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Abstract

Predicting the states of dynamic traffic actors into the fu-
ture is important for autonomous systems to operate safely
and efficiently. Remarkably, the most critical scenarios are
much less frequent and more complex than the uncritical
ones. Therefore, uncritical cases dominate the prediction.
In this paper, we address specifically the challenging sce-
narios at the long tail of the dataset distribution. Our anal-
ysis shows that the common losses tend to place challeng-
ing cases sub-optimally in the embedding space. As a con-
sequence, we propose to supplement the usual loss with a
loss that places challenging cases closer to each other. This
triggers sharing information among challenging cases and
learning specific predictive features. We show on four pub-
lic datasets that this leads to improved performance on the
challenging scenarios while the overall performance stays
stable. The approach is agnostic w.r.t. the used network
architecture, input modality or viewpoint, and can be inte-
grated into existing solutions easily. Code is available at
github.

1. Introduction

Future prediction in traffic scenarios aims to foresee the
future location of dynamic actors based on their current and
previous locations and possibly other information about the
environment. For an actor in interaction with others, rea-
soning about possible future locations of the other actors is
necessary for path planning and to avoid collisions. Given
enough data, some recent prediction methods [48, 60, 47]
also not just predict a single location of the actor in the fu-
ture but a multimodal distribution over possible future loca-
tions.

The average prediction errors of such methods look
promising, but they hide that the training and test data is
dominated by simple scenarios, where the trajectory can be
smoothly propagated into the future. Such scenarios can
be handled with a simple Kalman filter or other autoregres-
sive models. However, the most safety-critical scenarios are
those that involve close-by dynamic obstacles and require
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Figure 1. Histogram of the ETH-UCY dataset based on the diffi-
culty of the sample (based on displacement error of a Kalman fil-
ter [31]). An easy scenario (belongs to the head blue class) and a
challenging scenario (belongs to the tail red class) are shown along
the prediction of the state-of-the-art (Traj++ EWTA) and our ap-
proach. Our approach targets those challenging scenarios (from
the tail) and improves their performance while maintaining a good
performance on the easy scenarios.

an evasive maneuver. Such scenarios are rare in both the
training and the test data. The more complex and safety-
critical they are, the less frequent they are. Fatal cases with
a collision are not part of the dataset at all.

As an example, the ETH-UCY dataset is often used to
benchmark methods for future trajectory prediction. It is
considered a challenging dataset, as it includes interacting
pedestrians in crowded scenes. Figure 1 shows the his-
togram of samples in this dataset based on their difficulty
approximated by the prediction error of a Kalman filter. The
large majority of scenarios can be well modeled by linear
extrapolation, whereas scenarios that require more complex
modeling are rare. The depicted challenging scenario show-
cases a pedestrian (red box), who will turn right in the future
to avoid a collision with the stationary pedestrians (black
boxes) in front of them.
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In this paper, we explicitly address the long-tailed data
distribution in future prediction and focus on the rare but
important cases rather than the average case. Straightfor-
ward ideas to re-distribute the dataset by undersampling
the frequent scenarios [20, 27] or by reweighting the loss
for these samples [13] are not viable solutions, since it
would reduce the (effective) data size dramatically. One can
also oversample the challenging scenarios during training
[26, 36], yet this repetition of the same rare samples leads
to overfitting and does not perform well, as we show in our
experiments. Some works have tried to simulate rare cases
[43, 42]. However, to-date, even the most realistic simu-
lations suffer from the domain gap between the simulated
and the real world. An interesting direction for dealing with
imbalanced data has been presented by Cao et al., who pro-
posed a loss that ensures larger margins for the minority [5].

We pick up this general idea and propose to reshape
the feature embedding of the predictor. We show in a de-
tailed analysis of the feature space that, with the usual loss,
the challenging examples get placed next to many normal
cases. Consequently, the relevant information of these sam-
ples gets smoothed out. As we push the challenging sce-
narios to be in proximity in the embedding, more of these
samples that share a similar scenario build a small cluster
and are no longer ignored. With this approach we can pre-
dict the future trajectory of interacting pedestrians better;
see blue trajectory in Figure 1.

Our contributions can be briefly summarized as follows.
(1) We analyze the problem of long-tailed data distributions
in future prediction for the first time. (2) We propose a novel
joint optimization of the regular regression loss for predict-
ing the future location and a loss that reshapes the feature
embedding in favor of the long-tail samples. (3) We show
that multi-headed networks outperform cVAEs in address-
ing the multimodal nature of the future.

The proposed approach is easy to integrate into existing
approaches, since it is agnostic to the network architecture,
viewpoint, and input modalities. We demonstrate this by
evaluating on four diverse public datasets. On each of them,
the method improves the prediction quality of the challeng-
ing cases, while maintaining the quality on simple cases.

