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1University of Oulu 2Czech Technical University in Prague 3Tampere University

Abstract

In this paper, we propose enhancing monocular depth
estimation by adding 3D points as depth guidance. Un-
like existing depth completion methods, our approach per-
forms well on extremely sparse and unevenly distributed
point clouds, which makes it agnostic to the source of the
3D points. We achieve this by introducing a novel multi-
scale 3D point fusion network that is both lightweight and
efficient. We demonstrate its versatility on two different
depth estimation problems where the 3D points have been
acquired with conventional structure-from-motion and Li-
DAR. In both cases, our network performs on par with state-
of-the-art depth completion methods and achieves signifi-
cantly higher accuracy when only a small number of points
is used while being more compact in terms of the num-
ber of parameters. We show that our method outperforms
some contemporary deep learning based multi-view stereo
and structure-from-motion methods both in accuracy and in
compactness.

1. Introduction

Depth estimation from 2D images is a classical computer
vision problem that has been mostly tackled with methods
from multiple view geometry [15, 45]. Conventional stereo,
structure-from-motion and SLAM approaches are already
well-established and integrated to many practical applica-
tions. However, they rely on feature detection and match-
ing that can be challenging especially when the scene lacks
distinct details, and as a result the 3D reconstruction often
becomes sparse and incomplete.

More recently, learning-based approaches have been in-
troduced that enable dense depth estimation by exploiting
priors learned from training images. In particular, monoc-
ular depth estimation that leverages only a single image to-
gether with learned priors has become a popular area of re-
search, where deep neural networks are used to implement
models that directly predict a depth map for given input im-
age [39, 4, 17, 33, 55, 19]. While the basic idea is simple
and attractive, the accuracy of the monocular depth estima-
tion methods is limited by the lack of strong geometric con-

straints such as parallax. Thus, considerably more accurate
depth maps can be achieved with deep learning based multi-
view stereo methods [53, 54, 34, 2]. However, the accuracy
comes at the cost of increased computational complexity as
multiple images need to be aggregated by the network to
produce a single depth map.

Another approach for dense depth estimation is to start
from depth sensors like LiDARs, and use depth completion
to interpolate the missing depth values based on RGB data.
Despite of impressive results achieved by recent methods
such as [56, 36, 18] they are mainly suitable for cases with
relatively high 3D point density, but do not perform well
with sparse point clouds.

In this paper, we start from monocular depth estima-
tion and use a set of 3D points as constraints to obtain
high-quality and dense depth maps as illustrated in Fig-
ure 1. The main difference of our approach to previous
depth completion methods is that the point cloud can be
extremely sparse and unevenly sampled, which enables us-
ing various methods for acquiring the 3D data, including
conventional multi-view stereo, structure-from-motion and
SLAM pipelines but also range sensors such as LiDARs.
We argue that sparsity is important as it provides flexibil-
ity and cost savings to depth sensing. For example, in mo-
bile imaging, existing AR frameworks, i.e. ARCore [23],
ARKit [22], and AREngine [24], provide sparse 3D point
clouds, while in robotics and autonomous driving applica-
tions, low-resolution range sensors become sufficient. To
this end, we propose a novel learning-based scheme for fus-
ing RGB and 3D point data. More specifically, our contri-
butions are the following:

• We introduce a novel multi-scale 3D point fusion neu-
ral network architecture, which is more lightweight
than the existing state-of-the-art depth completion
methods while being able to efficiently exploit the ge-
ometric constraints provided by a sparse set of 3D
points.

• We demonstrate state-of-the-art results on NYU-
Depth-v2 and KITTI datasets with a network that uses
only a fraction of the number of parameters compared
to the other recent architectures.
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Figure 1. Dense depth prediction on the NYU-Depth-v2 [44] test set. A point cloud is produced by a conventional point-based sparse
reconstruction method. The sparse 3D points and a single RGB image are fed to the network to estimate a high-quality depth map. The
dense reconstructed point cloud (top right) preserves the geometry well. The chart (bottom right) shows values along the A-B line of the
estimated depth map, confidence map, and the sampling points. The estimated depth value tend towards sampling point values. Confidence
value around sampling point areas are higher. (All values in the chart are normalized, and sparse point are enhanced for visualization)

• We also show that our method combined with 3D point
clouds obtained by using COLMAP [43, 42] outper-
form recent deep learning based multi-view stereo and
structure-from-motion methods both in accuracy and
in compactness.

