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Figure 1: From an input RGB image, we learn a shared image-CAD embedding space by embedding patches of detected
objects from the RGB images and patches of CAD models. By establishing patch-wise correspondence between image and
CAD, we can establish object correspondence based on part similarities, enabling more effective shape retrieval for new
views, as well as robust top-k CAD retrieval. Our patch-based retrieval for a similar 3D CAD representation coupled with
pose prediction results in a CAD-based 3D understanding of the objects in the image.

Abstract

3D perception of object shapes from RGB image in-
put is fundamental towards semantic scene understand-
ing, grounding image-based perception in our spatially 3-
dimensional real-world environments. To achieve a map-
ping between image views of objects and 3D shapes,
we leverage CAD model priors from existing large-scale
databases, and propose a novel approach towards con-
structing a joint embedding space between 2D images and
3D CAD models in a patch-wise fashion – establishing cor-
respondences between patches of an image view of an object
and patches of CAD geometry. This enables part similarity
reasoning for retrieving similar CADs to a new image view
without exact matches in the database. Our patch embed-
ding provides more robust CAD retrieval for shape estima-
tion in our end-to-end estimation of CAD model shape and

pose for detected objects in a single input image. Experi-
ments on in-the-wild, complex imagery from ScanNet show
that our approach is more robust than state of the art in
real-world scenarios without any exact CAD matches.

1. Introduction

Fundamental to many visual perception tasks is an un-
derstanding of the decomposition of an observed scene into
its constituent objects, and the semantic meaning of these
objects – including class categorization, segmentation, and
structural 3D understanding. In recent years, advances in
2D object recognition and localization have achieved im-
pressive success in image-based understanding, even from
only single image input [22, 18, 46, 21]. Such recognition
and perception constrained to the image domain unfortu-
nately remains limited towards understanding 3D attributes
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such as shape and structure, which are not only fundamen-
tal towards a comprehensive, human-like understanding of
objects in a scene, but towards many applications such as
autonomous exploration and interaction of an environment.

To address 3D perception from a single RGB image, we
have recently seen several methods proposed taking a gen-
erative approach towards reconstructing the observed ob-
jects’ geometry [19, 42, 14]. These methods show promis-
ing results in attaining 3D understanding of objects in com-
plex scene imagery, but take a low-level approach towards
geometric reconstruction, constructing voxel-by-voxel or
vertex-by-vertex, often resulting in noisy or oversmoothed
geometry, or geometry not representing a valid object in-
stance (e.g., missing a leg on a chair). In contrast, several
approaches have taken a CAD-based prior for representing
the 3D structure of the objects seen in an RGB or RGB-D
observation, by retrieving and aligning CAD models from
a database similar to the observed objects [41, 33, 2, 30].
This CAD prior enables representation of each object with a
clean, complete 3D mesh known to represent valid instances
of objects and able to be stored compactly for potential
downstream applications. Unfortunately, such a retrieval-
based approach tends to struggle with generalization, in par-
ticular when a new observed image of an object does not
exactly match any CAD model in the dataset.

We observe that in these challenging scenarios, various
part similarities can be leveraged to find a similar shape.
Thus, we propose Patch2CAD, which constructs a joint em-
bedding space between images and CAD models based on
encoding mid-level geometric relations by establishing sim-
ilarity of patches of images to patches of object geome-
try. These correspondences can be aggregated into CAD
prediction by majority voting. This enables CAD retrieval
based on the predominant part similarities, enabling im-
proved generalizability for CAD retrieval to reconstruct the
shapes of objects seen in an image.

To achieve a 3D understanding of object structure from
a single RGB image, we first detect object locations in
2D, then construct our patch-based image-CAD embedding
space enabling voting for retrieval of a similar CAD model,
and predict the pose of that CAD in the image. Patch2CAD
is trained end-to-end to comprehensively establish an effec-
tive image-CAD embedding.

Our main contribution is a patch-based learning of a joint
embedding space between the two very different domains
of 2D images and 3D CAD models, which establishes more
robust, part-level-based correspondences (see Figure 1). We
demonstrate that this patch-wise embedding enables mean-
ingful CAD retrievals for image observations not just in the
top nearest neighbor, but for top-k retrieval. As a result, we
achieve more effective association of CAD shapes to im-
ages observations of objects with no exact CAD matches
in a candidate database, as is typically the case for real-

world scenarios. We demonstrate Patch2CAD’s effective
3D shape perception on both ScanNet [11] and Pix3D [52]
datasets. In particular, on the complex, in-the-wild images
from ScanNet [11], Patch2CAD exhibits notable advantage
to its patch-based approach, outperforming state of the art
by 1.9 Mesh AP (22% relative improvement).