2. Related Work

Future prediction. Deep learning methods dominate
future prediction. LSTMs [1, 71, 75, 2, 52, 59, 16] were
mostly used to model the states of the agents over time,
while graph-based approaches [67] were used to model the
interactions between agents. However, these methods can-
not handle the multimodal nature of the future. Meanwhile,
several works addressed the multimodality in future predic-
tion by ¢VAEs [39, 51], GANs [22, 58, 77, 37, 66], non-
parametric approaches [43, 10] or a sampling-fitting frame-
work [48]. Recently, graph neural networks [53, 60, 40, 6,

] and transformers [74] have become popular to model
the agent interactions. All aforementioned works assume
that the scene is static and is observed from a bird’s-eye
view. Among these, Trajectron++ [60] currently performs
the best.

In automotive settings, the observation is typically from
an egocentric view (e.g, with camera(s) or LIDAR mounted
on the vehicle). This introduces new challenges due to the
large egomotion of the vehicle and the narrow field of view.
Multiple works project the data to the bird’s-eye view us-
ing expensive 3D sensors [12, 17, 15, 63,46, 57, 11]. Some
recent approaches work directly on the egocentric view. De-
terministic approaches [64, 65] modeled the motion of the
scene via optical flow. Yao et al. [73] proposed to use the
planned egomotion to improve the predictions. TraPHic [7]
exploited the interaction between nearby heterogeneous ob-
jects via LSTMs. Some works also tackled the multimodal-
ity in future prediction by using Bayesian RNNs to sample
multiple futures with uncertainties [3, 49]. Titan [50] mod-
eled the future as a bi-variate Gaussian and conditioned the
learning process on a set of labelled prior actions to fur-
ther improve the prediction. Makansi et al. [47] proposed
a three-staged framework FLN-RPN, which currently per-
forms the best in the egocentric view.

None of the above approaches addressed the long tail
of the data distribution. We base our method on Trajec-
tron++ [60] in the bird’s-eye setting and FLN-RPN [47] for
the egocentric setting, and specifically address the challeng-
ing cases in the long tail of the dataset distribution for the
first time.

Learning on imbalanced datasets. Issues with the
long tail of a dataset have been well studied for classi-
fication tasks. Many works tackled the issue from the
data side. A common approach is oversampling of rare
classes [61, 56, 14]. Another option is undersampling of
the most frequent classes [20, 27]. Several works follow the
idea of generating more samples of the minority classes by
simulation, which can be considered a more sophisticated
version of oversampling [8, 24, 54, 36]. Instead of chang-
ing the number of samples, samples can also be reweighted
in the loss [29, 13, 45, 62]. Some works proposed to learn
these weights [33, 30]. Recently, Li et al. [41] group classes
of similar sizes and learn group-wise classifiers.

Another idea is to design loss functions that affect the
feature space by increasing the inter-class distance and re-
ducing the intra-class distance [76, 29]. This concept of en-
larging the margin between minority classes leads to a larger
margin between classes and, thus, better generalization
[18, 5, 34, 25]. Similarly, contrastive learning has become
very popular due to promising results on self-supervised
feature learning with noise-contrastive learning [23, 9, 69].
Noisy versions of a sample (positives) are forced to be sep-
arated from other samples (negatives) [19]. Recently, con-



trastive learning enabled learning stronger feature extractors
for classifying long-tail datasets [72].

All these methods were applied to classification tasks,
where there is an explicit distinction between frequent and
rare classes. Our approach also augments the loss to re-
shape the data distribution in the embedding space, yet we
do not rely on predetermined clusters, since we have a re-
gression task. Given the flexibility of contrastive learning
in defining losses based on the definition of positive and
negative samples, we adopt a novel way of embedding the
samples based on their difficulty as measured by the perfor-
mance of a Kalman filter and combine the reshaping of the
embedding space with the regular regression loss. For sake
of fair comparison, we also adapt previous methods tailored
for classification and use them in conjunction with the re-
gression loss as detailed in Section 6.5.

3. Future Prediction

Given current and past observations (X;—p,...,X¢),
where h is the length of the history, future prediction aims
to predict the true state y of the actor of interest at times
(t + At,...,t + MA) in the future. An observation x at
a single time step ¢ can consist of the 2D location p? =
(pz, py), @ map Q of the environment, a bounding box b* =
(bg, by, buy, by) of the actor of interest, an RGB image I, se-
mantic segmentation S¢, or future egomotion e!=*+2?, For
future trajectory prediction, the state y is defined as the fu-
ture trajectory (p,p,) at (t + At,...,t + MAt) and for
future localization prediction as the future bounding box b
att + At.

