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Abstract

We propose a deep neural network architecture to infer
dense depth from an image and a sparse point cloud. It
is trained using a video stream and corresponding synchro-
nized sparse point cloud, as obtained from a LIDAR or other
range sensor, along with the intrinsic calibration parame-
ters of the camera. At inference time, the calibration of the
camera, which can be different than the one used for train-
ing, is fed as an input to the network along with the sparse
point cloud and a single image. A Calibrated Backprojec-
tion Layer backprojects each pixel in the image to three-
dimensional space using the calibration matrix and a depth
feature descriptor. The resulting 3D positional encoding is
concatenated with the image descriptor and the previous
layer output to yield the input to the next layer of the en-
coder. A decoder, exploiting skip-connections, produces a
dense depth map. The resulting Calibrated Backprojection
Network, or KBNet, is trained without supervision by min-
imizing the photometric reprojection error. KBNet imputes
missing depth value based on the training set, rather than
on generic regularization. We test KBNet on public depth
completion benchmarks, where it outperforms the state of
the art by 30.5% indoor and 8.8% outdoor when the same
camera is used for training and testing. When the test
camera is different, the improvement reaches 62%. Code
available at: https://github.com/alexklwong/
calibrated-backprojection—-network.

1. Introduction

Sensor platforms designed to enable interaction with
physical space often include optical as well as range sen-
sors. From cars to phones, cameras are paired with active
sensors such as LIDARs, Sonars or Radars. We address the
case of a single camera and a single sensor that returns the
three-dimensional (3D) coordinates of a number of points
far fewer than the number of pixels in the RGB image. The
range sensor alone provides a sparse estimate of the Eu-
clidean geometry of the surrounding environment, but often
insufficient for planning in applications such as autonomous
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navigation or manipulation. We wish to leverage the com-
plementarity of the optical and range modalities to provide
a dense depth map, whereby a range value' is associated to
every pixel in the image (in the millions) as opposed to just
the LIDAR or radar returns (in the thousands).

Depth completion consists of mapping a single RGB im-
age and a sparse 3D point cloud onto a dense depth map,
which requires inferring a depth value where missing. This
can be done by means of regularization, or inductively using
previously observed data for scenes other than the present.
We assume we have available a training set consisting of
monocular videos, corresponding sparse 3D point cloud,
and intrinsic calibration matrix of the camera used for cap-
ture,” but without any manual annotation or ground-truth
dense depth i.e. unsupervised.

Our goal is to use the training set to learn a function that,
for a scene and camera not used for training, can map a
sparse point cloud registered to an image, along with the
matrix of intrinsic calibration parameters of the camera, and
produce a dense depth map associated with the test image.

We propose a novel deep neural network architecture that
leverages a sparse-to-dense (S2D) module and calibrated
backprojection (KB) layers. S2D is comprised of various
pooling and convolutional layers to yield a dense represen-
tation of the sparse points. A KB layer then maps camera
intrinsics, input image, and current depth estimate onto the
3D scene. This can be thought of as a form of spatial (Eu-
clidean) positional encoding of the image. Unlike previous
architectures, camera intrinsics are an input to our model,
as opposed to a fixed set of parameters in the training loss.
This allows us more flexibility to transfer the trained model
to sensor platforms other than that used for training.

Our network is trained unsupervised with the standard
Photometric Euclidean Reprojection Loss (PERL) i.e. the
absolute difference between a reconstructed image and the

IThe depth associated with the pixel is the Euclidean distance of the
closest point in the scene along the projection ray through that pixel and the
optical center. We assume the sensors to be calibrated and synchronized,
and in particular the intrinsic calibration matrix of the camera is known so
that pixel coordinates can be converted to Euclidean 3D coordinates.

2Typically, range and optical sensors are calibrated mechanically and
pre-registered, so extrinsic calibration is not needed.
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actual image measured at a time instant. We also penalize
the reconstruction error of the input sparse points and Total
Variation of the estimated depth map, a standard sparsity-
inducing prior to reduce the penalty for large depth changes
at adjacent pixels that straddle occluding boundaries. At
test time, no video is necessary and inference is performed
on each image and sparse point cloud independently.

These innovations allow us to improve the baseline [47]
and state of the art [45] by an average of 13.7% and 8.8%,
respectively, on outdoors (KITTI [41]), and 51.7% and
30.5% indoors (VOID [47]), when calibration is the same
for training and testing. When different calibrations are
used, our method generalizes better than the baseline and
state of the art by 83% and 62%, respectively, in relative
error. All of this is achieved with a smaller computational
footprint thanks to the inductive bias induced by KB lay-
ers, which allows us to use a smaller network than current
methods.

1.1. Related Work and Contributions

Depth completion is a form of imputation, which
requires regularization that hinges the assumption that
“nearby points” should be assigned “similar” (depth) val-
ues. Methods differ in the choice of topology i.e. what
points should be considered “nearby,” and how to combine
the values of such points to impute the missing depth value.

Generic Image-Based Regularization. In image topol-
ogy, nearby points correspond to adjacent pixels. This is
not a good choice, for their depths can be arbitrarily dif-
ferent at occluding boundaries. In image segmentation, the
RGB values are used to define a topology to partition the
image domain into connected regions of nearby points, pu-
tatively corresponding to “objects.” The topology induced
by (color) values can be exploited by minimizing Total Vari-
ation (TV [36] and “Color TV” [1]) while trying to repro-
duce the image itself. We adopt TV as a generic regularizer
since the statistics of natural range images are very similar
to that of natural (intensity) images [29], whereby the gradi-
ent distribution is highly kurtotic, corresponding to homo-
geneous smooth regions separated by sharp boundaries.

Data-driven Regularization. “Closeness” among pix-
els can be defined not just within the same image, but across
different images in the training set. In this case, the regu-
larity criterion is not explicit, but implicit in the inductive
bias used for training. Before training starts, the bias is en-
coded in the training loss (L' prediction error), the generic
regularizers (TV), the training set, and the choice of archi-
tecture and optimization. After training is completed, all
these biases are burnished in the parameters (weights) of
the trained model, which inform the prediction of our depth
map and therefore act as a regularizing mechanism.

Among data-driven methods for depth completion, many
are supervised. Early works cast depth completion as com-

pressive sensing [6] and as morphological operators [7].
Recent works focused on network operations [9, 19] and ar-
chitectures [3, 26, 41, 50] to effectively deal with the sparse
inputs. [26] proposed an early fusion architecture while
[20, 50] used late fusion to process each data modality sep-
arately. [19] performed joint concatenation and convolu-
tion to upsample the sparse depth. [3] proposed a 2D-3D
fusion network while [24] used a cascade hourglass net-
work. [4] used a convolutional spatial propagation network
and [30] leveraged non-local spatial propagation. Whereas,
[9, 8, 33, 34] learned uncertainty of estimates, [42] lever-
aged confidence maps, and [32, 49, 51] used surface nor-
mals for guidance. Like us, [28, 37, 53] proposed light-
weight networks suitable for use with SLAM/VIO systems.

All of these methods require ground truth for train-
ing, which is often unavailable and, when available, pro-
hibitively expensive [41]. Hence, these methods are limited
to offline training. But even if ground truth were available
online, most of these methods employ complex architec-
tures with many layers and parameters, e.g. 25.84M for
[30], 53.4M [32], and 28.99M [49], and thus are not suit-
able for learning online. Instead, we propose to learn dense
depth from the virtually limitless amount of un-annotated
images and sparse point clouds via a predictive cross-modal
validation criterion. Our proposed architecture only uses
6.9M parameters and our choice of supervision allows us to
continuously learn even after the system is deployed.

