformers to learn
the visual relation of an image pair. Our work is also closely
related to SuperGlue [52], which while not a Transformer,
also relies on self-attention. SuperGlue aims to learn local
correspondences between images with pixel-level supervi-
sion. Our work differs from SuperGlue in that it learns the
similarity of an image pair with image-level supervision.
We provide a best-effort comparison with this approach.

3. Methodology

3.1. Attention Modules in Transformers

First, we briefly review the key ingredients in the Trans-
former architecture: Single-Head Attention (SHA) and
Multi-Head Attention (MHA).
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Figure 2. Illustration of the proposed Reranking Transformer (RRT) model. The input of RRT is a sequence of global and local descriptors
(circled in blue) extracted from an image pair (I,’ I)). This sequence, together with two special tokens, are fed into a multi-layer transformer
model which produces a similarity score of (I, I). The model is trained to optimize a binary cross entropy loss.

Single-Head Attention (SHA): The input of a SHA
layer comprises three sets of variables: the queries Q :=
{q; € R¥%}N |, the keys K := {k; € R% }jl‘/il, and the
values V := {v; € R }JNil Here, dg, d, d, are the di-
mensions of the corresponding feature vectors, N and M
are the sequence lengths. SHA produces a new feature se-
quence where each vector is a linear combination of {v,}.
In doing this, Q, K, V are first linearly projected as Q =
QW®, K =KW¥X, V=VWV, using parameter tensors:
W € Rlaxdn WK ¢ Rdxdn WV ¢ Rdvxdn where
dp, is the new feature dimension. The output of a SHA layer
is computed as: SHA(Q, K, V) := SOFTMAX(%)V.

Multi-Head Attention (MHA): Like SHA, MHA takes
Q, K, V as input and comprises multiple SHA modules:
MHA(Q, K, V) := [HEADy;- - - ; HEAD,|W?, HEAD; :=
SHA,(Q, K, V). Here [;] denotes the concatenation opera-
tor, h is the number of the SHA heads. WO ¢ R(hdn)xde jg
a linear projection with an output dimension of d..

3.2. Model

With the fundamental building blocks defined above, we
introduce the detailed formulation of our model:

Image representations: An image I is represented by a
global descriptor of a dimension d,: x, € R% and a set
of L local descriptors: x; = {x;; € R% iL:p each of a
dimension d;. Both x, and x; are extracted from a CNN
backbone (to be discussed in Sec. 4.2). Optionally, each
x; ; is associated with a coordinate tuple p; ; = (u,v) € R?
and a scale factor s; ; € R, indicating the pixel location and
image scale where x, ; is extracted from. In this work, s; ;
is an integer, indexing a set of pre-defined image scales.

Input: As a sequence transduction model [18, 32],
Transformers take as input a list of “tokens” (e.g. Q,K,V
in Sec. 3.1). In image retrieval, these “tokens” can be de-
rived from the features of an image pair (I,I). Following
the BERT transformer encoder [ 18], we define the input as:

X(I,T) := [(CLS); fo(xg); fi(xe1); -+ ; filxi,L);

(SEP): £, (%o): fiRin)i- 5 i%in) ] )

where:
fo(xg) =%+ a;
fi(xl,i) =x; +oPri) +¥(s1:)+ 8 @
fo(Rg) =Ry + &
fi(®i) =R + (Bri) + ¥(5,) + B.

Here, (CLS) is a special token used for summarizing
the signals from both images. (SEP) is an extra separator
token. o, &, 3, /3 are one dimensional segment embeddings,
being used to distinguish the global and local descriptors of
Iand I. ¢ is a position embedding function, as used in [11].
1 is a linear embedding taking the scale index s; ; as input.

Model architecture: With input X(I,I), we define a
multi-layer transformer where each layer is formulated as:

Z; 1 = LAYERNORM(Z; + MHA(Z;)),

Z;11 = LAYERNORM(MLP(Z;,1)),
MLP(Z;41) = RELU(Z; . W)W,
i=0,---,0—1.

3

In this setting, the Q, K, V features for MHA are the
same set of vectors Z;, with Zg = X (I,I). MLP is a two-
layer perceptron with parameter matrices W; € Rde*de
and Wy € R%Xde and an intermediate dimension d..
LAYERNORM is a layer normalization function proposed
in [2]. The model includes C transformer layers in total.

Training objective: Our model is trained to optimize a
binary cross entropy loss:

E(LT) = BCE(sioMomp(ZS WD), 1(1L,T)), @)

Zg: L) ¢ R is a feature vector, corresponding to the
(CLS) token. It is extracted from the last transformer layer.
WZT € Rée*! is a linear function mapping Z <CC L) toa logit
scalar. 1(I, 1) is an indicator function which equals to one
when I and I represent the same object, or zero otherwise.

Fig. 2 provides an illustration of the proposed model.



4. Experiments

Next, we describe the datasets we use to evaluate our
approach, and details about our implementation.

4.1. Datasets

We perform experiments on three datasets, Google Land-
marks v2 (GLDv2) [63], Revisited Oxford/Paris [46], and
Stanford Online Products (SOP) [55].