We address the issue with the long tails of the data distri-
bution in both bird’s-eye view and egocentric settings. As
backbone for these scenarios, we use the Trajectron++ [60]
and FLN-RPN [47], respectively.

3.1. Bird’s-Eye View - Trajectron++

Trajectron++ [60] is the state-of-the-art method for fu-
ture trajectory prediction in bird’s-eye view. It takes
the dynamic actors, the static environment, and heteroge-
neous input data into account. Given the past trajectories
[(pt", pt="), ..., (pL, pt)]. and optionally a map Q of the
scene, Trajectron++ builds a directed spatiotemporal graph

for a scene based on its topology. It predicts future trajec-

tories y = [(p;+At7pZ+At)7 . (p;tE+MAt7pZ+MAt)}' The

nodes of the graph represent the actors, and the edges rep-
resent their interactions. The actors’ histories are modeled
by LSTMs, features of interacting actors are aggregated via
point-wise summation, and GRUs are used to decode the fu-
ture trajectories. The original architecture employs a cVAE
to produce multiple future trajectories.

Since cVAEs require multiple runs of the decoder to
obtain multiple predictions, we replace the cVAE by the
multi-hypotheses networks trained with EWTA (Evolving

Winner-Takes-All) [48]. The EWTA loss for every sample
7 in the batch is defined as:

M K
EWTA t+mAt _ at+mAt
L; Z Zwk,mHP/jm =L (D)
m=1 k=1
Wjm = ]lJ'Garg]:nin [[pj At —pttmat|| s @)

where K is the number of estimated hypotheses. 1.,,4 1S
the indicator function that returns 1 if the condition cond
returns true and O otherwise. p?’mm and pttAt denote
the kth predicted future state and the ground truth at future
time step (t + mAt), respectively. The argmin returns the
k hypotheses closest to the ground truth, where &k gradually
decreases from K to 1 during training. While all hypothe-
ses are penalized in the beginning of the training, only the
best one would be penalized at the end of the training. The
Trajectron++ augmented by EWTA (Figure 3 (top)) pro-
duces multiple future trajectories in a single network pass
and outperforms the standard Trajectron++, as we show in
Section 6.5.

3.2. Egocentric View - FLN-RPN

FLN-RPN [47] is the state-of-the-art method for future
localization prediction in the egocentric setting. FLN-RPN
predicts the multimodal distribution of the future localiza-
tion of an actor in three steps. First, it predicts where an
actor is most likely to be in the current image (Reachability
Prior). Second, it transfers the reachability prior from the
current frame to the future frame using the future egomo-
tion. Finally, past bounding boxes of the actor b, images
I, semantic segmentations S at time steps (¢t — h, ..., t), the
future egomotion e*=*+2% and the predicted future reach-
ability prior are given to the network to predict the future
localization of the actor of interest. The prediction has the
form of set of bounding boxes b at +At. The two key com-
ponents of FLN-RPN are the reachability prior, which helps
overcoming mode collapse, and the EWTA loss function
(Eq. 1 with M = 1 and p is replaced by b) that can learn
diverse multiple states of the future in a single forward pass.
Figure 3 (bottom) illustrates the FLN-RPN framework.

3.3. Difficulty Ranking

Before we explore the effects of the distribution of the
challenging scenarios in the feature space on the final pre-
diction, we need to know how challenging each scenario
is. Since manual labeling is not a viable option, we use
a common and simple metric to measure the difficulty of
cases: the displacement error made by the Kalman Fil-
ter [73, 47, 31] on this sample. Small errors indicate good
approximation with linear extrapolation, whereas large er-
rors indicate a challenging scenario that requires complex
nonlinear prediction.
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Figure 2. Feature space for the UNIV scene from ETH-UCY dataset using t-SNE [70]. (a) Training only with the supervised objective
for future prediction (e.g, EWTA). Rare challenging scenarios (large green bright circles) are scattered among the frequent easy scenarios
(small dark blue circles). We zoom into two challenging (1,4) and two easy scenarios (2,3). (b) Joint learning with the supervised (EWTA)
and the contrastive loss. The challenging scenarios form two sub-spaces where they can share relevant features. The two challenging ex-
amples (1,4) are close and benefit each other, which improves their future predictions considerably (particularly for 1). (¢) Only contrastive
learning is used, where all challenging scenarios are strictly mapped to the same location. This destroys the task relevant cues and cannot

provide any future prediction.