2. Related Work

Scene understanding is one of the fundamental prob-
lems in computer vision. A vast amount of literature on
the topic has forwarded the field in understanding of 2D
images: for example popular methods for object detec-
tion [18, 46, 45, 37, 36, 32, 15, 58], semantic segmenta-
tion [38, 23] and instance segmentation [21, 31]. Our ap-
proach is inspired by these 2D image understanding ap-
proaches, but instead focuses on producing a 3D representa-
tion of the objects observed in a single image, providing ad-
ditional geometric, structural information about the scene.

Single-View Object Reconstruction. Recently, we have
also seen remarkable progress in reconstructing the 3D
shape of an object from a single RGB image. Such work
has also been driven by shape representations: earlier re-
search focused on dense volumetric grids [10, 57], while
point clouds [16, 59] and hierarchical structures such as oc-
trees [53, 47] offered more memory and computationally
efficient representations. Mesh-based approaches offer an
efficient surface representation along with adaptive struc-
ture, but tend to rely on strong topological assumptions,
taking a deformation-based approach from a given template
mesh [55, 56]; generative approaches without relying on
templates tend to be limited to small numbers of vertices
[12]. Implicit functions have recently seen notable success
in single-object shape reconstruction, characterizing shape
by prediction an occupancy or signed distance field value
for a location in space [40, 44, 49]. Approaches to predict
convex primitives have also been shown to produce promis-
ing results [13].

While these approaches operated on images encompass-
ing only one object, Mesh R-CNN pioneered an approach
for generating the shapes for multiple objects seen in an
RGB image, which more closely represents real-world per-
ception scenarios. Several methods have now furthered de-
velopment on this task; Mask2CAD [30] proposed a CAD
retrieval-based approach towards understanding the shape
and pose of objects, and Nie et al. [42] a mesh generation
approach for object reconstruction based on initial deforma-
tion from a sphere followed by edge refinement to handle
local topology errors. Our approach also tackles shape re-
construction for the multiple objects seen in an RGB image,
leveraging CAD retrieval and focusing on the construction
of a robust image-CAD embedding space.



CAD-Based Retrieval and Alignment. An alternative to
generative methods for reconstruction is to leverage CAD
model priors to represent objects in a scene, and retrieve and
align them to achieve a scene reconstruction composed of
clean, compact mesh representations of each object. Early
work in computer vision demonstrated the use of existing
geometric models as priors [6, 9, 48]; the current availabil-
ity of large-scale CAD model datasets (e.g., ShapeNet [7],
Pix3D [52]) has revitalized this approach. Various methods
have been introduced for CAD model retrieval and align-
ment to RGB-D scans [50, 29, 33, 5, 2, 20, 27], including
end-to-end learning pipelines [3, 4], as well as CAD align-
ment to an image assuming that shape is given [35, 17, 24].

From a single image, Aubry et al. [1] develop hand-
crafted HOG-based features to match textured renderings of
CAD models to images in order detect chairs; our approach
learns to associate CAD patches with image patches based
on a more general learning of purely geometric correspon-
dence, enabling learning geometric structures as well as the
use of geometry-only CAD databases. More recently, Iza-
dinia and Seitz [28] and Huang et al. [25] apply analysis-by-
synthesis approaches for CAD model alignment and scene
layout estimation from a single image, leveraging a costly
optimization (minutes to hours) for each input image.

Shape retrieval methods also show promising results by
learning joint RGB-CAD space embedding [54, 34, 39, 30].
Li et al. [34] propose a method to construct a joint em-
bedding space between RGB images and CAD models, en-
abling CAD model retrieval from images; the embedding
space is first constructed from shape descriptors, and then
image embeddings are optimized for into the shape space.
Massa et al. [39] learns to adapt object RGB features to
CAD space with a projection layer for object instance de-
tection. Kuo et al. [30] jointly optimize for a shared embed-
ding space between image views and CAD models in order
to perform retrieval for multiple objects seen in an image.
Such techniques can be prone to overfitting, as an object
shape obtains a single, global representation, and a new im-
age may not contain exact CAD matches but rather various
part similarities. Our approach addresses a similar problem
statement in learning a mapping between images and CAD
models; however, to better generalize to new observations
with inexact matches, leveraging a majority part similarity
to more robustly retrieve CAD models for reconstruction.