2. Related work

Single image depth estimation (SIDE): SIDE was first
introduced by Saxena et al. [41] and it gained momentum
from the work by Eigen et al. [10, 9]. Since then, the num-
ber of related studies has grown rapidly [28, 14, 37, 40, 30,
26, 17, 4, 12, 39, 33, 32, 29, 19]. At first, the proposed SIDE
methods improved the accuracy by employing large ar-
chitectures [28, 17] and more complex encoding-decoding
schemes [4]. Then, they started to diverge into using seman-
tic labels [26], exploiting the relationship between depth
and surface normal [37], reformulating as a classification
problem [14] or mixing both [40]. Other studies suggested
to estimate relative depth [30] or to learn calibration pat-
terns to improve the generalization ability. Recent SIDE
approaches exploit monocular priors such as occlusion [39],
and planar structures either explicitly [33, 32, 55] or implic-
itly [19]. Despite these efforts, SIDE still generalizes quite
poorly to unseen data. In this work, we leverage SIDE’s
ability to produce dense depth estimations and inject it with
a small set of depth measurements to boost the accuracy
while further shrinking the network size.

Dense depth estimation from sparse depth: Depth com-
pletion is a related problem where the aim is to densify or
inpaint an incomplete depth map. Diebel and Thrun [8] is
one of the first studies to tackle this problem using Markov
random fields. Hawe et al. [16] estimate disparity using
wavelet analysis. The problem gained popularity as com-
modity depth sensors and laser scanners (or LiDARs) be-
come more available. Uhrig et al. [47] proposed sparse
convolution to train a sparse invariant network. Jaritz et
al. [25] leveraged semantics to train the network at varying
sparsity levels. Ma et al. [35] concatenated the sparse depth
map to an RGB image, and used this RGBD volume for
training. Xu et al. [51] filled in the missing depth values us-
ing the depth normal constraint. Imran et al. [21] addressed
the depth completion problem using depth coefficients as
a representation. Qiu et al. [38] suggested depth and nor-
mal fusion using learned attention maps. Methods based
on a spatial propagation network (SPN) iterative optimize
the dense depth map either in local [6, 7] or non-local [36]
affinity. Chen et al. [5] suggested fusing features from an
image and 3D points to produce the dense depth. However,
these depth completion methods usually aim for outdoor en-
vironments and street views where the points come from a
LiDAR.

The difficulty of the depth completion problem much
depends on the density of the 3D points used as an input
to the algorithm. For example, LiDARs can produce rel-
atively dense and regularly sampled point clouds without
large holes, while passive image-based 3D reconstruction
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Figure 2. Overview architecture of the 3D point fusion network. Our model consists of five Fusion-Nets that iteratively extract and fuse 2D
and 3D features at multiple-scale before predicting the final depth map at the highest spatial resolution.

techniques, such as stereo or SLAM, result in substantially
sparser set of points where the sampling is highly irregu-
lar and depends on the surface details. Thus, we argue that
depth completion becomes a much harder problem when
using a sparse point cloud from image-based reconstruc-
tion rather than from a LiDAR, and consequently, it also
requires better regularization for the depth. To this end, we
introduce a novel 3D fusion point network that efficiently
learns to fuse image and geometric features to boost the
performance of a monocular depth estimation network. It
is a generic approach that can exploit RGB and 3D point
data from various sources and environments. It can deal
with indoor scenes that are often more diverse and chal-
lenging than outdoor environments, but it can be also used
for depth estimation from street view scenes. Our work is
inspired by [5], but instead of sequentially fusing features at
the same resolution, we build a deeper model to extract and
fuse features at multiple-scales. This is crucial since [5] has
been developed for depth completion of LiDAR data and as
shown in our experiments it fails with a sparse set of points
whereas thanks to the multi-scale approach our method can
achieve reasonable accuracy from a few or even zero depth
measurements.