Unsupervised/Self-supervised depth completion as-
sumes stereo images or monocular videos to be avail-
able during training. Both stereo [39, 50] and monoc-
ular [26, 45, 46, 47] training paradigms leverage sparse
depth reconstruction and photometric reprojection error as
a training signal by minimizing photometric discrepancies
between the input image and its reconstruction from other
views. [26] used Perspective-n-Point [23] and RANSAC
[12] to align consecutive video frames. However, [26] does
not generalize well to indoor scenes with many textureless
surfaces. [50] learned a depth prior conditioned on the im-
age by pretraining a separate network on ground truth from
an additional dataset. As mentioned earlier, this is not scal-
able; also, using a network trained on a specific domain (e.g.
outdoors) as supervision will not generalize (e.g. indoors).
Unlike [50], our method does not require ground truth and
is not limited to a specific domain. [25, 45] leverage ad-
ditional synthetic datasets, which require dealing with sim-
to-real; our method is able to achieve the state-of-the-art
without needing access to additional data.

The challenge of depth completion is precisely the spar-
sity, which renders convolutions ineffective as the activa-
tions of early layers tend to be zeros as well. To obtain a
denser representation, early layers must propagate (or den-
sify) the signal. As a result, [26, 39, 50] employed very
deep networks with many layers and parameters in order to



learn the map from sparse depth and image to dense depth.
To handle this problem, [47] approximated the scene with a
hand-crafted mesh, but it is not differentiable and prone to
errors in regions with very few points or complex structures.
[45] proposed spatial pyramid pooling (SPP), but their max
pooling layers decimated details on closer objects. Instead,
we propose a fully differentiable sparse-to-dense module
that learns the trade-off between density and detail to retain
both near and far structures.

Our work goes counter to the trend of forgoing inductive
bias, i.e. learning everything with generic architectures like
Transformers [43], including what we already know such as
basic Euclidean geometry. Our model has a strong induc-
tive bias in our calibrated backprojection layer, which incor-
porates the calibration matrix directly into the architecture
to yield an RGB representation lifted into scene topology
via 3D positional encoding. This may seem futile as we
could just add intrinsics to the long list of parameters to
be learned [15]. However, unlike semantic retrieval, spatial
inference requires identifiability: There is one true scene
in front of us, and unless information about calibration is
available and properly exploited, inference yields one of in-
finitely many depth maps that are equally good at predicting
the next frame in the training set. Since there is no supervi-
sion, calibration mediates the relation between the predic-
tion error and the true depth. Because existing methods use
calibration in the computation of the loss, which the intrin-
sics are encoded in the weights, hampering transferability.
In our architecture, calibration is an input, which can be
changed at inference time. While one could pre-process the
images to a canonical calibration, this introduces latency,
cost and artifacts that can affect the reconstruction quality.
We note that [16, 35] proposed backprojection as a layer
and [10] used calibration as input, but we are the first to
consider an RGB 3D representation for depth completion.
Our contributions include (a) a sparse-to-dense module
that learns a dense representation of the sparse point cloud,
(b) an unsupervised depth completion method that takes cal-
ibration information as input to the model, and (c) incor-
porates it directly in the architecture through a novel cali-
brated backprojection module, which represents spatial po-
sitional encoding that is transferred laterally across differ-
ent branches of the encoder. The resulting inductive bias
helps select, among all depth, maps compatible with the
prediction loss, those that result in a Euclidean (calibrated)
reconstruction. The strong inductive bias allows us to (d)
reduce the computational footprint, increase generalization
and achieve performance beyond the state of the art despite
having fewer parameters.

2. Method Formulation

Our goal is to recover a 3D scene from an RGB image
I:Q C R? — R3 and the associated sparse point cloud
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Figure 1: KBNet architecture. Our architecture takes, as
input, an RGB image, the corresponding sparse depth map
and camera calibration matrix. We first learn a dense repre-
sentation of the sparse points with our sparse-to-dense mod-
ule. The result of which and the calibration matrix are used
for calibrated lifting, which allows us to backproject im-
age features onto 3D space (akin to spatial positional en-
codings) to yield a RGB 3D representation. Our network is
very light-weight and fast, yet achieves the state of the art.

projected onto the image plane z : 2, C Q +— R, without
access to ground-truth depth annotations.

We propose a sparse-to-dense module (Fig. 2) f,,, pa-
rameterized by w, that captures local and global structure
of the sparse inputs by combining min and max pooling at
different scales. The result is a dense or quasi-dense depth
representation f,(z), depending on the sparsity of the input,
which frees the rest of network to utilize its early convolu-
tional layers to learn scene structure rather than to densify
the input — making the overall architecture more efficient.

The sparse-to-dense module (Sec. 2.1) is part of an over-
all encoder-decoder architecture fy, parameterized by 6,
called KBNet (Sec. 2.2), that includes a Calibrated Back-
projection layer which explicitly backprojects pixels onto
3D space using intrinsic camera calibration and depth en-
coding from f,, . Unlike previous works [26, 39, 45, 47, 50]
that encode depth and image in two separate branches, we
leverage camera calibration and our depth encoding to lift
the image representation to 3D and passed it to the decoder
via skip connections. KBNet (Fig. 1) produces dense depth
d := fo(fu(2),I,K), where K € R3*3 is the upper-
triangular matrix of intrinsic calibration parameters. To
train our model, we use monocular videos to compose a
loss function from temporally adjacent frames (Sec. 2.3).

2.1. Sparse-to-Dense Module (S2D)

Our S2D module f,, (Fig. 2) performs multi-scale den-
sification on the input sparse depth map z using a series
of min and max pooling layers with various kernel sizes,
which are chosen based on the sparsity of the point cloud
e.g. from LIDAR returns or sparse points tracked by VIO
[11] (see Supp. Mat. for kernel sizes). The outputs of the
pooling layers are concatenated and fed into three 1 x 1 con-
volutions to learn the trade-offs between pooling types and
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Figure 2: Sparse-to-dense module. We perform min and
max pooling with various kernel sizes to produce a dense
representation. There exists trade-offs between density and
detail (large vs. small kernel sizes) and preservation of near
and far structures (min vs. max pooling, as highlighted in
green). We balance these trade-offs with 1 x 1 convolutions
and fuse the result with the input via a 3 x 3 convolution.

kernel sizes. The result of which is fused with the z via a
3 x 3 convolutional layer, yielding a dense or quasi-dense
depth representation that is fed to the rest of the network fy.

Because the depth inputs are sparse, we design our min
pooling layers to avoid pooling zeros or invalid (negative)
depth values. We set all values z(x) less than zero to be
infinity for z € €:

z(x) ifz(x)>0
z’(w)z{ @) irete) (1)
00 otherwise.
2" is fed to a min pooling layer with k& X k kernel size,
p=minpool(z k). )

Finally, for all z, any infinity values pooled due to large
empty regions are set to zero:

oo (@) = {pm if p(z) # oo -

0 otherwise.

Our approach involves two main trade-offs: (i) density ver-
sus detail and (ii) preservation of near versus far structures.

Density versus details. For the purpose of densifica-
tion, one may perform pooling with large kernel sizes, but
it comes at the expense of details of local structures. In con-
trast, pooling with small kernel sizes in an attempt to retain
detail will result in very few neuron activations, which hin-
ders learning. Hence, to retain local details while obtaining
a dense representation, we propose to perform pooling with
both small and large kernel sizes.