GLDv2: Google Landmarks v2 (GLDv2) [63] is a
new benchmark for instance recognition that includes over
five million images from 200k natural landmarks. As the
Reranking Transformer has limited parameters (e.g. 2.2
million), we sample a small subset of the images from the
“v2-clean” split of GLDv2 for training. We randomly sam-
ple 12,000 landmarks where each landmark has at least 10
images. For each landmark, we randomly sample at most
500 images. This results in 322,008 images, which is 20%
of the “v2-clean” split and 8% of the original training set.
The names of the sampled images are included in the sup-
plementary material. For testing, we evaluate on the stan-
dard test set for the retrieval task, which contains 1,129
query images and 761,757 gallery images.

ROxf and RPar: Revisited Oxford (ROxf) and Paris
(RPar) [46] are standard benchmarks for instance recogni-
tion, which have 4,993 and 6,322 gallery images respec-
tively. They both have 70 query images, each with a bound-
ing box depicting the location and span of the prominent
landmark. An extra distractor set (R1M) with 1,001,001
images is included for large-scale experiments. We follow
the standard evaluation protocol [46, 10] and crop the query
image using the provided bounding box. We report mean
Average Precision (mAP) on the Medium and Hard setups.

SOP: To investigate the benefit of jointly optimizing the
feature representation and our Reranking Transformer, we
perform experiments on a dataset of product images: Stan-
ford Online Products (SOP) [55]. SOP is a commonly used
benchmark for metric learning [64, 51, 49, 9, 50, 62, 8],
which includes 120,053 images, 59,551 for training, 60,502
for testing. We follow the evaluation protocol for metric
learning and report the R@K scores.

4.2. Implementation

Experiments on the pretrained descriptors: We first
perform experiments with descriptors obtained from a pre-
trained feature extractor, DELG [10]. Our main experi-
ments leverage ResNet50 [26] as the CNN backbone, but
we also include experiments with ResNet101 in the supple-
mentary material. DELG provides a unified framework for
global/local feature extraction. The local descriptors, each
with a dimension of 128, are extracted at 7 image scales
ranging from 0.25 to 2.0. The global descriptor with a di-
mension of 2048 is extracted at 3 scales: {%, 1, \/5} We
use an extra linear projection to reduce the global descriptor

to a dimension of 128. In the original DELG model, the top
1000 local descriptors with the highest attention scores are
selected for image reranking. We observe that RRT does
not require this amount of descriptors, and the retrieval per-
formance saturates at 500 local descriptors. Thus, in our
experiments we choose the top 500 local descriptors and set
L =500, d; = d; = 128. For images with fewer descrip-
tors, we pad the feature sequence with empty vectors and
use a binary attention mask, as in BERT [ 18], to indicate the
padding locations. Both the global and local features are L2
normalized to unit norm. During training, the positive im-
age is randomly sampled from the images sharing the same
label as the query. The negative image is randomly sampled
from the top 100 neighbors returned by the global retrieval,
which have a different label from the query. DELG is pre-
trained on both Google Landmarks (GLD) v1 [39] and v2-
clean [63]. Thus, we perform experiments on two sets of de-
scriptors extracted from these two models. For the architec-
ture, we use 4 SHA heads (h = 4) and 6 transformer layers
(C = 6). dg, di, d, and d. in SHA are set to 128, dj, is set to
32, d. in MLP (Eq. 3) is set to 1024. The number of learn-
able parameters is 2,243,201, which is 9% of the amount in
ResNet50. The model is trained with AdamW [33] for 15
epochs, using a learning rate of 0.0001 and a weight decay
of 0.0004.

Experiments on SOP: We perform experiments on
SOP [55] using a single image scale, following the proto-
col for metric learning [62]. During training, each image is
randomly cropped to 224 x 224, followed by a random flip.
During testing, each image is first resized to of 256 x 256
then cropped at the center to 224 x 224. We use ResNet50
and extract features from the last convolutional layer, which
leads to 49 (7 x 7) local descriptors for each image. The
global descriptor is obtained by spatially averaging the lo-
cal responses. Both the global and local descriptors are lin-
early projected a dimension of 128. The RRT architecture
and most of the training details remain the same as in the
DELG experiments. Here we only describe the main differ-
ences. The global model is trained with a contrastive loss, as
in [62]. Different from [62], we do not rely on a cross batch
memory but simply use a batch size of 800. As all the local
features are used, we do not incorporate the global descrip-
tor term (fy(x,), f4(X4)) in Eq. 1. We also drop the scale
embedding () as only one image scale is used. The global
model is trained using SGD with Nesterov momentum for
100 epochs, using a learning rate of 0.001, a weight decay
of 0.0004 and a momentum of 0.9. The learning rate drops
by a factor of 10 after 60 and 80 epochs. We train an RRT
model on top of the pretrained global model, either freezing
or finetuning the CNN backbone. Both models are trained
with AdamW [33] for 100 epochs, using a learning rate of
0.0001. The learning rate drops by a factor of 10 after 60
and 80 epochs. We implement RRTs in PyTorch [43].