3. Method

An overview of our 3D point fusion network is shown in
Figure 2. It is a fully convolutional framework that takes
an RGB image and sparse 3D points as inputs to estimate
a dense depth map. The 3D points serve as constraints to
fix the overall geometry of the depth map produced by the
network. To deal with the unstructured 3D point cloud, the
points are first projected to the image plane and their z co-
ordinates are used to create a sparse depth map. Next, the
RGB image is stacked with the sparse depth to form an
RGBD image. We also apply two convolutional layers to
the sparse depth and the RGBD image separately. The two
outputs are concatenated to build the low-level input fea-
tures that are fed to the first fusion-net module. The core

network consists of five Fusion-Nets that operate at differ-
ent feature resolutions. Each Fusion-Net contains a feature
fusion encoder (E), a confidence predictor (C), a decoder
(D), and a refinement (R) module as illustrates in Figure 3.
We describe these modules in the following subsections and
finish this section by giving details about our loss function.

3.1. Feature Fusion Encoder

Convolutional neural networks are good in processing
regularly sampled data in a tensor form. Because our input
point clouds are sparse and they represent geometric con-
straints unlike the image data, we cannot just rely on sim-
ple concatenation to fuse the information, but we need bet-
ter representations. Inspired by a recent depth completion
method [5], we design a feature fusion encoder to extract
low-level features from RGB images and 3D points.

Our feature fusion encoder takes a 3D tensor (C ×H ×
W ) and a set of sparse points (3 × N ) as inputs, where C
is the number of feature channels, H and W are the height
and width of the input tensor, and N is the number of 3D
points. The output is a 3D tensor with a similar shape to
the input tensor. Details of the feature fusion encoder are
shown in the gray box of Figure 3. It consists of two 2D
branches, one 3D branch, and one convolutional layer for
feature fusion.
The 2D convolutional branches: The 2D branches are
convolved at two different resolutions to learn multi-scale
representations from the input 3D tensor. The first 2D
branch has one convolutional layer with stride one to ex-
tract features at the same size as the input volume. The sec-
ond 2D branch is a cascade of a stride two convolutional,
a stride one convolutional, and an upsampling layer to ob-
tain coarser features of the input tensor. The two outputs
are summed to aggregate appearance features at different
resolutions.
The 3D point convolution branch: The 3D branch aims
to extract structural features from the sparse points. This is
difficult for 2D convolutions that operate on local neighbors
as 3D points are located on an irregular grid. Therefore,
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Figure 3. Details of Fusion-Net n ∈ [1, 5], where n is the scale resolution. Main components include the feature fusion encoder (E),
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we utilize the feature-kernel alignment convolution (FKA-
Conv) [3] that operates directly on 3D points to avoid this
problem. The key idea of the FKAConv is to learn a lin-
ear transformation to align the neighboring points with the
grid-like kernel. After that, it performs a weighted sum be-
tween this kernel and the features of the 3D points. One can
see that 2D convolution is a special case where the learned
linear transformation is always an identity matrix.

As shown in Figure 3, our 3D branch consists of two
FKAConv layers. We first extract the features of the 3D
points from the input tensor using their projected 2D in-
dices on the image plane. This volume has the size of
C × N . Next, we feed the point features and their 3D co-
ordinates to the FKAConv layers. FKAConv selects a set
of k-neighboring points for every input point and learns a
transformation matrix to align the 3D points with its kernel.
The point features are then convolved with the aligned 3D
points to produce a 2D tensor of shape C ×N . The output
features are projected back to an empty 3D tensor of size
C × H × W using the projected 2D indices. Features of
other positions are set to zero.
2D-3D Feature Fusion: Output volumes from the 2D
and 3D branches have the same shape as the input tensor
(C × H × W ). Therefore, to fuse these features, we sum
them together before applying a 2D convolutional layer to
output a 3D tensor of the size C × H × W . Finally, we
add a residual connection to avoid vanishing gradient dur-
ing training.

3.2. Encoder, Decoder, and Confidence Predictor
modules

Encoder and Decoder Module: Designing efficient de-
coder and refinement modules is essential for the depth es-
timation problem [13, 50]. A common practice is to create
large and complex decoders to produce accurate depth maps
with sharp edges and fine details. However, we argue that
by iteratively fusing relevant depth measurements from the
3D points with appearance features from image pixels, we

can significantly reduce the size of our decoder and refine-
ment designs. That is, our decoder and refinement modules
have only two convolutional layers for each component. To
simplify further, we use the same decoder and refinement
designs for all Fusion-Nets.