Near versus far. When pooled solely with max pool-
ing, farther structures are preserved, but details of the closer

ones are decimated as the kernel size grows larger. For in-
stance in Fig. 2, thin structures close to the camera i.e. the
highlighted pole “disappears” due to large max pooling ker-
nel size. On the other hand, when only using min pooling,
the closer structures become more prominent, but in turn,
the farther regions are corrupted. Moreover, in cluttered
scenes, min pooling causes adjacent structures to “bleed”
into each other. Hence, to preserve close and far structures,
we employ both min and max pooling layers.

To optimize for both trade-offs, we concatenate the out-
puts of min and max pooling together and feed them into
1 x 1 convolutional layers. Finally, we use a 3 x 3 con-
volution to fuse the multi-scale depth features back into the
original sparse depth via a residual connection, yielding a
dense representation f,,(z) to be fed to fy.

We note that our S2D bares some resemblance to spatial
pyramid pooling (SPP) [18]; however, SPP was designed
to ensure the same size feature maps are maintained when
different size of inputs. It is also intended to operate on
dense inputs. While [45] also proposed an SPP for sparse
inputs, its use of max pooling decimated details for nearby
structures. Neither are substitutes for our S2D module.

2.2. KBNet Architecture

Motivation. Unsupervised methods [26, 45, 46, 47] use
the photometric reprojection error £,,; as a training signal.
The input image I; is reconstructed from temporally adja-
cent frames I, for 7 € T = {t — 1,¢ + 1} to yield I,

I (x,d, gre) = I (mgr K 2d(@)), )

and the per pixel photometric reprojection error is measured
by lpert = |I(z,d, gr¢) — Ii(x)|. Here 7 = [z 7,1]T are
the homogeneous coordinates of = € 2. Using the notation
in [27], g-+ € SE(3) is the relative pose (rotation and trans-
lation) of the camera from time ¢ to time 7, K denotes the
intrinsic calibration matrix, and 7 is a canonical perspective
projection. For simplicity, we will refer to the reconstruc-
tion from time 7 at a coordinate x as fT(x).

Inferring Euclidean structure and motion in the absence
of calibration information is notoriously difficult and de-
pendent on conditions rarely satisfied in ordinary training
videos, such as rotation around three independent axes [27].
Minimizing any form of ¢,.,; forces the network to im-
plicitly learn the calibration matrix K, as all prior work
does. As pretrained models are commonly deployed on sen-
sor platforms different than those used during training, this
hinders generalization as the network becomes overfitted to
the camera used to collect training data. In contrast, our
network, KBNet, takes it as input; this allows us to use dif-
ferent calibrations in training and test, which significantly
improves generalization (Table 5).

Calibrated Backprojection Layers take, as input, the
depth and RGB image encodings, and the camera calibra-
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Figure 3: Calibrated Backprojection (KB) Layer. The stan-
dard depth and color image encoding layers [47] are com-
bined using the calibration matrix as additional input. Cali-
bration is used to lift pixel coordinates to three dimensions,
which are backprojected by a compressed depth descriptor
into a 3D positional encoding. The result is concatenated
with the image encoding and the output of the previous KB
layer, and fused with a 1 x 1 convolution. This yields an
RGB 3D representation, which is used as a skip connection
to the decoder and input to subsequent layers.

tion matrix K and output not only the corresponding en-
codings of the depth map and of the RGB image, but also an
encoding of the RGB image backprojected onto 3D space.
Once we have formed this RGB 3D representation, it is fed
as input to subsequent Calibrated Backprojection (KB) lay-
ers and as skip connection to the decoder and once we have
form this representation (Fig. 3).

To realize a KB layer, first, we use the calibration ma-
trix to lift the coordinates of each pixel x € (2 to three
dimensional space z — K ~'Z. Then, the feature map of
the depth encoder ¢(x) € RM, with M ranging from 16
in the first layer to 128 in the last one, is collapsed to a
scalar by a trainable projection or “compression” module g,
d(z) = q" ¢(x). The imputed depth d(z) is used to back-
project the lifted coordinate Z to yield a 3D positional en-
coding for each pixel z3p = K~ 'zd(r).

Here Q0 C R? is discretized into a lattice of H x W
pixels in the first layer, corresponding to the resolution of
the original image, that decreases by a factor of 2 in each
subsequent layer until the 5-th or last layer at H/32x W/32.
Hence, the intrinsics parameters, focal lengths and principal
point, must also be scaled by the same factor according to
the resolution reduction in each layer.

The 3D positional encoding is concatenated with the im-
age encoding ¢(z) € RY, and, if available, the output of
the previous KB layer ¢3p(7) € RY where N ranges from
48 in the first layer to 386 in the last. This is fused together
by a1 x 1 convolution to yield the output RGB 3D encod-
ing. This encoding is fed to the next layer and also replaces
the typical RGB skip connection to the decoder. Finally, the

output depth and image encodings of the KB layer are pro-
duced by convolving separate 3 x 3 kernels. After which,
both are also passed to the next layer as input.

In addition to benefits of generalization (Table 5), KB
layers also produce depth estimates that better respect ob-
ject boundaries. Because each layer encodes “closeness”
based on the scene topology via 3D positional encoding
rather than the 2D image topology (as in previous works),
adjacent pixels in the image that are often confused to be
close are now well separated (Fig. 4) and hence distinct ad-
jacent objects are better delineated and points belonging to
the same surface are better regularized. This reduces the
common bleed effect observed when a depth map is back-
projected to a point cloud in 3D. Moreover, by instilling
3D structure as an architectural inductive bias, we enable a
faster and slimmer network with fewer layers and parame-
ters to achieve better performance (see Table 2, 4).

We note that our S2D module complements our KB lay-
ers as it provides us with dense or quasi-dense depth rep-
resentation. Without it, we are left with sparse geometry,
which limits the potential performance gain. Yet, as demon-
strated in Table 3, there are still benefits to using calibrated
backprojection with a sparse representation.

2.3. Loss Function

Similar to previous works [26, 45, 47], our loss function

is the linear combination of three terms:
L= wphgph + wszzsz + wsmgsm (5)

where £, denotes photometric consistency, /s, sparse
depth consistency, and ¢, local smoothness. Each term
is weighted by their associated w (see Sec. 3.1).

Photometric Consistency. As mentioned in Sec. 2.2,
unsupervised methods leverage photometric reprojection
error as a supervisory signal by reconstructing I; from I,
fort € T = {t —1,t + 1} via Eqn. 4. To accomplish
this, one can obtain pose from a VIO [1 1] or employ a pose
network to estimate the relative pose between I; and I (see
full system diagram in Supp. Mat.). We note that pose is
only needed for training and is not used at test time.

From the reconstructions, the photometric consistency
loss measures the average photometric reprojection error
using a combination of L! penalty and SSTM [44]:

ton = ﬁ S S ol () — L)+

€T 2€Q (6)
wet (1 — SSIM(L, (2), Ii(2))),

We, and wg; are weights for each term and are discussed
in Sec. 3.1. We note that if g, is estimated via a pose net-
work, instead of a VIO, it can be jointly learned with KBNet
(Fig. 1) as a by product from minimizing Eqn. 6 and 7, and
hence does not require any extra supervision.



Metric Definition

Method #Param Time MAE RMSE iMAE iRMSE
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Table 1: Error metrics. dg4; denotes the ground-truth depth.