Method #local # Reranked Desc. Medium Hard
desc.  images version ROxf +RIM RPar +RIM ROxf +RIM RPar +RIM

DELG global 0 0 R50-v1 69.7 55.0 81.6  59.7 45.1 27.8 634 341
GV 1000 100 R50-v1 75.4 61.1 823 60.5 54.2 36.8 649 348
RRT (ours) 500 100 R50-v1 75.5 61.2 827 60.7 564 37.0 686 37.5
GV 1000 200 R50-v1 77.2 63.1 825  60.9 55.4 379  63.2 347
RRT (ours) 500 200 R50-v1 779 635 844 621 588 395 716 39.5
DELG global 0 0 R50-v2-clean  73.6 60.6  85.7 68.6 51.0 327 715 444
GV 1000 100 R50-v2-clean 783 67.2 85.7 69.6 57.9 43.6  71.0 457
RRT (ours) 500 100 R50-v2-clean  78.1 67.0 86.7 69.8 60.2 441 751 494
GV 1000 200 R50-v2-clean  79.2 68.2 8.5 69.6 57.5 429 672 445
RRT (ours) 500 200 R50-v2-clean 79.5 686 87.8 715 625 463 T77.1 523

Table 1. Comparison to geometric verification on Revisited Oxford/Paris [46]. The mAP scores on the Medium (+R 1M) and Hard (+R 1M)
setups are reported. Results marked by * are evaluated by us using the public models provided by [10].

#1local Desc. Retrieval
Method desc. version Public  Private
DELG global 0 R50-v1 18.3 20.4
GV 1000 R50-v1 20.4 22.3
RRT (ours) 500 R50-v1 21.5 23.1
DELG global 0 R50-v2-clean  22.2 24.2
GV 1000 R50-v2-clean — 24.3
RRT (ours) 500 R50-v2-clean 24.6 27.0

Table 2. Comparison to geometric verification on the GLDV2 re-
trieval task [460]. The mAP@100 scores on the public and private
test sets are reported.

Position embedding: For the experiments on DELG,
where the keypoints are sparsely sampled, we observe no
benefit in applying the position embedding and do not use
the ¢ term in Eq. 2. For the experiments on SOP, we find
the position embedding is helpful, we posit it is because all
the positions are used in this experiment.

Latency and memory For each query, when using an
NVIDIA P100 GPU, RRT reranks the top-100 retrieved im-
ages in a single forward-pass, which takes 0.36/0.013 sec-
onds on average in the DELG [10]/SOP [55] experiments.
In the DELG experiments, we use the same global descrip-
tor but only half (500 out of 1000) of the local descriptors
for each image. In other words, the memory footprint is ap-
proximately half of that in DELG [10]. We agree that this
is still a high cost for large-scale systems. In the future,
we’d like to explore techniques that can potentially reduce
the memory footprint, e.g. quantization.

5. Results

Here, we demonstrate the effectiveness of the Reranking
Transformers (RRTs) across different settings, benchmarks
and use cases.

5.1. Comparison with Geometric Verification

We consider geometry verification (GV) as the main
baseline. We compare GV and RRT using the same pre-
trained DELG [10] descriptors. Following the protocol
in [10], given a query, we use its global descriptor to re-
trieve a set of top-ranked images. The top-100 neighbors
are reranked by GV and RRT. We present results on two
sets of descriptors: DELG pretrained on GLD vl [39] and
v2-clean [63].

On ROxf and RPar, both GV and RRT outperform
global-only retrieval, as shown in Table 1. RRT shows fur-
ther advantages over GV, with much fewer local descrip-
tors. On ROxf (+R1M), RRT performs on par with GV
on the Medium setup and consistently better on the Hard
setup. On RPar (+R1M), RRT consistently outperforms
GV. The largest performance gap is achieved on the Hard
setup. RRT obtains 2.2 (3.7) absolute improvements over
GV on ROxf (RPar), when using the “v1” descriptors. We
posit that, while GV is effective for sufficiently similar im-
ages, it has difficulty handling challenging cases, e.g. large
variations in viewpoint. To verify this, we reranked more
images (e.g. top-200), resulting in a larger performance gap.
RRT obtains 3.4 (8.4) absolute improvement over GV on
ROxf (RPar), when using the “v1” descriptors.

We present results on the GLDvV2 retrieval task [63] in
Table 2. Following [10], we report the mAP@ 100 scores
on the public and private test sets. Compared to ROxf and
‘RPar, the improvement of applying reranking on GLDv2
becomes smaller. On the other hand, RRT performs con-
sistently better than global-only and GV. When using the
“v2-clean” descriptors, the absolute improvements of RRT
over global-only (GV) on the private set are 2.8 (2.7).