As shown in the orange box of Figure 3, the decoder
transforms the fused features from the encoder before feed-
ing them to the refinement module (the yellow box in Fig-
ure 3). We then initially obtain an output tensor of the de-
coder and a depth map. The estimated confidence map later
modifies these two outputs.
Confidence Predictor: Although the input 3D sparse
points provide useful depth measurements, they can also
contain noise. Hence, we proposed a simple yet efficient
confidence predictor to attenuate the effect of noise. As il-
lustrated in the cyan box of Figure 3, the output volumes
from the feature fusion encoder are fed to three convolu-
tional layers followed by a sigmoid to output the probabil-
ity for every pixel. This information is then used to alter
the initial depth map and the output features of the decoder.
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Figure 4. Depth map rectification by predicted confidence (green
arrow). Confidence map values range from 0.0 (low) to 1.0 (high).
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Table 1. Evaluation on the NYU dataset. Metrics mark ↓ mean lower is better while ↑ is otherwise. Methods with ‡ are trained using extra
data. Figures with ⋆ indicates 3D COLMAP points while figures without ⋆ are obtained using randomly sampled points from GT depths.

Architecture #3D pts #params REL↓ RMSE↓ δ1↑ δ2↑ δ3↑
SharpNet Ramam.’19‡ [39] 0 80.4M 0.139 0.502 0.836 0.966 0.993
Revisited mono-depth Hu’19 [17] 0 157.0M 0.115 0.530 0.866 0.975 0.993
SARPN Chen’19 [4] 0 210.3M 0.111 0.514 0.878 0.977 0.994
VNL Yin’19 [55] 0 114.2M 0.108 0.416 0.875 0.976 0.994
DAV Huynh’20 [19] 0 25.1M 0.108 0.412 0.882 0.980 0.996
Point-Fusion Ours 0 8.7M 0.128 0.505 0.847 0.971 0.994
NLSPN Park’20 [36] 2 25.8M 0.300 1.152 0.393 0.697 0.879
Point-Fusion Ours 2 8.7M 0.109 0.470 0.875 0.975 0.995
NLSPN Park’20 [36] 32 25.8M 0.114 0.554 0.825 0.947 0.985
Point-Fusion Ours 32 8.7M 0.057 0.319 0.963 0.992 0.998
Sparse & Dense Jaritz’18 [25] 200 58.3M 0.050 0.194 0.930 0.960 0.991
S2D Ma’18 [35] 200 42.8M 0.044 0.230 0.971 0.994 0.998
GuideNet Tang’20 [46] 200 63.3M 0.024 0.142 0.988 0.998 1.000
NLSPN Park’20 [36] 200 25.8M 0.019 0.136 0.989 0.998 0.999
Point-Fusion Ours 200 8.7M 0.015 0.112 0.995 0.999 1.000
FuseNet Chen’19 [5] 500 1.9M 0.318 0.859 0.688 0.789 0.887
CSPN Cheng’18 [6] 500 18.5M 0.016 0.117 0.992 0.999 1.000
DeepLiDAR Qiu’19 [38] 500 53.4M 0.022 0.115 0.993 0.999 1.000
Depth Coefficients Imran’19 [21] 500 45.7M 0.013 0.118 0.994 0.999 -
DepthNormal Xu’19 [51] 500 29.1M 0.018 0.112 0.995 0.999 1.000
CSPN++ Cheng’20 [7] 500 28.8M - 0.116 - - -
GuideNet Tang’20 [46] 500 63.3M 0.015 0.101 0.995 0.999 1.000
NLSPN Park’20 [36] 500 25.8M 0.012 0.092 0.996 0.999 1.000
Point-Fusion Ours 500 8.7M 0.014 0.090 0.996 0.999 1.000
MVSNet Yao’18 [53] - 124.5M 0.043 0.162 0.940 0.972 0.996
CodeSLAM Bloesch’18 [2] - 66.3M 0.096 0.251 0.910 0.962 0.989
Consistent depth Luo’20 [34] - 178.2M 0.086 0.345 0.916 0.959 0.984
NLSPN Park’20 [36] 500⋆ 25.8M 0.042 0.144 0.949 0.981 0.999
Point-Fusion Ours 500⋆ 8.7M 0.022 0.126 0.994 0.999 1.000

Moreover, we add residual connections at the end of the
decoder and refinement blocks to prevent the vanishing gra-
dient problem and regularize the confidence map’s errors.
The initial depth map is corrected based on the confidence
map, as illustrated in Figure 4.