Sparse Depth Consistency. Minimizing the reprojec-
tion error will reconstruct the scene structure up to an un-
known scale. To ground the predictions to metric scale, we
minimize the L' difference between our predictions d and
the sparse depth inputs over its domain (£2,):

> Jd(x) - 2(x)]. (7

Local Smoothness. We enforce local smoothness and
connectivity over d by minimizing the L' penalty on its
gradients in the z— (Jx) and y— (Ox) directions. We
also weight each term using its respective image gradients,
Ax = e~ 10x It (@)] gnd Ay = e~ 10v (@)l 1o allow disconti-
nuities along object boundaries:

Com |Q|Z)\X |8Xd )‘—i—)\y(.ﬁ)wyd(x” (8)

e

3. Experiments and Results

We evaluate our method on benchmark datasets, KITTI
[41] for outdoors settings, and VOID [47] for indoors, us-
ing metrics describes in Table 1. We also demonstrate that
our approach generalizes well to scenes captures by camera
setup different than that used to collect the training set by
training our model on VOID and testing it on NYUv2 [40].

3.1. Implementation Details

We implemented our method in PyTorch [31]. End-to-
end inference takes 16ms per frame. We used Adam [21]
with 5, = 0.9 and B2 = 0.999 to optimize our network.
Training on KITTI [4 1] takes 70 hours for 60 epochs, VOID
[47] 16 hours for 15 epochs, and NYUv2 [40] 13 hours for
15 epochs on an Nvidia GTX 1080Ti GPU. We use a batch
size of 8 with 768 x 320 crops for KITTI, 640 x 480 for
VOID and 576 x 416 for NYUv2. For KITTI, we choose
Wph, = 1, Weo = 0.15, wey = 0.95, ws, = 0.6, and wgyy, =
0.04; for VOID and NYUV2, we set w,, = 2 and wg,,, = 2.
For detailed learning rate schedule, augmentations and S2D
kernel sizes used for each dataset, please see Supp. Mat.

3.2. Datasets

KITTI [41] provides ~80,000 raw image frames and as-
sociated sparse depth maps. The sparse depth maps are the

SS-S2D [26] 27.8M 80ms 350.32 1299.85 1.57 4.07

IP-Basic [22] 0 11ms 302.60 1288.46 1.29 3.78
DFuseNet [39] n/a 80ms 429.93 1206.66 1.79 3.62
DDP* [50] 18.8M 80ms 343.46 1263.19 1.32 3.58

VOICED [47] 9.7M  44ms 299.41 116997 1.20 3.56
AdaFrame [46] 64M  40ms 291.62 1125.67 1.16 3.32
SynthProj* [25]  2.6M  60ms 280.42 1095.26 1.19 3.53
ScaffNet* [45] 7.8M  32ms 280.76 112193 1.15 3.30
Ours 69M l6ms 256.76 1069.47 1.02 2.95

Table 2: Quantitative results on the KITTI test set. Our
method outperforms all unsupervised methods across all
metrics on the KITTI leaderboard. Compared to the the
baseline [47], we improve by an average of 13.7% across
all metrics while using 29% fewer parameters. * denotes
methods that use additional synthetic data for training.

raw output from the Velodyne lidar sensor, each with a den-
sity of ~5%. Ground-truth depth is obtained by accumu-
lating 11 neighbouring raw lidar scans. Semi-dense depth
is available for the lower 30% of the image space. We use
the official 1,000 samples for validation and test on 1,000
designated samples (evaluated on their online test server).

VOID [47] contains synchronized 640 x 480 RGB im-
ages and sparse depth maps of indoor (laboratories, class-
rooms) and outdoor (gardens) scenes. ~ 1500 sparse depth
points (covering ~ 0.5% of the image) are the set of features
tracked by XIVO [11], a VIO system. The ground-truth
depth maps are dense and are acquired by active stereo. The
entire dataset contains 56 sequences with challenging mo-
tion. Of the 56 sequences, 48 sequences (= 40,000) are
designated for training and 8 for testing. The testing set
contains 800 frames. We follow the evaluation protocol of
[47] and cap the depths between 0.2 and 5 meters.

NYUv2 [40] consists of 372K synchronized 640 x
480 RGB images and depth maps for 464 indoors scenes
(household, offices, commercial), captured with a Microsoft
Kinect. The official split consisting in 249 training and 215
test scenes. For training, we evenly sample a subset of the
training split to yield 46K frames. We use the official val-
idation set of 795 images and test set of 654 images. Be-
cause there are no sparse depth maps provided, we sampled
~ 1500 points from the depth map via Harris corner detec-
tor [17] to mimic the sparse depth produced by SLAM/VIO.

3.3. KITTI Depth Completion Benchmark

We compare our method against recent unsupervised
depth completion methods on the KITTT test set in Table 2
(results taken from online leaderboard). Compared to the
baseline [47], we improve by an average of 13.7% across
metrics and by as much as 17.1% in iRMSE while reducing
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Figure 4: Qualitative results on KITTI test set. Head-to-head comparison against [47]. Thanks to our 3D positional encoding,
our method performs well on regions where adjacent structures in 2D image space are far apart in the 3D scene e.g. street
sign and wall (left panel, highlighted in green) and far region of the road (right panel, in orange).

Method MAE RMSE iMAE iRMSE
VOICED [47] w/o Scaffolding  347.14 1330.88  1.46 422
VOICED [47] 305.06 1239.06 1.21 3.71
Ours w/o S2D 287.76 118424  1.12 3.48
Ours w/o KB layers 28597 117188 1.11 3.40
Ours w/ Scaffolding [47] 275.56  1183.57 1.08 3.39
Ours w/ SPP [ 18, 45] 273.08 1177.69 1.07 3.35
Ours 260.44 112685 1.03 3.20

Table 3: Ablation study on KITTI validation set. With-
out S2D (row 3), our performance degrade because our 3D
positional features will only encode sparse geometry, but
we still beat [47] in rows 1, 2 (“w/o Scaffolding” is [47]
with sparse representation). We observe similar degrada-
tion without KB layers (row 6, replaced with VGG block
used by [47]). Substituting our S2D with Scaffolding [47]
or SPP [18, 45] also hurts performance (rows 7, 8).

model size by 29%. Overall, we beat the best performing
method [45] by an average of 8.8% and up to 10.6% on the
iMAE metric with a 11.5% reduction in model size. We
note that top methods [25, 45] use additional synthetic data
for training; whereas, we do not. Also, for inference, our
method takes 16ms per image (62 FPS), which is 2.75x
faster than [47]° and 2x faster than the state of the art [45].
We note that our method significantly improves the iMAE
and iRMSE metrics, to the point where we are comparable
to some of the supervised methods for close range perfor-
mance. For example, our iMAE score is ranked Sth across
all methods (see Table 9, 10 in Supp. Mat.). To the best of
our knowledge, we are the first work in unsupervised depth
completion to demonstrate comparable performance to su-
pervised methods.

3The reported run time of [47] on the KITTI leaderboard did not include
their scaffolding step; whereas, the number in Table 2 accounts for it.
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PR R S N S

350

w
=}
=]
[

I

I
*

MAE (mm)
.
-

e o Al oo o o o il A A A S S
1 r i s r

=)
v
=3

-20 -10 0 10 20
% Change

Figure 5: Sensitivity to changes in calibration on KITTI.
Focal length and principal point are altered to test sensitivity
to changes in intrinsics parameters. Our method is robust to
change up to = 10%. After which, performance degrades.