Method # Reranked Desc. Medium Hard
images version ROxt +RIM RPar +RIM ROxt +RIM RPar +RIM

DELG global R50-v1 69.7 55.0 81.6  59.7 45.1 27.8 634 34.1
aQE R50-v1 72.9 60.7 834 63.7 49.4 33.6 66.1  38.1
RRT (ours) 100 R50-v1 75.5 61.2 827  60.7 56.4 370 686 375
RRT (ours) 200 R50-v1 77.9 63.5 844 621 58.8 39.5 716 395
RRT (ours) 400 R50-v1 79.2 66.2 86.3 64.0 60.5 426 741 41.6
aQE R50-v1 72.9 60.7 834 63.7 49.4 33.6 66.1 38.1
aQE + RRT (ours) 200 R50-v1 78.7 662 856 654 59.8 421 728 431
DELG global R50-v2-clean  73.6 60.6  85.7 68.6 51.0 327 715 444
aQE R50-v2-clean  76.6 66.4 86.7 728 54.6 39.5 732 51.2
RRT (ours) 100 R50-v2-clean 78.1 67.0 86.7 69.8 60.2 441 751 494
RRT (ours) 200 R50-v2-clean  79.5 68.6 878 715 62.5 46.3 771 523
RRT (ours) 400 R50-v2-clean 805 706 89.1 73.8 642 495 781 55.6
aQE R50-v2-clean  76.6 66.4 86.7 728 54.6 39.5 732 512
aQE + RRT (ours) 200 R50-v2-clean 804 71.7 885 748 640 509 777 571

Table 3. Comparison to «QE [45] on Revisited Oxford/Paris [

]. The mAP scores on the Medium (+R1M) and Hard (+R1M) setups are

reported. We underline the scores of a«QE that RRT cannot match by just reranking the top-100 neighbors. RRT consistently outperforms
aQE when reranking the top-400 neighbors for each query. Moreover, combining «QE with RRT significantly outperforms using «QE

only, showing that RRT and «QE are complementary to each other.

Method # local Desg. Medium Hard
desc. version ROxf RPar ROxf RPar
DELG global 0 R50-v1 69.7 81.6 45.1 634
ASMK global 1000 R50-v1 71.2 80.8 47.1 61.6
ASMK rerank 1000 R50-v1 71.3 82.6 47.5 66.2
RRT (ours) 500 R50-vl 75.5 82.7 56.4 68.6
DELG global 0 R50-v2-clean 73.6 85.7 51.0 71.5
ASMK global 1000 R50-v2-clean 70.4 80.9 45.8 62.0
ASMK rerank 1000 RS50-v2-clean 73.1 86.3 49.3 71.9
RRT (ours) 500 R50-v2-clean 78.1 86.7 60.2 75.1

Table 4. Comparison to Aggregated Selective Match Kernel
(ASMK) on Revisited Oxford/Paris [46]. The mAP scores on the
Medium and Hard setups are reported.

5.2. Comparison with Query Expansion

Query expansion (QE) [15, 14, 59] is another popular
reranking technique for image retrieval. Different from
GV and RRT, QE aggregates the query image and a num-
ber of top-ranked neighbors into a new query. This new
query is used to rerank all the gallery images rather than
the nearest ones as in GV and RRT. We compare RRT with
one of the most widely used query expansion methods: -
weighted query expansion (aQE) proposed in [45]. We
use the public implementation of aQE released by [48].
aQE has two hyper-parameters: (1) nQE, the number of
top-ranked neighbors to aggregate; (2) «, the exponential
weight. In [48], they are set as (nQE, a) = (10,2.0). Our
experiment shows that these values do not work out of the
box for the DELG descriptors. We tune these parameters on
ROxf over the ranges: nQE € [2,15],a € [0.1,3.0], and
eventually set them as (nQE, o)) = (2,0.3).

Table 3 shows the results on ROxf and RPar. When

reranking the top 100 neighbors, the performance of RRT
is superior to aQE on five of the eight settings, except for
RPar+Medium, RPar+R1M+Medium, RPar+R1M+Hard
(underlined numbers). We believe it is because aQE
reranks all the gallery images while RRT reranks only 100
neighbors and keeps the ranks of all the other images un-
changed. By reranking more neighbors, e.g. 200, 400,
we observe that the performance of RRT progressively im-
proves and eventually surpasses aQE by significant mar-
gins across all settings. On the Hard setup with the “v1”
descriptors, the absolute gains of RRT over aQE on (ROxf,
ROxf+R1M, RPar, RPar+R1M) are (11.1, 9.0, 8.0, 3.5).

We also perform experiments on combining aQE and
RRT by reranking the top neighbors produced by aQE. As
shown in Table 3, reranking the top-200 images obtained
from aQE considerably improves over using aQE only,
with improvements of (10.4, 8.5, 6.7, 5.0) on the Hard setup
of (ROxf, ROxf+R 1M, RPar, RPar+R1M) for the “v1”
descriptors. We consider query expansion and RRT are thus
complementary.

5.3. Comparison with Aggregated Selective Match
Kernel (ASMK)

Aggregated Selective Match Kernel (ASMK) [57] also
leverages local descriptors for image retrieval. The key
idea is to create a large visual codebook (i.e. filter banks)
by clustering the local descriptors. This visual code-
book is used to encode the query and gallery images into
global descriptors. The clustering and encoding procedures
are typically performed offline as they’re relatively time-
consuming. Previously, ASMK was mainly considered as a
global retrieval technique. In this paper, we treat ASMK