4. Why are Hard Cases Ignored by the Model?

To understand the cause of the problem with samples
from the long tail of the data distribution, we visualized
the feature embedding of the data from a network trained
with a supervised future prediction objective and analyzed
particular cases in detail. Figure 2 (left) shows the feature
space for the UNIV scene in the ETH-UCY dataset pro-
jected to 2D with t-SNE [70]. Each dot is a sample from the
scene mapped to the feature space by the network trained
with EWTA loss (Eq. 1). Hard cases are sprinkled among
the easy cases in the feature space without any structure. A
closer look at a hard case (1) reveals that it shares some sim-
ilarity with corresponding easy cases (2,3), which explains
its position in the embedding, but the relevant cues, in which
it is different from the easy cases, get ignored with normal
training. The sample should rather be close to another chal-
lenging example (4) to capture the social interaction, where
pedestrians walk in groups and follow other groups. We be-
lieve that challenging scenarios being alone in a manifold
full of easy scenarios causes the network to ignore them
and base its decisions on shortcuts learned from the dom-
inant easy scenarios. The network does not get a chance
to learn dedicated features to solve challenging cases by
reusing some common cues among them (1,4), as long as
they get mixed up with the easy cases. Indeed, the predic-
tion for case (1) is quite wrong since it is similar to the pre-
diction of cases (2,3), where social interaction is missing.

5. Reshaping the Embedding with Contrastive
Learning

The analysis from the previous section triggers the idea
to push hard samples away from the easy ones, such that

the relevant cues of similar hard samples get the chance to
be no longer ignored during training. We implement this
idea with an additional contrastive loss. Contrastive learn-
ing enforces certain training samples (positives) to be closer
in the embedding to a sample (anchor) ¢ than others (nega-
tives). There are multiple ways to express this in a loss. The
most popular is

N
LEM = -3 iy Liepo,
P s (3)
exp(z; - 2;/7)
i Lik - exp(zi - 7,/7)
where z is the learned feature vector at the bottleneck of the
network (see Figure 3), po, is the positive set of anchor :.
1 .ona is the indicator function that returns 1 if the condition
cond returns true and 0 otherwise. N is the total number
of samples in the batch. Ny, is the total number of pos-
itive samples for the anchor ¢. 7 > 0 is the temperature
parameter. Positive samples are often defined as augmented
versions of the same image [9] or samples belonging to the
same class [35]. Negative samples, on the other hand, are
other samples in the batch that do not satisfy the positive cri-
terion by some safe margin. Since our goal is to distribute
the features based on the difficulty, we define the positive
set po, as the set of samples j in the batch which has a
difficulty score s; satisfying |s; — s;| < 6, where 6, is
a hyper-parameter defining the positivity threshold. Simi-
larly, the negatives samples are defined as all samples with
a difficulty score satisfying |s; — s;| > 6,,. Note that we
use different thresholds ¢, # 6,, implying that many sam-
ples in the batch are neither positive nor negative. In order
to minimize this loss, the network must maximize the nom-
inator and minimize the denominator. Doing so, it learns to

-log



map the positive samples close in the feature space and the
negative ones apart. The result of training with such a loss
is shown in Figure 2 (right).

While having the hard cases being pushed together is
good for them to share relevant cues and learn prediction
models for less common scenarios, there is much diversity
among hard cases, and not all of them should be pushed to
the same space. In particular, we should not destroy cues
shared with the easy examples, which are necessary for the
network to solve the actual task. The contrastive loss alone
can not predict the future state. To this end, we jointly op-
timize for the supervised future prediction loss LEWTA and
the self-supervised contrastive loss LE°™ as:

Li — LFWTA + )\ . LiCOntr, (4)

where A\ controls the importance of the contrastive loss,
hence the strength of the attraction that pulls hard cases to-
gether.

Figure 2 (middle) shows the effect of this combination.
Cases (1) and (4) fall into the same sub-space resulting in a
much better prediction for (1). Other hard cases rather stay
with similar easy samples as they have no other hard cases
to share information with.

Due to its simplicity, this difficulty-based contrastive
learning can be added to any existing method as long as
the difficulty can be defined explicitly on the training set.

6. Experiments
6.1. Datasets

The ETH-UCY dataset is the combination of the
ETH [55] and the UCY [38] pedestrian datasets. Both in-
clude videos from bird’s-eye view of the pedestrians, where
the trajectories are manually annotated. The challenges in
these datasets are the frequent interactions between pedes-
trians, as the scenes are very crowded, and the lack of visual
information due to the viewpoint, i.e, the actors are small
and uninformative. We present 5-fold cross-validation re-
sults on the five scenes of the dataset.

nuScenes [4] is a large autonomous driving dataset with
1000 scenes, where each is 20 seconds long. It provides
HD semantic maps with 11 different layers and accurate
bounding box annotations in time. It provides scenarios
from bird’s-eye view and egocentric view, and we experi-
ment with each of them.