3. Method

3.1. Overview

From a single input RGB image, we aim to understand
the observed scene by predicting the object semantics and
3D structures, by retrieving and aligning similar CAD mod-
els to the observed image. Objects are first detected in the
2D image, represented by their 2D bounding box, class la-

bel, and 2D instance segmentation mask. We then aim to
learn a shared embedding space between the image repre-
sentation of the objects and CAD models, in order to re-
trieve a similar CAD model representing the 3D structure
of a detected object. In a separate pose-prediction head,
we simultaneously regress the pose of the CAD model that
aligns it with the image observation.

A shared embedding space between image and CAD can
be difficult to effectively construct due to the strong differ-
ences between the two domains. While mapping image ob-
servations of an object together with the full CAD models
into a shared embedding space has shown promise [34, 30],
this approach tends to struggle with generalization to views
of objects without exact matches in the CAD database.
Thus, rather than constructing an embedding space which
maps similar image observations of an object together with
full CAD models, we aim to learn an embedding space
which captures not only global semantic similarity between
image and CAD, but mid-level and low-level geometric
similarities. We propose to learn the embedding of object
parts and CAD parts by constructing a shared feature space
where patches of object images lie close to similar patches
of CAD objects. This enables reasoning about similar parts
for retrieval in a scenario without exact CAD matches for a
new image view, enabling more robust CAD reconstruction.

3.2. 2D Object Detection

We leverage a state-of-the-art 2D object detection and
instance segmentation backbone to inform our 3D shape
reasoning. From an input RGB image, 2D object bound-
ing boxes and class labels are localized using Reti-
naNet [36], and instance segmentation masks are predicted
using ShapeMask [31]. The learned features from the 2D
object detection guide our shape prediction; for a detected
object k, we use the predicted box for an object to crop fea-
tures fk corresponding to the object, and multiply with the
instance mask prediction mk. We then use mk ◦ fk as input
for the image-shape embedding as well as pose alignment.

3.3. Patch-Based Joint Embedding Learning

Our approach centers around constructing a patch-based
joint embedding space between the two domains of image
observations of an object and 3D CAD model representa-
tions of objects. While humans can establish perceptual cor-
respondence between images and CAD models, it is chal-
lenging to bridge the domains due to strong differences in
representation: in contrast to a 3D geometric CAD model,
an image is view-dependent, colored, and contains light-
ing and material effects. Moreover, in real-world scenar-
ios, we typically do not have exact CAD matches to the
image views as groundtruth annotation. We construct an
embedding space between image patches and CAD patches,
to enable reasoning about mid-level and low-level structural
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Figure 2: Our goal is to learn a shape embedding space for retrieval by leveraging patch correspondence between RGB and
shape. At train time, we sample RGB patches from object regions and rendered shape patches from the object class. We
shape the embedding space with a contrastive loss, and regularize the learning with surface normal matching so that positive
patches have high geometric similarity, while negative patches come from non-matching shapes with low geometric patch
similarity. This patch-wise construction establishes more robust correspondence for shape retrieval from images at test time.

similarities between objects, as many objects can share sim-
ilarly structured parts while not matching exactly. Thus, we
can establish part similarities where a global object map-
ping can struggle to fulfill a complete object match. By
bridging the two domains in such a fashion, we can more
easily recognize similar geometric structures in a new ob-
servation of an object not exactly represented in the CAD
database.

Our patch-based joint image-shape embedding space is
visualized in Figure 2, and is constructed based on patches
of the image feature of an object and patches of rendered
CAD models to n canonical views {c0, ...cn−1} (similar
to a light-field descriptor [8]). The representation of CAD
models to their rendered views helps to reduce the domain
gap between 2D image and 3D shape; we use n = 16 views
with the canonical views determined by K-medoid cluster-
ing of the train views. To embed image and shape, we ex-
tract features from mk ◦ fk and sampled patches from the
rendered CAD views using embedding modules composed
of a series of 2D convolutions, resulting in f im and {f cad

j },
respectively. Each embedding network for image and CAD
features is structured symmetrically, without shared weights
as they operate on different domains. We then construct
the patch embedding space by randomly sampling anchor
patches from f im, which we denote as f im

a , and then estab-
lish positive and negative similarity with the {f cad

j }. In all
our experiments, we use a patch size of 1/3 RGB-ROI or
rendered shape image size. The embedding space is con-
structed with a noise contrastive estimation loss [43]:

Le = −
∑

a∈A
log

Dp(a)

Dp(a) + CDn(a)
(1)

Dp(a) =
1

|P (a)|
∑

p∈P (a)

exp (D(f im
a , f

cad
p )) (2)

Dn(a) =
1

|N(a)|
∑

n∈N(a)

exp (D(f im
a , f

cad
n )) (3)

where Le denotes the total loss, A the set of all anchor
(query) patches, P (a) and N(a) the positive and negative
matches for the query patch a, C = 24 a weighting value,
D(x, y) = (x/||x||)T (y/||y||)/τ with τ = 0.15. Dp(a)
and Dn(a) are the mean exponentiated weights of positive
and negative pairs. To further improve learning efficiency,
we exclude empty RGB and shape patches in the embed-
ding loss, as determined by the rendered binary masks.

Our overall loss is similar to Mask2CAD, but because we
operate on patch-level correspondence, we removed hard-
positive mining due to relaxed constraints on patch match-
ing vs. exact instance matches. The formulation of our
loss is different from standard InfoNCE loss because we
have multiple positives (shape rendering patch) for each
query patch. Thus, we need to balance the ratio of posi-
tives/negatives per batch via the C parameter.

Patch similarity for embedding construction. To train
our embedding construction, we establish patch similar-
ity for matching and non-matching patches between image
and CAD patches by estimating their geometric similarity.
We use rendered normals from the CAD models (with nor-
mals represented in canonical space) and their correspond-
ing patches to represent local geometry, and for the image,
we use patches of the rendered normals of the ground truth
corresponding CAD model. For each patch of normals, we



compute its descriptor by a self-similarity histogram, evalu-
ated as the histogram over all pairwise angular distances of
the normals in the patch; histograms are normalized to sum
to 1. This allows us to estimate orientation-independent ge-
ometric similarity. We then measure the difference between
two patches of normals by IoU of their self-similarity his-
tograms. Positive matches to a query are determined by
patches corresponding to a ground truth CAD annotation
with self-similarity IoU > θp, and negative matches by
patches corresponding to non-corresponding CAD models
with self-similarity IoU < θn. Since a ground truth CAD
annotation may contain patches that are dissimilar to the
query patch and non-ground truth CAD models may con-
tain patches that are similar to the query, we empirically
found that double thresholds helped to avoid such associa-
tions. We set θp, θn = 0.4, 0.6 in our implementation.

We additionally employ hard negative mining by sam-
pling the top negative patches by distance to the query.
During training, we take 16× the number of objects per
image for hard negative examples. This enables for bet-
ter distinguishing on difficult cases, and an improved em-
bedding space. We set |N(a)| = 1024 for each anchor
patch. Regarding hard-positive mining, we observe that it
hurts the performance with a fixed top-K mining due to un-
stable number of positive pairs per batch. To remedy this,
we average the weights of all positive pairs and treat them
as one positive sample Dp(a), which leads to significantly
more stable learning and better performance.

3.4. Patch-Based Retrieval

Since our joint embedding of images and shapes is con-
structed patch-wise, we can leverage many patch retrievals
for a more robust, comprehensive shape retrieval. We use
randomly sampled patches from CAD renderings to con-
struct the database for retrieval. Then for a detected ob-
ject in an image, we randomly sample Kq patches from
f im, and for each patch, we retrieve Kr patches from the
database. The Kr retrieved patches are then used to decide
the corresponding CAD model of the patch query by ma-
jority voting, resulting in Kq CAD models for each patch;
the final shape retrieval is obtained by majority vote of
the Kq patch-retrieved CADs, excluding those retrieved by
patches fully outside the predicted instance mask. While an
image-CAD mapping based on full image view of the ob-
ject and whole CAD model might struggle to retrieve from
a global similarity perspective under inexact matches, our
patch-based shape retrieval encourages the retrieved shapes
to more comprehensively match the image.