3.3. Multi-scale Loss function

We calculate the loss at multiple feature resolutions to
train our network. The full loss is defined as:

L =

n=5∑
i=1

γi(Li
log + µLi

grad + θLi
norm) (1)

where n is the number of resolution scales and γi ∈ R+ is
the loss weight at scale i, Llog is a variation of the L1 norm
that minimizes error on the sparse depth pixels, Lgrad op-
timizes the error on edge structures, and Lnorm penalizes
angular error between the ground truth and predicted nor-
mal surfaces. These loss terms were introduced by Hu et al.
[17] and widely adopted by state-of-art monocular depth es-
timation methods [4, 19]. Subsection 4.2 describes in detail

how the network is trained using these loss functions.

4. Experiments
In this section, we evaluate the performance of the pro-

posed method and compare it with several baselines on the
NYU-Depth-v2 and KITTI datasets.

4.1. Dataset and Evaluation metrics

Datasets. The NYU-Depth-v2 dataset contains approxi-
mately 120K RGB-D images recorded from 464 indoor
scenes. We extract the raw RGB frames from the orig-
inal videos and reconstruct sparse 3D point clouds us-
ing the COLMAP [42, 43] structure-from-motion software.
COLMAP is also used to extract the camera poses for multi-
view stereo methods. The 3D points are back-projected to
each input view to obtain a sparse set of depth values. We
use 60K images for training and 654 images from the of-
ficial test set for evaluating the methods. For KITTI, we
utilize 85K images for training, 1000 images for validation
and 1000 images for testing on the KITTI depth completion
benchmark [47].
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Evaluation metrics. We report the results in terms of
standard metrics for each dataset. For NYU-Depth-v2 we
compute the mean absolute relative error (REL), root mean
square error (RMSE), and thresholded accuracy (δi). For
KITTI, we also calculate RMSE plus mean absolute error
(MAE), root mean square error (iRMSE) and mean abso-
lute error (iMAE) of the inverse depth values. The detailed
definitions of the measures are provided in the supplemen-
tary material.

4.2. Implementation details

The proposed model is trained for 150 epochs on a sin-
gle TITAN RTX using batch size of 32, the Adam opti-
mizer [27] with (β1, β2, ϵ) = (0.9, 0.999, 10−8), and the
loss function presented in (1). The initial learning rate is
1.2 ∗ 10−4, but from epoch 10 the learning is reduced by
6% per 5 epochs. We set the number of scales n in (1) to
5, weight loss coefficients µ, θ to 1.0, and the scale weight
losses γ1, γ2, γ3, γ4, γ5 to 1.0, 0.75, 0.5, 0.25 and 0.125 re-
spectively. To remove the effect of the arbitrary scale of the
COLMAP points, we center and normalize the 3D inputs to
a unit sphere before the training. During training, we aug-
ment the input RGB and ground truth depth images using
random rotation ([-5.0, +5.0] degrees), horizontal flip, rect-
angular window droppings, and colorization (RGB only).

4.3. Comparison with State-of-the-art

The proposed method is related to multiple partially
overlapping problems and, therefore, we compare it with
several baseline methods in monocular depth estima-
tion [39, 17, 4, 55, 19], depth completion [5, 6, 7, 11, 18,
20, 21, 25, 31, 35, 36, 38, 46, 48, 51, 52], deep multi-view
stereo [53], deep structure-from-motion/SLAM [34, 2]. The
baseline results are obtained using the pre-trained mod-

Table 2. Evaluation results on the test set of the KITTI depth com-
pletion benchmark. Performance figures are color-coded as red,
green, and blue, corresponding to first, second and third best re-
sults, respectively.