Waymo [68] is the most recent autonomous driving
dataset with 1000 scenes, where each is 20 seconds long.
We use the validation part of the dataset (202 scenes) to
show zero-shot transfer of our approach in egocentric view
(i.e, without retraining the model).
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Figure 3. Schematic that shows how we flexibly integrate the con-
trastive loss (red) in existing future prediction frameworks. (a)
Bird’s-eye view (Trajectron++[060]). (b) Egocentric view (FLN-
RPN[47]). Independent of the contrastive loss, we modified Tra-
jectron++ by replacing the cVAE with the EWTA [48] framework
to better capture the multimodality of the predicted future and for
faster inference time. The map encoder (dashed gray) is optional
and only used for the nuScenes dataset.

6.2. Evaluation Metrics

min-ADE is the minimum average displacement error.
It computes the mean L, distance between all predicted tra-
jectories and the ground truth and reports the error of the
closest one. This is sometimes also referred to as oracle
(or best-of-many), since the selection of the minimum error
depends on the ground truth.

min-FDE is the minimum final displacement error. It
computes the Lo distance between the final locations of the
predicted trajectories and the ground truth at the end of the
predicted time horizon (¢ + M At) and, like min-ADE, re-
ports the minimum.

6.3. Training Details

In our experiments for bird’s-eye view, we followed
the original training schedule for Trajectron++ [60]. We
trained the Trajectron++ (EWTA) with batch size 256 for
100 epochs in every EWTA stage (k = K, ..., 1) for ETH-
UCY and for 5 epochs in every EWTA stage for nuScenes.
For the experiments in egocentric view, we used ResNet34
[28] as the encoder of FLN-RPN [47] and trained with batch
size of 32. Following [60, 47], we set M to 12, 6, 1 and At
to 0.4, 0.5, 3.0 for ETH-UCY, nuScenes (bird’s-eye view)
and nuScenes/Waymo (egocentric view), respectively. The
remaining design choices were kept as in the original papers



[60, 47]. For our joint optimization, A was chosen based
on the validation set as 1, 50, 150 for nuScenes (bird’s-eye
view), ETH-UCY, and nuScenes (egocentric view), respec-
tively. We used the recommended value of 0.5 for 7 [9]. 6,
and 0,, were set such that the ratio of positives and negatives
over the batch size are 10% and 40% for Trajectron++ and
33% and 33% for FLN-RPN, respectively. z had the dimen-
sions of 232 and 256 for Trajectron++ and FLN-RPN, re-
spectively. A study about the effect of the hyper-parameter
A is presented in the supplemental material.

6.4. Baselines

Bird’s-eye view (ETH-UCY). We selected a set of re-
cent methods addressing the future trajectory prediction:
Graph-based approaches: RSBG[67], S-STGCNN[53], and
Trajectron++[60] (referred as Traj++); transformer-based
approach: STAR[74]; multi-stage networks: TPNet [21]
and PECNet [51].

Bird’s-eye view (nuScenes). We compare against a
set of baselines including deterministic LSTM-based ap-
proaches: S-LSTM [1], CSP [16], and CAR-Net [59]; mul-
timodal graph-based approaches: SpAGNN [6] and Trajec-
tron++ [60].

Egocentric view. We compare against the multimodal
state-of-the-art FLN-RPN [47].

Moreover, for all settings and datasets, we imple-
mented the common approaches for imbalanced data: re-
sampling [61], reweighting using the inverse class fre-
quency [29], and reweighting using the effective number of
samples [13]. We also adapt sophisticated long-tail classi-
fication methods[5, 41] to the considered task by defining
classes based on the discretization of Kalman filter scores.
Then, the network is jointly trained on the regression loss
and the considered classification loss (more details are pro-
vided in the supplementary). Notice that recent methods:
cRT, 7-norm and LWS introduced by Kang et al. [32] can
not be adapted to regression tasks since they do not affect
the feature extractor and fully rely on post-processing the
classifier which is not needed at test time in our scenario.

6.5. Results & Discussion

To show the validity of the proposed approach, we
selected strong baselines and state-of-the-art methods for
comparison. Tables 1, 2 and 3 summarize our results on the
four different datasets. Since we are interested in improv-
ing the quality of the predictions of the rare cases, we report
min-ADE and min-FDE for all samples, as well as the top
1-3% challenging cases.