To show the improvements from our contributions,
we show head-to-head qualitative comparisons against the
baseline [47] in Fig. 4. Our method performs better in re-
gions where depth discontinuities occur in image topology
i.e. street sign and wall (left panel, highlighted in green)
and far regions of the road (right panel, in orange). This is
in part thanks to our calibrated backprojection (KB) layer
which goes counter to the current trend of learning every-
thing with generic architectures, including what we already
know about basic Euclidean geometry. Our KB layers im-
poses strong inductive bias by incorporating the camera in-
trinsic calibration matrix to yield 3D positional encoding
that lifts the image representation into scene topology — this
delineates points where in 2D image topology are ‘“close”,
but can be far in 3D scene topology.

Table 3 shows an ablation study on the KITTTI validation
set. As mentioned in Sec. 2.2, our sparse-to-dense mod-
ule (S2D) provides dense depth representation which in turn
enables dense 3D topology in our calibrated backprojection
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Figure 6: Qualitative results on VOID test set. Comparison
against [47]. Our method performs better overall.

Method #Param Time MAE RMSE iMAE iRMSE
SS-S2D [26]  27.8M  59ms 178.85 243.84 80.12 107.69
DDP [50] 18.8M 54ms 151.86 22236 74.59 112.36
VOICED [47]  9.7M  29ms 85.05 169.79 4892 104.02
ScaffNet [45]  7.8M  25ms 59.53 119.14 35.72 68.36
Ours 69M 13ms 39.80 9586 21.16 49.72

Table 4: Quantitative results on VOID test set. We outper-
form all competing methods across all metrics. Compared
to [45], we improve by an average of 30.5%.

(KB) layers. Hence, removing it (“w/o S2D) will hurt per-
formance because it results in a sparse 3D positional en-
coding. Nonetheless, sparse geometry is still helpful as we
outperform [47] in rows 1, 2. Similarly, replacing our KB
(“w/o KB layers”) with VGG blocks used by [47] also hurts
performance as the model now lacks 3D spatial position.
We show in rows 5 and 6 that one cannot simply substitute
S2D with scaffolding [47] or SPP [18, 45].

In Fig. 10, we perform a sensitivity study of our model
to calibration on the KITTI validation set. To this end,
we altered the calibration by increasing or decreasing fo-
cal length (f) and/or principal point (c,, ¢,) and feed it as
input. Our model is robust to changes up to =~ 10%; af-
ter which, performance degrades. While changes in ¢, ¢y
have minor effects (which is scene-dependent), we observe
a sharp decrease in performance when we decrease f by
20 to 25%. This is because, geometrically, decreasing f
backprojects points to a larger field of view, distorting sur-
faces and sending points of the same surface far from each
other. Increasing f conversely “packs” them tighter; this is
okay for small increases, but for larger values, points will
get “squashed together” — thus hurting performance. Also,
to quantify the effect of sparsity, we provide a sensitivity
study on various density levels in Supp. Mat.

3.4. VOID Depth Completion Benchmark

In the indoor scenario, the point clouds are on orders
of hundreds to several thousand points (if we are being
generous); hence, because of the sparsity, perturbations to
the point cloud can yield vastly different sparse geometry.

Method Trainedon MAE RMSE iMAE iRMSE
VOICED [47] NYUv2 127.61 228.38 28.89  54.70
VOICED [47] VOID 178.87 329.28 4257 105.93
ScaffNet [45] NYUv2 117.49 19931 24.89  44.06
ScaffNet [45] VOID 155.20 24142 31.77  52.62
Ours NYUv2 105.76  197.77 21.37 4274
Ours VOID 117.18  218.67 23.01 47.96

Table 5: Quantitative results on the NYUv2 test set. Col-
umn titled “Trained on” denotes the dataset each method is
trained on. [45, 47] degrade much more than our method
when tested on a dataset captured by a different sensor plat-
form than the one used for gathering its training data.

This increases a model’s sensitivity to the distribution to the
sparse points. As there exists many complex scene layouts
for the indoor setting, learning a dense representation and
understanding the 3D topology of the scene become even
more important. This is shown in Table 4 where we out-
perform [26, 45, 47, 50] across all metrics to achieve the
state of the art on VOID. A key comparison is between our
method and [47]. Even though [47] creates a hand-crafted
scaffolding of the scene to obtain a dense representation,
because there are very few points, it is prone to error i.e.
forming surfaces between discontinuous objects and sensi-
tive to changes in the points sampled. This is where our
method shines. By optimizing for the trade-off between
density and detail, our S2D module learns to exploit the
natural statistics of the dataset to obtain a dense represen-
tation more compatible with the scene. Also, our KB layers
introduces 3D topology as an inductive bias, allowing the
network to delineate points that are close in image topol-
ogy, but are far in scene topology — culminating in 51.7%
and 30.5% improvement over [47] and the state of the art
[45], respectively.

In Table 5, we show that our method generalizes well to
sensor platforms not used in the training set by training our
method on VOID (captured on Intel RealSense) and testing
it on NYUv2 (Microsoft Kinect). Similarly, we test models
pretrained on VOID released by [45, 47] on NYUv2. We
also train our method and [45, 47] from scratch on NYUv2
to show the paragon performance (rows 1, 3, 5). Rows 1
shows that [47] does not generalize well to NYUv2 where
error increases by 56% (as much as 94% in iRMSE). While
[45] does better, there is still a sharp decrease of 25.1% in
performance. This is in part due to the change in sensor
platform as well scene distribution in NYUv2. While we do
not achieve paragon performance, our method generalizes
better with a reasonable 10% increase in error — improving
over [47] by 83% and [45] by 62% in relative error. We note
that while training on the full set for NYUv2 should yield
better results for paragon performance, our model trained



on VOID performs better than VOICED [47] and compara-
ble to ScaffNet [47] trained on the subset of NYUv2. For
qualitative comparisons, please see Fig. 14 in Supp. Mat.

4. Discussion

We present an approach to unsupervised depth comple-
tion that imposes strong inductive biases on Euclidean re-
construction in the architecture, rather than learning from
data with a generic model such as a Transformer. This
presents some advantages. First, it allows feeding calibra-
tion as an input, which means that we can easily use a model
trained with a certain sensor platform with a different one at
inference time. Second, the calibrated backprojection layer
explicitly incorporates a basic geometric image formation
model based on Euclidean transformations in 3D and cen-
tral perspective projection onto 2D. This allows us to reduce
the model size while still achieving the state of the art.

However, imposing strong inductive biases also presents
some risks and limitations. First, if the camera is miscali-
brated, inputing the wrong calibration can backfire, yielding
distorted depth maps. Second, only a very rudimentary cal-
ibration model is used, so if a sensor platform has fancy
optics such as omnidirectional lenses, one cannot use one
of our pre-trained models but rather has to modify the core
backprojection module. Third, even with these ad-hoc ar-
chitectural choices, our model suffers the limitations of all
imputations, which is that where there is insufficient evi-
dence to constrain the solution, the regularizer dominates,
which is a form of hallucination and can yield wildly wrong
inferences. This would be mitigated by having an accurate
measure of uncertainty associated to the depth map, this is
an open problem well beyond our focus here.
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Figure 7: System diagram during training. We assume we are given monocular video sequences, synchronized sparse
point clouds projected onto the image plane as 2.5D depth maps, and camera calibration. A training sample is therefore
(It,I;,2,K). Sparse depth inputs (z) are fed to our sparse-to-dense module (f,,) to yield a dense or quasi-dense repre-
sentation. Along with image (/;) and camera calibration matrix (K), it is then fed into our depth completion network (fy)
comprised of calibrated backprojection layers to produce dense depth prediction d. Relative pose (g,¢) between images I;
and I, can be estimated from a VIO or a network. In the case of the latter, pose can be jointly learned with depth. We note
that pose is only needed to give the reconstruction I, for constructing the loss function and is not needed during inference.