3.5. Pose Prediction

We simultaneously predict the pose of the 3D shape cor-
responding to its 2D image observation in a separate branch.
Similar to [30], we predict the rotation of the shape by a

rotation classification followed by a regression refinement,
and the translation as an offset from the 2D bounding box
center. To obtain the estimated rotation, use rotation bins
computed by K-medoid clustering of the train object ro-
tations as quaternions, and predict the bin using a cross
entropy loss, followed by predicting a refinement offset
quaternion with a Huber loss [26]. Translation is estimated
as an offset from the predicted bounding box center as a ra-
tio of the box dimensions, and optimized with a Huber loss.

3.6. Implementation Details

Our ShapeMask [31] instance segmentation backbone
(ResNet-50-FPN) is initialized with COCO pretraining, and
our embedding for both image and CAD renderings uses a
ResNet-18-FPN backbone with random intialization. We
train our instance segmentation for amodal bounding box
prediction instead of modal boxes in the standard COCO
setup, as this can capture more consistent context and pro-
vides more stable guidance for the pose translation estima-
tion. We additionally apply data augmentation to improve
generalization, including HSV color jitter, ROI box jitter,
and image scale jitter during training.

We train our approach for 36K iterations using a batch
size of 256 on ScanNet, which takes ≈ 2 days. The learn-
ing rate is initialized to 0.16 and decreased by 10x at 24K
and another 10x at 30K iterations. In terms of inference
time, Patch2CAD takes≈ 74ms per image 1, 58ms model +
16ms retrieval (vs. Mask2CAD≈ 60ms), with unoptimized
parallel patch retrievals.

4. Experiments

We evaluate our approach on the ScanNet dataset [11],
which contains challenging real-world imagery of multiple
objects per image in cluttered indoor environments, with
many occlusions, partial views and varying lighting condi-
tions. The ScanNet dataset contains 1513 indoor scenes; we
use the Scan2CAD [2] annotations of ShapeNet [7] CAD
models to the ScanNet scenes to provide ground truth CAD
correspondences for training and evaluation. Note that there
are no exact matches between the CAD models to the real-
world imagery, as is reflective of many real-world applica-
tion scenarios. Following the Mask2CAD [30] evaluation
protocol on ScanNet, we use the 25K frame subset provided
by the dataset for training and validation, containing 19387
train and 5436 validation images, respectively.

In addition, we evaluate our approach on the Pix3D
dataset [52], which contains 10, 069 images of indoor furni-
tures labeled with corresponding CAD models. We use the
train/test split by Mesh R-CNN [19] for direct comparison.

1Measured on Pix3D for comparison with Mask2CAD [30].



ScanNet 25K AP AP50 AP75 bed sofa chair cabinet trashbin display table bookshelf

Mask2CAD [30] 8.4 23.1 4.9 14.2 13.0 13.2 7.5 7.8 5.9 2.9 3.1

Patch2CAD (Ours) 10.3 26.0 6.6 18.8 12.4 17.6 7.5 8.6 10.8 3.3 3.3

Table 1: Performance on ScanNet [11]. We report mean APmesh and per-category APmesh.

Figure 3: Qualitative results on ScanNet [11] images, in comparison with state of the art Total3D [42] and Mask2CAD
[30]. Our patch-based shape embedding results in more accurate shape retrieval as well as more robust retrieval for strongly
occluded objects (see rows 3, 4, 9, 10). Note that different colors denote distinct object instances in the visualization.

Evaluation metrics. We adopt previously established
metrics for both 2D and 3D evaluation. For evaluating 2D

outputs, we employ the predominant metrics from 2D ob-
ject recognition: APbox and APmask on the 2D detections



ScanNet 25K AP AP50 AP75 bed sofa chair cabinet trashbin display table bookshelf

Total3D [42] 1.4 6.3 0.2 1.9 4.3 1.5 0.8 0.1 0.0 0.7 2.1

Mask2CAD [30] 10.5 33.3 4.5 13.9 13.1 14.8 11.6 10.8 8.8 4.1 7.4

Patch2CAD (Ours) 12.9 37.5 6.6 14.5 11.6 18.8 12.4 13.0 19.0 5.7 8.1

Table 2: Performance on ScanNet [11] using groundtruth 2D detections. We report mean APmesh and per-category APmesh.