EWTA vs ¢VAE. Tables | and 2 show that our base
method, where we use the Trajectron++ as the backbone
with the EWTA objective, clearly outperforms the previous
state-of-the-art Trajectron++. This shows that EWTA-based
sampling for possible future trajectories works better than

All Top 3% Top 2% Top 1%
RSBG [67] 0.48/0.99 -/- -/- -/-
Reciprocal [66] 0.44/0.90 -/- -/- -/-
TPNet [21] 0.42/0.90 -/- -/- -/-
S-STGCNN [53] 0.44/0.75 -/- -/- -/-
STAR [74] 0.26/0.53 -/- -/- -/-
PEC-NET [51] 0.29/0.48 -/- -/- -/-
Traj++ [60] 0.21/0.41 || 0.65/1.42 | 0.71/1.51 | 0.58/1.23
Traj++ EWTA (ours) | 0.16/0.32 || 0.47/1.07 | 0.51/1.13 | 0.42/0.87
+ LDAM [5] 0.17/0.33 || 0.47/1.04 | 0.50/1.08 | 0.42/0.83
+ LDAM-DRW [5] 0.17/0.33 || 0.47/1.04 | 0.51/1.08 | 0.43/0.83
+ BAGS [41] 0.17/0.32 || 0.48/1.08 | 0.51/1.10 | 0.42/0.85
+ contrastive (ours) 0.16/0.32 || 0.46/1.03 | 0.48/1.03 | 0.38/0.71

Table 1. Average error on the ETH-UCY benchmark over all test
samples and over the 1-3% most challenging scenarios in the for-
mat of (min-ADE/min-FDE). Joint learning with the contrastive
loss yields large improvements on the challenging scenarios while
not harming the overall average accuracy.

cVAE-based sampling.

All Top 3% Top 2% Top 1%
S-LSTM [1] - /1.61 -/ - - /- -/ -
CSP[16] - /1.50 - /- -/ - -/ -
CAR-Net [59] - /1.35 -/ - - /- - /-
SpAGNN [6] - /1.23 -/ - - /- -/ -
Traj++ [60] 0.22/0.39 || 0.55/0.98 | 0.60/1.04 | 0.72/1.21
Traj++ EWTA (ours) | 0.19/0.32 || 0.48/0.88 | 0.50/0.88 | 0.59/1.02
+ LDAM [5] 0.18/0.32 || 0.48/0.88 | 0.51/0.93 | 0.60/1.10
+ LDAM-DRW [5] 0.18/0.32 || 0.50/0.93 | 0.52/0.96 | 0.63/1.14
+ BAGS [41] 0.18/0.31 || 0.48/0.88 | 0.51/0.94 | 0.61/1.11
+ contrastive (ours) 0.18/0.30 || 0.44/0.73 | 0.46/0.72 | 0.54/0.85

Table 2. Average error on the nuScenes dataset (bird’s eye view)
over all test samples and over the 1-3% most challenging scenar-
ios in the format of (min-ADE/min-FDE). Joint learning with the
contrastive loss yields large improvements on the challenging sce-
narios and even improves the overall average accuracy a little.

Large improvements on the challenging cases. Results
on all datasets show that our approach yields large improve-
ments on the challenging cases (particularly for the top 1%)
while maintaining the overall average error. In particular, on
the most challenging cases (top 1%), our approach improves
by 18%, 17%, 23% and 12% on the ETH-UCY, nuScenes
(bird’s eye-view), nuScenes (egocentric view) and Waymo
open dataset, respectively. The challenging training sam-
ples, as hypothesized, help each other when they are in
proximity in the feature space. Notably, the studied datasets
differ in their input modalities (additional semantic maps
for nuScenes), viewpoint (bird’s-eye vs egocentric views),
and prediction output (2D points in bird’s-eye view while
bounding boxes for egocentric view). This indicates that
the approach is agnostic to different input modalities and
generalizes well.

Comparison to long-tail classification baselines. Ta-
bles 1, 2 and 3 show a comparison against recent meth-
ods addressing the long-tail problem in classification. Our
method based on the contrastive loss outperforms all these
techniques on all metrics.



nuScenes Egocentric View Waymo Egocentric View
All | Top3% | Top2% | Top 1% || All | Top3% | Top2% | Top 1%
FLN-RPN [47] 7.10 | 29.98 31.13 36.16 6.39 | 24.87 25.49 27.32
+ LDAM [5] 8.04 | 2523 26.02 31.13 7.61 | 23.00 23.09 25.05
+ LDAM-DRW [5] | 8.01 | 26.63 27.85 34.58 8.05 | 25.23 25.98 29.32
+ BAGS [41] 7.28 | 29.54 30.38 35.74 6.67 | 24.45 24.88 26.66
+ contrastive (ours) | 7.04 | 25.05 25.26 27.49 6.49 | 22.36 22.72 24.09

Table 3. Results on egocentric datasets (nuScenes and Waymo).

We show the min-FDE over all scenarios and over the top 1-3%

challenging scenarios. Our approach yields an improvement on the challenging scenarios while maintaining the performance on average.