Architecture #param RMSE MAE iRMSE iMAE
Sparse&Dense [25] 58.3M 917.6 234.8 2.17 0.95
NConv [11] 0.36M 829.9 233.2 2.60 1.03
DepthNormal [51] 29.1M 777.1 235.2 2.42 1.13
FusionNet [48] 2.5M 772.9 215.1 2.19 0.95
FuseNet [5] 1.9M 752.9 221.2 2.34 1.14
DeepLiDAR [38] 53.4M 748.4 226.5 2.56 1.15
DDP [52] 29.1M 832.9 203.9 2.10 0.85
MSG-CHN [31] 1.25M 762.2 220.4 2.30 0.98
CSPN++ [7] 28.8M 743.7 209.3 2.07 0.90
NLSPN [36] 25.8M 741.7 199.6 1.99 0.84
GuideNet [46] 63.3M 736.2 218.8 2.25 0.99
ENet [18] 131.6M 741.3 216.3 2.14 0.95
PENet [18] 133.7M 730.1 210.6 2.17 0.94
TWISE 2 [20] - 840.2 195.6 2.08 0.82
Point-Fusion(Ours) 8.7M 741.9 201.1 1.97 0.85

els [4, 17, 39, 55, 34, 18, 11], re-training using the of-
ficial NYU-v2 [2, 35, 36, 53] code, using our own re-
implementations [19, 25], and from the original papers
[7, 38, 51, 21, 46, 52].

NYU-Depth-v2. The performance metrics, computed be-
tween the estimated depth maps and the ground truth, are
provided in Table 1. In addition, we report the number of
method parameters, and the number of 3D points used in the
estimation. Compared to monocular depth estimation stud-
ies, the proposed method provides a substantial improve-
ment according to all metrics. For instance, REL, RMSE
and thresholded accuracy (δi) are improved by 47%, 22.5%
and 10%, respectively, by using only 35% of the model pa-
rameters and 32 additional 3D points. Table 1 also shows
that our method produces results close to state-of-the-art
even without using any 3D inputs, while 2 points are al-
ready enough to be on par with the baseline approaches.

Compared to the depth completion methods, we obtain
state-of-the-art performance while using clearly less model
parameters as shown in Figure 5 a). The best performing
baselines, NLSPN [36], DepthNormal [51], GuideNet [46]
use 2.9, 3.4, and 7.3 times more parameters compared
to our method, respectively. Instead of using the ex-
plicit 3D points, the multi-view stereo [53], structure-from-
motion [34], and SLAM [2] methods utilise multiple RGB
images with camera poses. The results in Table 1 indicate
that the proposed model outperforms also these methods us-
ing only a fraction of the model parameters.

Figure 6 shows qualitative results of the predicted depth
maps and reconstructed points cloud for our method and
for [36]. The baseline [36] results are obtained using the
pre-trained model provided by the authors. Although both
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Figure 6. Qualitative results on NYU-v2 test set. Note that all methods use 200 randomly sampled 3D points as input.

methods produce high quality depth maps, the proposed
model is better in recovering fine details in challenging re-
gions and introduces less distortions on flat surfaces.

We also provide examples where we reconstructed a very
sparse set of 3D points (32 points) from two images and uti-
lized those as the 3D inputs. The dense depth maps obtained
with this setting using our method, NLSPN [36] and MVS-
Net [53] are illustrated in Figure 8. We argue that state-
of-the-art depth completion methods are usually vulnerable
in high sparsity cases, while deep multi-view stereo perfor-
mance degrades with less input views. One the other hand,
our method produces high quality depth maps with signif-
icantly less distortions. Additional results are provided in
the supplementary material.

KITTI. To demonstrate the versatility of the proposed
method, we also experiment with outdoor data. For this
purpose, we train and test our model with the KITTI depth
completion dataset [47], in which we perform on par with
state-of-the-art methods using a significantly smaller num-
ber of parameters as shown in Table 2. We notice that there

(b)

(a)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 7. Examples from the KITTI validation set. Input images
(a), ground truth LiDAR (b). Results from (c) Depth2Depth [56],
(d) DeepLiDAR [38], (e) NLSPN [36], (f) ENet [18], (g)
PENet [18], and (h) the proposed method.

is a clear trade-off between model parameters and perfor-
mance as shown in Figure 5 b). Figure 7 presents qualitative
comparison with baseline methods. The proposed method
produces finer depth details as emphasized in the highlight
areas. However, the difference is largest with a small num-
ber of input 3D points as depicted in Figure 5 d). The results
suggest that high-quality depth maps can be obtained by us-
ing only a few LiDAR points enabling more cost efficient
solutions. Additional results are also added to the supple-
mentary material.