Code available at: https://github.com/alexklwong/calibrated-backprojection—network.

Supplementary Materials

Summary of contents. In Sec. A, we provide an overview
of our full system and more details on our loss function.
We also provide the kernel sizes used in our sparse-to-dense
module, augmentations used during training and our learn-
ing rate schedule to reproduce our results on KITTI [41],
VOID [47], and NYUv2 [40]. In Sec. B, we visualize and
compare features learned by our proposed sparse-to-dense
module to those from typical convolutional block, and show
that our spare-to-dense module yields a much denser repre-
sentation for the the depth completion network to ingest. In
Sec. C.1, we consider the possibility of miscalibration and
examine the sensitivity of our model to changes in intrin-
sics parameters i.e. incorrect calibration. We show that our
model is robust to reasonable ranges of calibration error. In
Sec. C.2, we study the sensitivity of our model to changes

in sparse depth input density levels and demonstrate that we
are robust even when sparse point cover only 0.15% of the
image space. In Sec. D, we discuss our method’s ability
to generalize to test time sensor platforms with a different
camera than the one used in training. Finally, in Sec. E,
we show that we can beat several supervised methods on
KITTT online leaderboard and that we rank Sth amongst all
methods for the IMAE metric.

A. System Overview

Fig. 7 shows a diagram of our full system. Our model
takes an RGB image I, a sparse depth map z, and the cam-
era intrinsics matrix K as input. First, the sparse depth
map z is fed into our sparse-to-dense module f,, to obtain
a dense or qusai-dense representation (Sec. 2.1, main text).
Then, the depth representation f,(z), RGB image I, and
intrinsics K are fed into the depth completion network fy,
which is comprised of an encoder with calibrated backpro-


 https://github.com/alexklwong/calibrated-backprojection-network

jection layer followed by a decoder (Sec. 2.2, main text).
Each calibrated backprojection realizes the backprojection
process into 3D camera space by performing calibrated lift-
ing of pixel coordinates using K, and projecting the depth
representation to 1 dimension and multiplying it with the
lifted coordinates — result of which is a 3D positional en-
coding of the scene structure.

To yield a unified depth and RGB representation, the 3D
positional encoding from the depth branch is passed later-
ally to the RGB branch to enable association between each
RGB feature and its 3D position. By doing so, we introduce
3D structure as an architectural inductive bias, which allows
the network to reason about “close” points in the 2D image
topology that are actually far in 3D scene topology. The
RGB 3D representation is finally fed through the decoder to
produce the final depth prediction d.

A.l. Loss Function

To train our model, we assume the availability of previ-
ous and next RGB frames I of the given image I or I; (to
denote the current time frame) where 7 € T = {¢t—1,¢+1}.
During training, we estimate the relative pose g.; between
images at time ¢ and 7. Using I-, K and g, we can create
the reconstruction I; of I; via reprojection (Eqn. 4, main
text) to enable an unsupervised loss (Eqn. 6-9, main text),
which include a photometric reconstruction term, a sparse
depth reconstruction term and a local smoothness term.

We note that the photometric term can be replaced with
more sophisticated measures of reprojection error [ 4] and
additional regularizers such as pose consistency [47] or
adaptive regularization weighting schemes [48, 46] — which
would likely boost performance even more. However, we
choose a simple loss to demonstrate the efficacy of our
novel architecture. We note that g,; can be obtained by the
means of a visual inertial odometry (VIO) system or a pose
network if the VIO is not available. In the case where pose
is obtained from network, the pose network can be trained
jointly with our depth completion network (KBNet). Rela-
tive pose is learned as a byproduct of minimizing Eqn. 6 in
main text. Also, since g, is only need for reprojection dur-
ing training; hence, the VIO system and the pose network
are not necessary for inference. Because our network is fast
and light-weight (16ms run time per image, 6.9M param-
eters and 2.6GB memory as benchmarked on 1216 x 352
images from KITTI [41]), it can be deployed with a VIO
system to learn online.

A.2. Implementation and Training Details

We optimized our networks using Adam [21] with 8 =
0.9 and B = 0.999. We trained for a total of 60 epochs
on KITTI [41], 15 epochs on VOID [47], and 15 epochs on
NYUv2 [40]. We use a batch size of 8 with 768 x 320 crops
for KITTI, 640 x 480 for VOID and 576 x 416 for NYUv2.

Epochs Learning Rate
KITTI

0to?2 5x 1075

2t08 1x 1074

81020 1.5 x 1074

20 to 30 1x 1074

30 to 45 5x 1075

45 to 60 2x 1075
VOID

0to 10 1x 1074

10to 15 5x 1075
NUYv2

0to 10 1x107%

10to 15 5x 1075

Table 6: Learning schedule for KITTI, VOID, and NYUv2.

Dataset Min Pool Max Pool
KITTI [41] 5,7,9,11,13 15,17
VOID [47] 15,17 23,27,29
NYUv2 [40] 15,17 23,27

Table 7: Min pool and max pool kernel sizes for our sparse-
to-dense module Kernel sizes for VOID [47] and NYUv2
[40] are larger because the point cloud generated from VIO
[11]is much sparser than that of LIDAR in KITTI [41].

For KITTI, we choose wp, = 1, we, = 0.15, wg = 0.95,
ws, = 0.6, and wg,,, = 0.04; for VOID and NYUv2, we set
ws, = 2 and wg,,, = 2. Kernel sizes for our sparse-to-dense
(§2D) module are shown in Table 7 for each dataset. We
detail our learning rate schedule for each dataset in Table 6.
For data augmentations on KITTI, we performed random
horizontal shifts to the image and depth map and randomly
removed between 60% to 70% of the sparse points. For
VOID and NYUvV2, we randomly removed 30% to 60% of
the sparse points. Augmentations are enabled 100% of the
time up for VOID and NYUv2. For KITTI it is applied
100% of the time up to the 50th epoch and decreased by
half every 5 epoch up to 60 epochs. Each augmentation has
a 50% probability of being applied.

B. Features Learned by Sparse-to-Dense

In Sec 2.1 of the main text, we proposed a sparse-to-
dense module (S2D) to learn a dense or quasi-dense repre-
sentation of the sparse depth inputs. S2D utilizes a series of
min and max pooling layers of various kernel sizes to den-
sify the sparse depth inputs (for a list of kernel sizes used



Sparse Depth
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Figure 8: Visualization of depth features. Row 3: “After Convolution Block™ denotes the depth features produced by a typical

first convolutional block used by [26, 47,

] without any form of densification. Row 4: “After Sparse-to-Dense” denotes

the depth features learned by the proposed sparse-to-dense (S2D) module. Those learned without our module are still sparse;
whereas S2D produces a dense or quasi-dense representation before it reaches the depth completion network. This alleviates
the network from having to densify or propagate the sparse signal, making the overall architecture more efficient.

for each dataset, please see Table 7). To balance the trade-
off between density and detail (large vs. small kernel sizes),
and near and far structures (min vs. max pooling), we con-
catenate the pooled results and learn three 1 x 1 convolu-
tions. The output of which is fused with the input sparse
depth using a 3 x 3 convolution to “fill in the gaps”.