Medium Hard

Method Training set Net # local

desc. ROxf +RIM RPar +R1IM ROxf +R1M RPar +RIM
(A) Global features
R-MAC [23] Landmarks R101 0 60.9 39.3 789 54.8 324 125 594 28.0
GeM [45] StM-120k R101 0 64.7 452 772 523 385 199 56.3 24.7
GeM-AP [48] StM-120k R101 0 67.5 47.5 80.1 525 428 232 60.5 25.1
DELG [10] GLDv1 R50 0 69.7 55.0 81.6 59.7 451 278 634 34.1
(B) Local feature aggregation
DELF-ASMK][56] Landmarks R50 1000 67.8 53.8 76.9 57.3 43.1 31.2 554 264
HOW-ASMK]58] SfM-120k R50 1000 783 63.6 80.1 584 55.8 36.8 60.1 30.7
HOW-ASMK]58] StM-120k R50 2000 794 65.8 81.6 618 56.9 389 624 33.7
(C) Global features + Re-ranking
GeMT+DSM [53] SfM-120k R101 1000 653 476 77.4 528 39.2 232 56.2 25.0
DELG [10] + GV GLDvl R50 1000 75.1 61.1 82.3 60.5 54.2 36.8 64.9 34.8
DELG [10] + RRT (ours) GLDvl&v2-clean R50 500 755 61.2 82.7 60.7 56.4 37.0 68.6 37.5
DELG [10] + GV GLDv2-clean R50 1000 783 67.2 857 69.6 57.9 43.6 T71.0 45.7
DELG [10] + RRT (ours) GLDv2-clean R50 500 781 67.0 86.7 69.8 602 44.1 751 494

Table 5. Comparison to the state-of-the-art on Revisited Oxford/Paris [46]. The mAP scores on the Medium and Hard setups are reported.

SOP
RQ1 R@Q10 RQ100 RQ1k

Desc.

Method dim.

Global-only retrieval

Margin [64, 50] 128 76.1 884 95.1 983
FastAP [9] 128 73.8 88.0 949 983
XBM [62] 128 80.6 91.6 96.2 98.7
CE [8] 2048 81.1 91.7 963 98.8
CO 128 80.7 919 96.6 99.0
CO + RRT (frozen) 128 81.8 924 96.6 99.0
CO + RRT (finetuned) 128 84.5 93.2 96.6 99.0

Table 6. Results on jointly optimizing the feature extractor and
RRT. The R@K (K =1, 10, 100, 1000) scores on the SOP test
set [55] are reported.

as both a global retrieval baseline and a reranking base-
line. We use the public implementation of ASMK released
by [56]. Following the common practice proposed in [56],
we train a codebook of 65,536 visual words on ROx{f for
retrieval experiments on RPar, and vice-versa. We con-
duct two experiments: a) ASMK global: using ASMK for
global retrieval, as in all the previous literature [57, 56, 58];
b) ASMK rerank: using ASMK for image reranking, e.g.
reranking the top-100 images from DELG global retrieval.

We present the results on ROxf and RPar in Table 4.
ASMK, when used as a global retrieval approach, shows
comparable or inferior performance to DELG global. When
used as a reranking approach, ASMK further improves
over DELG global, showing that they are complementary.
The proposed method consistently outperforms ASMK
global/rerank in all settings. We posit that compared with
the hand-crafted kernel matching paradigm, RRTs learn a
more holistic region-wise similarity between the images.

5.4. Feature Learning & RRT: Joint Optimization

To further demonstrate the possibility of jointly op-
timizing the feature representations and RRTs, we per-
form experiments on the Stanford Online Products (SOP)
dataset [55]. We study three models: (1) CO: A global re-
trieval model trained with a contrastive loss [62], using the
metric learning protocol, i.e. the global descriptor has a di-
mension of 128 [50, 9, 51, 49, 62]; (2) CO + RRT (frozen):
an RRT model trained on top of CO. The pretrained CO re-
mains frozen and an extra linear layer is used to reduce the
dimension of the local descriptors to 128; (3) CO + RRT
(finetune): a model with the same architecture as CO + RRT
(frozen) but the backbone is also finetuned. It is also initial-
ized by CO + RRT (frozen). During testing, we perform
global retrieval using the global descriptor from CO. The
top-100 neighbors for each query are reranked by either CO
+ RRT (frozen) or CO + RRT (finetune). We present our re-
sults along with the results of the most recent metric learn-
ing approaches [50, 9, 62, 8] to provide an overview in the
context of the state-of-the-art on SOP.

As shown in Table 6, the global CO model, which
is trained with a contrastive loss using a relatively large
batch size, performs surprisingly well. It achieves the
same level of accuracy as well-established works on met-
ric learning. This aligns with the recent research on self-
supervised learning [12, 25] showing that contrastive loss
is very effective for feature learning. CO + RRT (frozen)
further improves the performance, demonstrating the effec-
tiveness of reranking. Note that, as only the top-100 im-
ages are reranked, the R@ 100 and R@ 1k scores remain un-
changed. CO + RRT (finetuned) achieves the best rerank-
ing performance, with an absolute improvement of 3.8 over
the global-only retrieval on R@1. We believe it is because
jointly optimizing the backbone and our model leads to bet-
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Figure 3. Qualitative examples from Revisited Oxford/Paris [46]. For each query, the top-3 neighbors ranked by the global retrieval and
reranked by RRT are presented. Correct/incorrect neighbors are marked with green/red borders.

ter local features that are tailored to the reranking tasks.