Zero-shot transfer. Results on the Waymo dataset
(Tab. 3) show promising zero-shot transfer to unseen
dataset, where models were trained on the nuScenes dataset
and tested on the validation split of the Waymo dataset.

Avoids bias. In Table 4 we compare our method against
the common approaches for imbalanced data: resampling
and reweighting. We report across all datasets the perfor-
mance over all samples and over the most challenging sam-
ples (top 1%). As expected, these baselines tend to bias
the challenging cases. Hence, the average performance
drops significantly (66%, 16%, 44% and 64% for ETH-
UCY, nuScenes bird’s, nuScenes egocentric and Waymo).
Our method, on the other hand, maintains the average per-
formance over all samples. Detailed results on all metrics
and difficulties are provided in the supplementary.

ETH-UCY | nuScenes-B | nuScenes-E Waymo

All/Top 1% | All/Top 1% | All/Top 1% | All/Top 1%
Baseline 0.32/0.87 0.32/1.02 7.10/36.16 | 6.39/27.32
+resample [61] | 0.53/1.22 0.37/1.33 | 10.20/21.62 | 10.48/19.69
+ reweight [29] | 0.56/0.76 0.58/1.67 | 14.47/16.20 | 14.00/16.44
+ reweight [13] | 0.56/0.78 0.60/1.71 16.54/15.46 | 17.43/18.79
+ contrastive 0.32/0.71 0.30/0.85 7.04/27.49 | 6.49/24.09

Table 4. Comparison to the common resampling/reweighting tech-
niques on the four datasets. For each method, we show the min-
FDE over all samples and over top 1% challenging samples. Our
method yields large improvements on the challenging ones while
maintaining the average. This is in contrast to the reweight-
ing/resampling baselines, which lead to much worse performance
on average. Baseline indicates Traj++ EWTA for bird’s eye view
and FLN-RPN for egocentric view.

6.6. Qualitative Results

In Figure 4 (a), we show three challenging examples
from ETH-UCY dataset. In all the cases, the future tra-
jectory of the pedestrian (red) is not trivial, and the network
must model the interaction between pedestrians to gener-
ate a plausible future trajectory. Our approach (blue) gen-
erates trajectories that are much closer to the ground truth
than Trajectron++ EWTA (cyan). In Figure 4 (b), we show
three challenging examples for vehicles from the nuScenes
dataset (bird’s-eye view). In these examples, the vehi-
cle changes direction, which requires interpretation of the
maps. Our approach succeeds on these examples, whereas
Trajectron++ EWTA misses these cues and predicts the sim-
ple continuation of the trajectory.

Figure 5 shows four different examples from the egocen-

tric setting. Figure 5 (a) shows a child crossing the street in
front of the vehicle. Figure 5 (b) shows a vehicle that will
turn right to go down the street, which is rarely encountered.
Figure 5 (c) shows an example that is difficult because of
the uncommon egomotion of the car moving to the opposite
lane to overtake the bus. Figure 5 (d) shows a vehicle that
turns right to exit the round-about. In all these examples,
our approach makes predictions close to the ground truth
(both in scale and location), whereas the baseline fails.

Limitations and failure cases. We also analyzed the
limits of our approach to identify room for further improve-
ments. We found that some challenging cases continue
to stay in a manifold for easy cases because of missing
similarity to other hard cases Figure 6 (b), or easy cases
moved wrongly to a manifold of challenging cases Figure 6
(c). Consequently, our approach yields wrong prediction.
We also found that our method, like other methods, cannot
model unexpected behavior, such as suddenly stopping and
turning in the opposite direction Figure 6 (a). We also pro-
vide the feature embedding before and after application of
our approach for all datasets in the supplementary.

7. Conclusions

We addressed the long-tailed data distributions by act-
ing on the feature embedding. We showed that pulling
the rare challenging samples together in the feature embed-
ding via contrastive learning helps improve their final pre-
dictions while preserving the performance over the whole
dataset. We validated our approach qualitatively and quan-
titatively on four different datasets, two different viewpoints
and different combinations of input and output modalities.
The proposed loss can be integrated easily into existing ap-
proaches to improve their performance on critical challeng-
ing cases. We hypothesize that the concept is generic and
could be integrated into other regression tasks with an un-
balanced sample distribution, as long as there is a way to
identify the underrepresented samples during training.
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Figure 4. Qualitative challenging examples for pedestrians from ETH-UCY dataset (a) and vehicles from nuScenes bird’s-eye view dataset
(b). Note how our approach outperforms the SOTA (Trajectron++ EWTA) by generating a future trajectory closer to the ground truth. We

visualize the best hypothesis for each method. For the examples from nuScenes (b), we show the underlying map on which the method
need to reason about.