Fig. 8 shows visualizations of features learned by S2D
and a comparison to the features learned by typical convo-
lutional e.g. ResNet or VGG blocks used by [26, 47, 50].
Row 2 of Fig. 8 shows that despite passing through sev-
eral convolutional layers (= 10K to 20K parameters), the
representation obtained by a typical convolution block is
still sparse; so the later layers will still have many zero-
activations and must continue to densify the features. In
contrast, using our proposed S2D (=~ 900 parameters), the
depth representation learned is dense or quasi-dense before
reaching the depth completion network (row 3). This en-
ables non-zero activations in the later layers, which allows
the network to use its early convolutions for learning scene
geometry rather than densification.

We note that our sparse-to-dense module may bare some
resemblance to Spatial Pyramid Pooling (SPP) employed in
classification [ 18] or stereo matching [2]. However, we note
that [18] used SPP with max pooling to ensure that feature
map sizes are consistent for different input sizes. [2] used
average pooling to increase receptive field. Both use cases
are intended for dense input. We discussed the drawbacks
of max pooling [18] in Sec. 2.1 of the main text and showed
in Table 3 of main text that SPP underperforms compare to
our S2DM. Also we note that using average pooling [2] will

destroy the signal because the kernel will convolve and av-
erage over mostly zeros. The work that is most similar to
our S2D module is the SPP for depth completion proposed
by [45]. However, [45] only uses max pooling which deci-
mates the detail of nearby structures.

C. Sensitivity Studies

In this section, we provide additional studies to quantify
the sensitivity of our model to incorrect calibration and var-
ious sparse depth density levels.

C.1. To Incorrect Calibration

We showed in Table 5 of the main text that our method
generalizes well when given the correct calibration at test
time. To consider the scenario of a miscalibrated camera,
we studied the sensitivity of our model to incorrect calibra-
tion on the KITTI dataset (outdoor scenarios) in Fig. 5 in
the main text (also here in Fig. 10). Now, we further extend
the sensitivity study to the indoor setting by conducting a
similar sensitivity study on the VOID dataset (Fig. 11). To
this end, we consider changes to the focal length (f) and
principal point (¢, ¢,) parameters to create erroneous in-
trinsic calibration matrices for input to a pretrained model
on VOID.

The overall trend for indoor setting, (VOID, Fig. 11) is
similar to that of outdoor setting (KITTI, Fig. 10). For both
indoors and outdoors, our model is robust to changes in
principal point parameters (c,, ¢, ) — increasing or decreas-
ing them by up to 25% has little effect on performance.



Error Map

Figure 9: Visualization of predicted depth for incorrect calibration. -25% K denotes 25% decrease to intrinsics parameters
and +25% K denotes 25% increase. Overall error in -25% is increased (slight brigher shade of red). Larger errors caused
by incorrect intrinsics is generally located at the edge of the depth map. +25% have little effect on our predictions. This is
because decreasing focal length causes surfaces to be distorted, which in turn affect depth predictions. On the other hand,
increasing focal length packs points closer together, which is less detrimental in comparison.
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Figure 10: Sensitivity to changes in calibration on KITTI.
Focal length and principal point are altered to test sensitivity
to changes in intrinsics parameters. Our method is robust to
change up to &~ 10% change. After which, performance
degrades. We note that changes in principal point (¢, ¢y)
have little effect; whereas decreasing focal length (f) causes
large drop in performance.

This is because these parameters shifts the optical center
so they do not affect the overall structure of the scene. We
note that for large values outside of reasonable perturbation
range will cause the performance to decrease.

Unlike its behavior with changes in the principal point,
the model degrades when focal length (f) is decreased. For
both indoors and outdoors, we are robust up to 10% de-
crease in focal length, after which error will increase. We

Sensitivity to Changes in Calibration
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Figure 11: Sensitivity to changes in calibration on VOID.
Focal length and principal point are altered to test sensitivity
to changes in intrinsics parameters. Our method is robust to
change up to =~ 10% change. After which, performance
degrades. We note that changes in principal point (c,, ¢,)
have little effect; whereas decreasing focal length ( f) causes
large drop in performance.

note that the performance drop is asymmetric, our model is
robust to increases in focal length up to 20%. The reason
for this phenomeon is as follows: Geometrically, decreases
in focal length will cause points to backproject to a wider
field of view, which distorts surfaces by pushing points that
belong to the same surface far from each other. On the
other hand, increases in focal length will cause points to
pack tighter together. This does not disrupt the scene struc-
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Figure 12: Visualization of predicted depth for various density levels on VOID. Columns 1, 2: Our method works well for
density levels of 0.5% and 0.15%. Column 3: The quality of predicted depth begins to degrade in far homogeneous regions
where there are no sparse points e.g. wall when density level drops to 0.05%.