5.5. Comparison with the State-of-the-Art

In Table 5, we compare the proposed method with the
state-of-the-art on the ROxf (+R1M) and RPar (+R1M)
benchmarks. We include the most recent instance recogni-
tion/retrieval models in three different groups: (A) Retrieval
by global features only; (B) Retrieval by local feature ag-
gregation; (C) Retrieval by combining global features with
reranking. While our method performs favorably on most of
the settings (except for ROxf, ROxf+R1M), these results
include comparisons to methods that differ on the training
data, the CNN backbones, and the number of local features,
etc. For context we provide as much information about each
method regarding these differences.

In Fig. 3, we present qualitative examples on image re-
trieval when using only global features and when using
our full reranking approach. While global-only retrieval
can return highly similar images in general, reranking by
global/local descriptors captures a more fine-grained match-
ing between images, leading to better recognition accuracy.

Finally, Table 7 shows a comparison with Super-
Glue [52]. Similar as in geometry verification, the num-
ber of inlier correspondences predicted by SuperGlue is
used as the similarity score. As SuperGlue is not designed
for global retrieval, we use the pretrained DELG v1/v2-
clean descriptors for global retrieval, so that SuperGlue
and our method are evaluated on the same initial ranking
lists. We use the SuperGlue pretrained on MegaDepth [31],
which contains 130K images with dense annotations. Note
that both SuperGlue and our work are trained on datasets
(MegaDepth vs a subset of GLDv2-clean) that have dif-
ferent data distributions than the test sets (Revisited Ox-
ford/Paris). SuperGlue leverages SuperPoint [17] as the
backbone, and uses different feature dimensions and key-
point numbers as our work. As shown in Table 7, rerank-
ing by both SuperGlue and our work significantly improve

Method Desc. #local Desc. Medium Hard
etho version desc. dim. ROxf RPar ROxf RPar
DELG global  R50-vl1 0 - 69.7 81.6 45.1 634

SuperGlue [52] SuperPoint [17] 500 256 72.6 819 49.7 624
SuperGlue [52] SuperPoint [17] 1024 256 74.4 823 55.2 64.6
RRT (ours) R50-v1 500 128 75.5 82.7 56.4 68.6

DELG global ~ R50-v2-clean 0 - 73.6 857 51.0 715

SuperGlue [52] SuperPoint [17] 500 256 76.2 859 54.6 68.2
SuperGlue [52] SuperPoint [17] 1024 256 78.3 86.2 60.0 70.4
RRT (ours) R50-v2-clean 500 128 78.1 86.7 60.2 75.1

Table 7. Comparison to the pretrained SuperGlue model [52] on
Revisited Oxford/Paris [46]. The SuperGlue model is pretrained
on MegaDepth [31] with SuperPoint [17] as the backbone. The
mAP scores on the Medium and Hard setups are reported.

the performance over the global-only retrieval. RRT gains
larger improvements on most of the settings, especially for
challenge cases. We provide more experiments on Super-
Glue in the supplemental material.

6. Conclusion

We introduce Reranking Transformers (RRTs) for in-
stance image retrieval. We show that RRT's outperform prior
reranking approaches across a variety of settings. Com-
pared to geometric verification [44] and other local feature
based methods [57], RRTs use fewer descriptors and can be
parallelized such that reranking requires a single forward
pass. We also demonstrate that, unlike previous reranking
approaches, RRTs can be optimized jointly with the feature
extractor, leading to further gains.
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Supplementary Material

This document is organized as follows. In Sec. 7, we
discuss why we consider geometry verification, query ex-
pansion, and aggregated selective match kernel as the base-
line methods. In Sec. 8, we provide an ablation study on
using different numbers of local descriptors in geometry
verification (GV) [44] and RRT. In Sec. 9, we perform ex-
periments using SuperPoint [17] as the feature extractor for
RRT, and compare with SuperGlue [52] on Stanford Online
Products [55]. In Sec. 10, we perform experiments using
ResNet101 [26] as the CNN backbone. In Sec. 11, we vi-
sualize the keypoint correspondences learned by RRT. In
Sec. 12, we discuss the limitation of the proposed method.
Finally, in Sec. 13, we present more qualitative examples.

The names of the training images sampled from GLDv2,
as discussed in Section 4.1 of the main paper, are in a sepa-
rate document.

7. Appropriate baselines

We consider geometry verification [44] and aQE [15]
as the main baselines as they share the same spirit with
our method: they make better use of the test-time informa-
tion. When comparing the query and target images, geome-
try verification attends to different sub-regions of the query
image when the target image is different, and vice versa,
which is very similar to the proposed Reranking Transform-
ers (RRTs). aQE also leverages test-time knowledge, but
relies on analyzing the local affinity graph created during
testing. We believe incorporating test-time knowledge is
the key motivation of image reranking. It also distinguishes
our method from most of the previous approaches that focus
on feature learning. Note that we use pretrained and fixed
feature representation in most of our experiments.

Fig. 4 provides an intuitive example of the partial-
matching cases. In this example, the target images are some
crops of the query. We believe the global descriptor + cosine
similarity paradigm is not ideal for this case, as no matter
how large is the global descriptor, it contains irrelevant in-
formation that hinders the cosine similarity measurement.