4.4. Ablation studies

Number and sampling of input 3D points. To analyze
how the quantity and spatial distribution of the input 3D
point affect the results, we performed experiments with
varying 3D point patterns. For this purpose we generate
sparse point sets by randomly sampling from the dense
ground truth or from COLMAP output. We expect that
by sampling from dense depth map provides better results
compared to the COLMAP points. This is because, dense
depth map covers also flat textureless surfaces such as walls,
floor, and doors. However, such points might not be easy
to obtain in practice, whereas COLMAP points represent

(a)

(b)

(c)

(d)

(e)

Figure 8. NYU test set examples (a). Dense depth maps and
reconstructed point cloud from two images: (b) ground truth, (c)
NLSPN [36], (d) MVSNet [53], and (e) the proposed method.
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Figure 9. Qualitative comparison of the pattern (left) and quantity (right) of input points. Random points are sampled from the dense
ground truth depth map. For COLMAP points, we extract the image frames from raw NYU data and run COLMAP to obtain the points.
The pattern and number of points are kept similar in all cases. Left: the number of points in use is 64. Results in the first row show the
random input point have better spatial distribution than COLMAP points since they cover flat surfaces like walls, floors or doors. Right:
example results show the predicted depth maps using random sampled set of 32, 128 and 200 points respectively. Our method perform
consistently better than NLSPN [36] in all cases. (Points are enhanced for visualization)

location which are often reconstructed by SfM or SLAM
methods.

Figure 5 c) presents the RMSE errors for different num-
ber of input points for both types. The results confirm the
initial assumption that sampling from a dense depth map
results in better performance. Moreover, we notice that the
proposed method obtains higher accuracy compared to NL-
SPN [36] with all point sets. In fact, we obtain similar
performance using COLMAP points as NLSPN [36] using
points from the dense depth map. Figure 9 shows qualitative
comparison with NLSPN [36].

Confidence predictor. We study the impact of the con-
fidence predictor module by training our method with and
without this component. We report the results in Table 3.
When compared to a model without the confidence map,
REL improves ∼ 3.5%, and RMSE ∼ 7.2%.

Multi-scale Fusion-Net. We assess how the number of
Fusion-Nets affects the performance. For this purpose, we
train our model using 2 − 6 Fusion-Nets. The correspond-
ing RMSE for the NYU-Depth-v2 test set are provided in
Table 4. The results improve by increasing the number of
Fusion-Net to five and degrade after that. As each Fusion-
Net perform at a different feature resolution, we argue that
five is the optimal cascade size for the network to learn the
geometric features from the 3D inputs.

Table 3. Ablation studies of models without and with the confi-
dence predictor (CP) on NYU-Depth-v2.

Training REL↓ RMSE↓ δ1↑ δ2↑ δ3↑
w/o CP 0.015 0.097 0.994 0.997 0.999
w/ CP 0.014 0.090 0.996 0.999 1.000

3D point convolutions. We study the effect of different
types of 3D point convolutions by training our model using
the deep parametric continuous convolution (PCC) [49] and
the FKAConv [3]. The results are provided in Table 5. The
comparison with the PCC shows that the FKAConv module
reduces the network size by ∼ 5% while slightly improves
the performance by ∼ 3%. We also trained our model with-
out the 3D branch and the performance dropped consider-
ably as shown in Table 5.

5. Conclusion

We propose a novel and pragmatic approach that fuses
RGB monocular depth estimation with information from a
sparse set of 3D points for dense depth estimation. Exper-
iments on common indoor and outdoor datasets show that
we achieve state-of-the-art results while being compact in
terms of the number of parameters. Moreover, our method
can also produce, unlike the competitors, high-quality depth
maps using an extremely sparse set of 3D points, which en-
ables a cost-efficient solution for obtaining accurate depth
maps for various applications where dense depth is needed.

Table 4. Performance of our model using different numbers of
Fusion-Net on NYU-Depth-v2.

# of FusionNet 2 3 4 5 6
RMSE 0.105 0.097 0.094 0.090 0.093

Table 5. Performance of our model applying different types of 3D
point convolutions on NYU-Depth-v2.

Training #params REL↓ RMSE↓ δ1↑ δ2↑
w/o 3D branch 7.6M 0.044 0.196 0.980 0.993
w/ PCC 9.1M 0.015 0.096 0.994 0.996
w/ FKAConv 8.7M 0.014 0.090 0.996 0.999
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