Ours

Mask2CAD

Ours

Mask2CAD

Input
Image

Detected
Object

GT
Shape

Top-8 Nearest Neighbor

Figure 4: Top-k nearest neighbor retrievals from detected objects in ScanNet [11] images with Scan2CAD [2] ground truth
CADs, in comparison to Mask2CAD [30] (same detection inputs). Our approach achieves a more consistent shape embedding
space, enabling robust top-k retrieval with structurally similar CAD associations for not only the top-1 nearest neighbor.

Method Patch Size Normals AP AP50
Mask2CAD [30] 1.0 8.4 23.1

Patch2CAD (Ours) 1.0 V 9.4 24.7
Patch2CAD (Ours) 0.5 V 9.5 24.5
Patch2CAD (Ours) 0.33 V 10.3 26.0
Patch2CAD (Ours) 0.25 V 10.0 25.8

Table 3: Performance vs patch size and use of normals. 1.0
patch size corresponds to the full object size.

of objects. We use the newly introduced APmesh met-
ric [19] to evaluate the 3D shape and pose predictions for
the 3D objects. Similar to Mask2CAD [30], we evaluate
APmesh metrics at IoU 0.5 (AP50) at IoU 0.75 (AP75), as
well as AP as the mean over AP50-AP95, using 10 IoU
thresholds between 0.5 and 0.95. For more consistent re-
producibility, we report our evaluations as an average of 2
independent runs. The thresholds used in F-scores follow
[30] on ScanNet and [19, 30] on Pix3D.

Comparison to the state of the art. In Table 1, we eval-
uate our 3D object understanding from a single image in
comparison to Mask2CAD [30] on the ScanNet [11] bench-
mark proposed by Mask2CAD. Our improvement on Mesh
AP50 is larger than AP75, showing that Patch2CAD main-
tains more robust shape estimate even when it retrieves non-
exact matches. Mask2CAD also takes a retrieval-based ap-
proach, but maps full image observations of an object to

entire CAD models, which tends towards overfitting and
struggles with new test images whose objects do not ex-
actly match the database; our patch-level embedding en-
ables more robust retrieval and alignment by establishing
correspondence with similar object parts rather than the
more strict requirement of the full object. Additionally, this
can help to retrieve and align objects that are occluded or
partially visible in the input image (see Figure 3).

What is the effect of patch-wise embedding learning on
representing shape geometry? In Table 1, we see that
our patch-based embedding improves a retrieval-based 3D
object reconstruction, in contrast to the whole-shape em-
bedding of Mask2CAD. We additionally evaluate our patch-
based embedding for retrieval given ground truth 2D de-
tections in Table 2, showing consistent improvement over
both the Mask2CAD retrieval and the mesh generation ap-
proach of Nie et al. [42]. Note that we use the training
scheme of Nie et al. on SUN RGB-D [51], as they use
scene layout information during training (similar to Scan-
Net, SUN RGB-D is also captured from real indoor scenes
with a PrimeSense-based sensor). Finally, we evaluate
Patch2CAD given ground truth 2D detections as well as
pose (i.e., evaluating shape only) in comparison with Nie
et al. [42] as well as Mask2CAD [30] in Table 4, using an
F-score for shape reconstruction evaluation. Even with a



ScanNet 25K Mean bed sofa chair cabinet trashbin display table bookshelf

Total3D [42] 52.4 58.8 72.6 69 41.5 38.9 35.9 44.4 58.4

Mask2CAD [30] 60.6 63.1 64.4 66.1 61.0 68.3 58.7 47.1 56.3

Patch2CAD (Ours) 63.8 64.3 62.0 68.1 59.9 71.6 73.9 51.9 58.9

Table 4: Mean F-score and category F-score on ScanNet [11] using groundtruth 2D detections and evaluating shape only.

Pix3D S1 AP AP50 AP75
Mesh R-CNN [19] 17.2 51.2 7.4
Mask2CAD [30] 33.2 54.9 30.8
Patch2CAD 30.9 51.7 28.2

Table 5: Performance on Pix3D [52] S1. We report mean
APmesh following [19, 30].

shape-only prediction, strong occlusions in the image views
can be challenging; Patch2CAD maintains more robustness.

Effect of patch size and use of surface normals. Table 3
analyzes various patch sizes and with/without surface nor-
mals. The first row corresponds to Mask2CAD; ours on the
fourth row. Our 1

3 patch basis and use of normals helps to
notably improve shape retrieval.