Aggregated Selective Match Kernel (ASMK) [57] was
previously used as a global retrieval approach instead of an
image reranking approach. Specifically, it proposes to cre-
ate a set of new filters (i.e. visual codebook) by clustering.
It then remaps/aggregates the local descriptors of each im-
age into a global vector. We perform experiments on ASMK
as it also relies on local descriptors.

8. Ablation on the number of local descriptors

In the DELG model, for each image, a maximum of 1000
local descriptors are extracted for geometric verification. In

Query Image

Target Image 1 Target Image 2

Figure 4. An example where the target images are some crops of
the query. In this case the global descriptor + cosine similarity
retrieval paradigm may not be ideal.

our experiment, we observe that for most of the images,
the number of local descriptors is close to 1000. For ex-
ample, on the sampled GLDvV2 training set, the query and
gallery sets of Revisited Oxford (ROxf) [46], DELG ex-
tracts 955/759/987 local descriptors per image on average.

We perform an ablation experiment by setting the max-
imum number of local descriptors used for each image to
different values. The DELG model [10] used in this exper-
iment is pretrained on the “v2-clean” split of Google Land-
marks v2 (GLDv2) [63]. For purposes of comparison, we
include the results of geometry verification (GV) and the
proposed method (RRT). We report the mAP scores on Re-
visited Oxford (ROxf) in Table 8.

Both GV and RRT benefit from using more local descrip-
tors in general. Nevertheless, the performance of RRT sat-
urates at 500 local descriptors. As the local descriptors are
extracted from seven image scales, we conjecture that in
each image there are descriptors extracted from the same
location, thus providing duplicate information. To verify
this, we compute the number of distinct local descriptors
extracted from different grid locations. In particular, we as-
sign each local descriptor x; ; to a grid location (gu, gv) by
(gu, gv) = (|u/16],|v/16]). Here (u,v) is the coordi-
nate of x; ; provided by the DELG model, 16 is the stride of
the convolutional feature map where x; ; is extracted from.
We then group the descriptors sharing the same grid loca-
tion as a distinct descriptor. We observe that, the number
of distinct local descriptors is significantly smaller than the
number of all local descriptors per image. For example, on
the sampled GLDv?2 training set, the query and gallery sets
of Revisited Oxford (ROxf), the numbers of distinct local
descriptors per image are 585/465/655 on average.

When using the same number of local descriptors, RRT
outperforms GV in four of the six experiments on the
Medium setup, and consistently outperforms GV on the
Hard setup.



# Local Medium Hard
Desc. GV RRT GV RRT

200 72.1  76.7 48.3 58.9
400 75.2  77.6 53.8 58.6
500 75.7 781 53.4  60.2
600 74779 55.9  59.6
800 779 76.9 56.7 574
1000 78.3 78.1 57.9 60.4

Table 8. Ablation on the number of local descriptors used per im-
age. We compare the proposed Reranking Transformer (RRT)
model to geometric verification (GV) on Revisited Oxford [46].
The mAP scores on the Medium and Hard setups are reported.

Method R@1 R@Q10 RQ100
Global-only 32.8 454 60.5
SuperGlue [52] 455 546 60.5

RRT (w pos, frozen) 473 565 60.5
RRT (w/o pos, frozen)  50.2 57.9 60.5
RRT (w/o pos, finetuned) 51.9 59.0 60.5

Table 9. Comparison to the pretrained SuperGlue model [52] on
Stanford Online Products [55], using SuperPoint [17] as the CNN
backbone. The SuperGlue model is pretrained on ScanNet [16].
The R@K (K =1, 10, 100) scores on the SOP [55] test set are
reported. Note that as only the top-100 neighbors are reranked,
the R@100 scores remain unchanged for all the models.

9. SuperPoint as the CNN backbone.

In the main paper, we compare Reranking Transformer
(RRT) with SuperGlue [52] on Revisited Oxford/Paris, but
the feature extractors used for the two models are different:
ResNet50 for RRT, SuperPoint [17] for SuperGlue. In this
experiment, we use SuperPoint [17] as the feature extractor
for RRT, so that it has the same backbone architecture as
SuperGlue. We compare the new model with SuperGlue on
Stanford Online Products [55]. We also explore finetuning
the SuperPoint backbone (we tried finetuning SuperPoint
on Google Landmarks v2-clean [63] but found it requires
much more computing resources than we can afford). The
SuperGlue model in this experiment is pretrained on Scan-
Net [16]. ScanNet is a large-scale dataset that contains 2.5
million images of 1513 indoor scenes. Both SuperGlue and
our method take a 320x320 grayscale image as input. We
extract the global descriptor by averaging all the local re-
sponses, and sample the top-500 local descriptors for all the
models. We also investigate the benefit of using the position
embedding for this task. The training and evaluation set-
tings remain the same as in the SOP experiment presented
in the main paper. We do not finetune SuperGlue on SOP as
SOP does not include pixel-level annotations.