VOID Various Density Levels

Method MAE RMSE iMAE iRMSE
. .‘\ = s 0.50% Density
0 TN > En VOICED [47] 85.05 169.79 48.92 104.02
il NN ScaffNet [45] 59.53 11914 3572 68.36
= Y e -
£ Y I e Ours 39.80 95.86 21.16 49.72
Emo \\ - e -
" Treelll el -t 0.15% Density
] S et —
e S T - VOICED [47] 124.11 217.43 66.95 121.23
T Tray
~~~~~~~~~ ScaffNet [45] 108.44 195.82 57.52 103.33
40 e |
00 o1 ) 03 04 05 Ours 77.70 172.49 38.87 85.59
Density (%)
0.05% Density
Figure 13: VOID test set across various density levels. We VOICED [47] 179.66 281.09 95.27 151.66
compare our method against VQICED [ . ] and ScaffNet ScaffNet [15] 150.65 255.08 20.79 133.33
[45] on the VOID test set for various density levels (0.5%,
Ours 131.54 263.54 66.84 128.29

0.15%, 0.05%). In terms of MAE, our method performs
better than other methods across all density levels.

ture for small values, but for large values, points will get
squashed together; this is demonstrated by the small uptick
in error when increasing focal length by 20 to 25%.

We note that these values are well out of the typical range
of calibration error and should not be of concern. For exam-
ple when using off-the-shelf calibration packages that im-
plements [52] to calibrate our camera, we obtained a stan-
dard error of = 0.6%, which yields + ~ 1.1% margin of

Table 8: Sensitivity study on various sparse depth den-
sity levels on VOID. We train a single model on VOID us-
ing sparse depth maps of 0.50% density and evaluate it on
0.50%, 0.15%, 0.05% density test sets. As expected, perfor-
mance degrade as the input become more sparse. Overall,
we perform better than [45, 47]; however, at 0.05%, [45]
performs better on the RMSE metric.

error for a 95% confidence interval. Nonetheless, there ex-
ists the risk of using the wrong calibration; however, we



VOICED

Figure 14: Qualitative results on generalization to novel scenes captured by a different sensor platform. We trained our
model on VOID [47] (captured by Intel RealSense) and tested the model on NYUv2 [40] (captured by Microsoft Kinect). We
also used a pretrained model (on VOID) of [47] as the baseline and tested it on NYUv2. Here, we show the predicted depth
as point clouds, backprojected to 3D and colored. [47] predicted a distorted scene where the points are bowed towards the
camera; whereas, while our predictions are not perfect, they are reasonable.

believe this trade-off is well worth the performance boost
provided by the proposed architecture.

Fig. 9 shows a visualization of depth predicted by our
model when using erroneous calibration. -25% K denotes a
25% decrease to focal length and principal point and +25%
K denotes a 25% increase to both. As we can see, the larger
errors are typically located along the border of the predicted
depth map; there is also a slight increase in error (brighter
shade of red) for the entire scene. Increasing intrinsics by
25% affects the output less significantly, but nonetheless we
observe an increase in errors.

C.2. To Various Density Levels

In Table 8, we consider three different levels of den-
sity for the sparse depth inputs, 0.50%, 0.15%, 0.05% of
the image space, that are provided by the VOID dataset
[47]. To this end, we train a single model on VOID us-
ing sparse depth maps of 0.50% density and evaluate it on
0.50%, 0.15%, 0.05% density test sets. We also compare
our method against [45, 47] under these density levels.

As expected, as density decreases, our performance also
degrades. However, we still outperform both [45, 47] under
all three levels, see Fig. 13. We note that at the sparsest set-
ting of 0.05%, [45] does beat us on the RMSE metric. The
reason for this is that we selected the kernel sizes for our
model based on the sparsity level of 0.5%; therefore, when
testing it on 10x sparser point cloud, our depth representa-

tion will be more sparse as well, which limits the potential
of our calibrated backprojection layers. In contrast, [45]
proposed a network to first estimate the dense coarse topol-
ogy. This phenomenon is also observed in KITTI, shown in
Table 3 of the main text, where we removed our sparse-to-
dense module and we observed a significant drop in perfor-
mance.

Fig. 12 shows qualitative evaluations on the three density
levels. For 0.50%, error is low overall and the shape of the
recovered scene resembles that of the ground truth. When
we decrease density to 0.15%, we observe slight blurring
in object shapes and increased errors in homogeneous re-
gions. At 0.05%, we begin to observe artifact such as the
green “blob” corresponding to the wall with more exagger-
ated errors in homogeneous regions. This is because locally
the textureless surfaces give little to no information on ob-
ject shape. Without sparse depth to anchor their values, they
can be arbitrary. In this case the “empty” region is predicted
as far.

D. Generalization to Other Sensor Platforms

In Sec. 3.4 of the main text, we discussed our ability to
generalize to other sensor platforms that may use a different
test time camera than one used to collect training data. In
Table 5 of the main text, we showed quantitatively that we
generalize better than the baseline. Here, we demonstrate
this qualitatively in Fig. 14.
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Figure 15: Qualitative results on KITTI depth completion benchmark.

Method MAE RMSE iMAE iRMSE Method MAE RMSE iMAE iRMSE
ADNN [6] 43948 1325.37 3.19 59.39 SGDU [38] 605.47 2312.57 2.05 7.38
Morph-Net [7] 310.49 104545 1.57 3.84 SS-S2D [26] 350.32 1299.85 1.57 4.07
CSPN [5] 279.46  1019.64 1.15 2.93 IP-Basic [22] 302.60 1288.46 1.29 3.78
KBNet (Ours) 256.76  1069.47 1.02 2.95 DFuseNet [39] 429.93 1206.66 1.79 3.62
SS-S2D [26] 249.95 814.73 1.21 2.80 DDP* [50] 343.46 1263.19 1.32 3.58
DeepLiDAR [32] 226.50  758.38 1.15 2.56 VOICED [47] 299.41 1169.97 1.20 3.56
PwP [49] 235.73 785.57 1.07 2.52 AdaFrame [46] 291.62 1125.67 1.16 3.32
UberATG-FuseNet [3] 221.19  752.88 1.14 2.34 SynthProj* [25] 280.42 1095.26 1.19 3.53
RGB _guide&certainty [42]  215.02 772.87 0.93 2.19 ScaffNet* [45] 280.76 1121.93 1.15 3.30
DDP [50] 203.96 832.94 0.85 2.10 KBNet (Ours) 256.76 1069.47 1.02 2.95
CSPN++ [4] 209.28 743.69 0.90 2.07

NLSPN [30] 19959  741.68 0.84 1.99 Table 10: KITTI unsupervised depth completion bench-

Table 9: KITTI supervised depth completion benchmark.
Results are directly taken from online leaderboard. Note:
SS-S2D [26] and DDP [50] compete in both supervised
and unsupervised benchmarks. Our results are italicized.
Despite being an unsupervised method, our method beats
some supervised methods [6, 7] and our iMAE score (1.02)
is ranked 5th amongst supervised methods.

To this end, we trained our model on VOID [47] (cap-
tured by Intel RealSense) and tested the model on NYUv2

mark. Results are directly taken from online leaderboard.
Note: SS-S2D [26] and DDP [50] compete in both super-
vised and unsupervised benchmarks. Our method outper-
forms is trained only on KITTI, but still the state of the art
[45] (trained on KITTI and Virtual KITTI [13]) by an aver-
age of 8.8% across all metrics. * denotes methods that use
additional synthetic data for training.

[40] (captured by Microsoft Kinect). We similarly trained
the baseline [47] on VOID and tested it on NYUv2. Fig. 14
shows the predicted depth, backprojected to the point clouds



in 3D and colored. As we can see, [47] predicted a distorted
scene; in contrast, ours is not perfect, but reasonable. This
demonstrates the benefit of taking calibration as input. It
allows the model to generalize well when it is deployed to
a sensor platform where the camera that is used is different
than the one used for training. We also note that neither
models have been trained on NYUv2 which features a dif-
ferent scene distribution than that of VOID.

E. KITTI Depth Completion Benchmark

In Sec. 3.3 of the main text, we compare our method
against unsupervised methods on the KITTI online leader-
board. Here, we show quantitative comparisons against
both supervised (Table 9) and unsupervised (Table 10)
methods. Results and method names are directly taken from
the KITTTI online leaderboard. Here we refer to our method
as KNBet, as listed on the leaderboard. We note that SS-
S2D [26] and DDP [50] compete in both supervised and
unsupervised benchmarks. Additionally, we provide high
resolution examples of our output in Fig. 15.

Despite being trained without ground-truth annotations,
Table 9 shows that our method is competitive even amongst
supervised method. We outperform some supervised meth-
ods [5, 6, 7] across most metrics. We note that our method
significantly improves the iMAE and iRMSE metrics, to
the point where we are comparable to some of the super-
vised methods for close range performance. Our iMAE
score, which penalizes mean error in close range regions,
is ranked 5th overall amongst both supervised and unsuper-
vised methods. To the best of our knowledge, we are the
first work in unsupervised depth completion to demonstrate
comparable performance to supervised methods. We note
that supervised methods are generally more computation-
ally expensive with high model complexity e.g. in terms of
number of parameters, [30] uses 25.84M, [32] 53.4M, and
[49] 28.99M; whereas we only use 6.9M.

Compared to unsupervised methods (Table 10), we rank
first amongst all methods with the best scores across all met-
rics. Our model even beat methods [25, 50, 45] that use
additional synthetic data (Virtual KITTI [13]) for training,
amongst which is the state of the art [45]. Despite this, we
beat [45] by an average of 8.8% across all metrics while
using 11.5% fewer parameters. These results demonstrates
the potential of our method to bridge the gap between su-
pervised and unsupervised method. Moreover, our network
is light-weight and can be deployed on VIO system [ 1].
While there is still a long road ahead, these results show a
lot of promise in enabling unsupervised methods to learn
online and to be used for real-time application for low-cost
hardware systems.