Comparison on Pix3D. Table 5 shows a comparison
with both generative and retrieval methods on Pix3D [52].
Pix3D presents a scenario with exact shape matches in
simpler scenes than ScanNet. Patch2CAD performs no-
tably better than Mesh R-CNN [19], and is competitive
with Mask2CAD [30], whose full object matching approach
well-suits the scenario with exact 3D matches.

How does a patch-wise embedding mold the space for
top-k retrieval? We evaluate our patch-based image-
CAD embedding space by analyzing the top-k nearest
neighbor CAD models retrieved for a given detected ob-
ject on the ScanNet validation set. We visualize the top-
8 retrieved CAD models for various image object detec-
tions in Figure 4. In contrast to the full-shape mapping
of image-CAD established by Mask2CAD, our patch-wise
embedding construction encourages more similarly struc-
tured CAD shapes to be voted for by the patches, resulting
in geometrically consistent top-k.

Quantitatively, we analyze our top-k shape retrieval by
evaluating the recall from the k retrieved shapes. We com-
pare with the state-of-the-art Mask2CAD [30] approach in
Figure 5, using k = 1 to 24. Our patch-based approach
consistently produces more accurate shape retrieval.
Limitations. While our Patch2CAD approach demonstrates
a more robust joint embedding space construction between
images and CAD models, there are various directions for
development. For instance, our patch-based retrieval can
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Figure 5: Shape retrieval comparison with Mask2CAD [30]

produce more robust CAD retrieval results, but cannot rep-
resent shapes that differ significantly from the database;
we believe a part-based synthesis or deformation approach
from our various patch retrievals holds promise. Addition-
ally, our approach tackles object shape and structure, but
does not represent the full scene geometry, which is an im-
portant direction towards comprehensive 3D perception.

5. Conclusion
In this paper, we present Patch2CAD, which establishes

patch-based correspondence between 2D images and 3D
CAD models for a robust construction of a shared em-
bedding space to map between the two domains. This
enables CAD-based understanding of the shapes of ob-
jects seen from a 2D image, representing each object as a
posed, lightweight, complete mesh. We demonstrate that
our patch-wise embedding learning can construct a more
meaningful embedding space for nearest neighbor retrieval,
and more robust shape estimation for complex real-world
imagery under many occlusions. We believe that this brings
understanding forward in bridging these domains of 2D-3D
as well as real-synthetic, which opens avenues in domain
transfer, content creation, and 3D scene understanding.
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Appendix A: Additional Top-K Retrieval
Qualitative Results

In Figure 6, we show additional qualitative results of our
Patch2CAD top-K retrieval vs Mask2CAD. We observe that
ours can retrieve better and more consistent shapes in the
top-K pool than Mask2CAD.

Appendix B: Additional Qualitative Results

In Figure 7, we show additional qualitative results of
Patch2CAD on ScanNet [11] images, with Scan2CAD [2]
targets. Ours is able to retrieve better matching shapes to
the groundtruth than Mask2CAD [30] or Total3D [42].

Appendix C: t-SNE embedding of Patch2CAD

We visualize several t-SNE embeddings in Figure 8,
where CAD patches can tend to cluster near each other
(there are many locally very similar patches), but also near
similar image patches (e.g., chair seat corner, tabletop).

Appendix D: Effect of the number of query
(Kq) and retrieved patches (Kr).

We use one model for all inference time ablation studies
in this section. All parameters are the same as the main
paper unless stated otherwise. The noise across independent
runs are ≈ 0.1 Mesh AP.

Table 6 analyzes query Kq patches per detection at test
time. We see that more patches result in better retrieval.

Kq 1 3 6 9 12
AP 9.2 9.8 10.2 10.3 10.2

Table 6: Mesh AP vs the number of query patches.

Table 7 shows improvement with retrieved Kr per test
query, due to robustness of voting when Kr is high.

Kr 1 3 6 12 24 48 96
AP 9.3 9.4 9.8 10.0 10.3 10.6 10.6

Table 7: Mesh AP vs the number of retrieved patches.
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Figure 6: Additional Patch2CAD Top-K retrival qualitative results on various ScanNet [11] images in comparison with
Mask2CAD.



Figure 7: Additional qualitative results of Patch2CAD (ours) on various ScanNet [11] images.



Figure 8: t-SNE embeddings of our patch-wise embedding
of images and CAD shapes (patches demarcated in red) for
the ‘chairs’ and ‘tables’ categories.