Method Desc. #local Desc.  Medium Hard
etho version desc. dim. ROxf RPar ROxf RPar
DELG global R101-v1 0 - 73.2 824 51.2 64.7
GV R101-v1 1000 128 785 829 593 655
SuperGlue SuperPoint 500 256 74.6 825 51.7  62.5
SuperGlue SuperPoint 1024 256 76.9 829 572 64.7
RRT (ours) R101-vl 500 128 78.8 832 625 684
DELG global R101-v2-clean 0 - 76.3 86.6 55.6 724
GV R101-v2-clean 1000 128 81.2 87.2 64.0 72.8
SuperGlue SuperPoint 500 256 77.1 86.8 555 69.3
SuperGlue SuperPoint 1024 256 79.7 87.1 62.1 71.5
RRT (ours)  R101-v2-clean 500 128 799 87.6 64.1 76.1

Table 10. Comparison to geometric verification [44] and Super-
Glue [52] on Revisited Oxford/Paris [46] using ResNet101 [26]
as the backbone. The SuperGlue model is pretrained on
MegaDepth [31] with SuperPoint [17] as the backbone. The mAP
scores on the Medium and Hard setups are reported.

As shown in Table 9, reranking by either SuperGlue or
RRT can significantly improve the retrieval performance.
RRT outperforms SuperGlue with a frozen SuperPoint
backbone. Interestingly, RRT does not benefit from the
position embedding in this task, as is also the case in the
DELG experiment. On the other hand, we observe that the
position embedding is helpful in the SOP experiment of the
main paper, where the descriptors of all the grid positions
are used. We conjecture that the keypoints sampling may re-
sult in imbalanced sampled positions that potentially hinder
the training. Finally, finetuning the SuperPoint backbone
leads to the best performance.

10. ResNet101 as the CNN backbone.

Following [10], we perform experiments using
ResNet101 as the CNN backbone. We train the Reranking
Transformer on two extra sets of image descriptors: the
DELG R101 descriptors pretrained on Google Landmarks
(GLD) vl [39] and v2-clean [63]. The training and
evaluation settings remain the same as the main experiment
on ResNet50, except that we also clip the gradient with
a maximal norm of 0.1, and find that it can stabilize the
training and lead to better performance. Here we compare
our model with geometry verification [44] and Super-
Glue [52] (pretrained on MegaDepth [31]) on Revisited
Oxford/Paris [46], as shown in Table 10.

When evaluated on the “v1” descriptors, our method per-
forms favorably to both geometry verification and Super-
Glue on all the settings. When evaluated on the “v2-clean”
descriptors, our method is inferior to geometry verification
on ROxf-Medium but performs favorably to geometry ver-
ification and SuperGlue on the rest settings.



Figure 5. Visualization of the correspondences estimated by a
trained RRT model (RRT-R50-v2-clean). Each row shows a pair
of matching images. Two keypoints with the same color and scale
are considered as a correspondence.

11. Visualizing the correspondences

Following the previous instance recognition [58] and im-
age matching [52] works, we visualize the correspondences
learned by RRT in Fig. 5. We extract the attention scores
from the last transformer layer (i.e. Z) of RRT. Correspon-
dences are computed by solving a linear sum assignment
problem [1] using the attentions as the affinity. The exam-
ples show that RRT is not good at learning the pixel-wise
correspondences of keypoints. It also indicates that rather
than estimating the local correspondences, RRT learns dis-
tinct knowledge to compute the similarity of images.

12. Limitation

Interpretability. Compared to the homography that ex-
plicitly models the alignment of the image-pair, the simi-
larity score predicted by our model is less interpretable. In
the future, we’d like to extend the work to learning more
visual relation concepts, e.g. homography, dense matching,
optical flow, which may lead to more interpretable results.

Domain shift. In the DELG [10] experiment, our
method is trained on Google Landmarks v2 [63] and tested
on Revisited Oxford/Paris [46]. In the SOP [55] experi-
ment, the training and test sets have no overlapping instance
categories. Both experiments demonstrate that the proposed

Reranking Transformer can transfer the knowledge across
different instance categories to a certain extent. On the other
hand, similar to all learning-based approaches, our method
might have difficulty in handling large domain shifts. It is
also a major challenge for most of the recent approaches as
another key component of the image retrieval pipeline, the
feature extractor, may also suffer from domain shift. Learn-
ing transferable feature representation/matching could be an
interesting topic for future research.

13. More qualitative examples

In Fig. 6, we provide qualitative examples on Stanford
Online Products [55]. Here, we compare the results from
the global-only model (CO) and the proposed model (CO +
RRT (finetuned)). In particular, we showcase the examples
of rigid objects (e.g. coffee maker, kettle) and deformable
objects (e.g. stapler, lamp). The proposed method outper-
forms the global-only retrieval on challenging cases such as
partial-matching (example (A)(C)(D)), articulated objects
(example (E)(F)), and irrelevant context (example (B)).

In Fig. 7, we provide reranking examples produced by
geometry verification and the proposed Reranking Trans-
former on Revisited Oxford/Paris [46]. It is shown that,
compared to geometry verification, the proposed method
performs favorably when large viewpoint variations are
present. For example, the queries in example (A) and (B)
represent the same landmark but exhibit a large viewpoint
change. While geometry verification predicts two different
sets of top neighbors, our model predicts the same set of
top ranked images for the two queries. Example (E) and (F)
show failure cases of our model.
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