(d) A vehicle exiting a round-about
Figure 5. Qualitative challenging examples from Waymo open dataset (a-b) and nuScenes egocentric view (c-d). For each example, we
show both the last observed image (top) and the future image (bottom) along with the predictions (FLN-RPN [47] and Ours) and the ground
truth. We visualize the best hypothesis for each method. The future egomotion is also shown as arrow indicating the motion of the ego-car.
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(a) A very challenging example of an unusual (b) A challenging example stayed within its (c) A less challenging example moved to
pedestrian behavior manifold for easy cases a manifold of challenging cases

Figure 6. Three examples for different categories of failures from our method. Each example is shown together with three other examples
on its left from its manifold resulting from our approach. (a) An example of a pedestrian from ETH-UCY dataset who unexpectedly
decided to turn back and go left. Such an unexpected future behavior is very hard to model. (b) A vehicle from nuScenes (top view) dataset
that decided to turn right and our approach in unable to change its manifold. (c) An example of a less challenging example from nuScenes
(bird’s-eye view) dataset which our approach mistakenly moves to a challenging manifold.
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Supplementary Material for:
On Exposing the Challenging L.ong Tail in Future Prediction of Traffic Actors

1. Visualization Plots

Figure 7 and 8 show the comparison between our method
and different baselines where each circle indicates the per-
formance of one method. These figures illustrate better the
improvements gained by our method (dashed arrows).

2. Feature Space Visualization

Figure 9 shows the projection of the feature space using
tSNE [70] on three different datasets with different input
modalities and views. For each dataset, we show the feature
space embedding without our joint optimization (i.e, only
the supervised loss) and with our joint optimization (i.e, ad-
ditionally utilizing the contrastive loss). Note how our ap-
proach reshapes the feature space by pushing the challeng-
ing scenarios to be closer so that they can benefit each other
as also shown in our quantitative results.

3. Effect of the Strength of the Contrastive
Loss

In Table 5 we show a study for the importance of the
contrastive loss (A\) used in our approach (Eq. (4)). Using a
small factor leads to small improvements on the challenging
scenarios as the force of reshaping the feature space is rather
weak. On the other hand, using a very large factor yields
worse results as the network focuses more on reshaping the
feature space and ignores the important cues for the actual
task which are learned from the supervised loss. Note that
this study is used only to show the effect of the weight of the
contrastive loss. In our main results, we use the validation
set to select the best value for A.

4. More Qualitative Results

We provide more qualitative results from our approach
in Figure 10, Figure 11 and Figure 12 for the ETH-UYC,
nuScenes (bird’s-eye view) and nuScenes/Waymo (egocen-
tric view) datasets, respectively.

5. Detailed Quantitative Results

Table 6 show a detailed comparison between our method
and the resampling/reweighting baselines across all datasets
on all metrics and difficulties. This support our findings that

12

ETH-UCY (AVG)
All Top 3% Top 2% Top 1%
Traj++ EWTA (ours) 0.16/0.32 | 0.47/1.07 | 0.51/1.13 | 0.42/0.87
+ contrastive (A = 20) | 0.17/0.33 | 0.47/1.04 | 0.50/1.07 | 0.43/0.84
+ contrastive (A = 50) | 0.16/0.32 | 0.46/1.03 | 0.48/1.03 | 0.38/0.71
+ contrastive (A = 100) | 0.17/0.32 | 0.48/1.04 | 0.52/1.10 | 0.50/0.97

Table 5. Study of the hyper-parameter A on the ETH-UCY dataset.
While small X yields small improvement on the challenging sce-
narios, large \ yields larger errors on the challenging scenarios.

these baselines tend to bias the challenging cases (overfit-
ting) while our approach maintain the average performance
and improves largely on the challenging cases.

6. Baselines Implementation Details

In order to use state-of-the-art methods for long-tail clas-
sification, we map the regression task to a classification task
by assigning classes to training samples based on the error
of the Kalman filter. In particular, we group the errors into
bins and assign the same class to all samples in each bin. To
alleviate the issue of having classes with only one sample,
we group all samples with a score greater than a specific
threshold into the same bin. This yields 13, 36, 331 classes
for ETH-UCY, nuScenes bird’s eye view and nuScenes ego-
centric view, respectively. For all baselines (including our
method), we use the same joint training scheme where two
heads (classification and regression) are trained on top of
the feature embedding. For the LDAM baseline [5], we ex-
periment with different scaling factors and use the best set-
ting s = 1. Following BAGS [4 1], we split the classes into
4 homogeneous groups to ensure that all classes from the
same group have roughly the same number of items and use
a sampling ration of 8 to ensure that all groups contribute to
the mini-batch during training.
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Figure 7. Average vs. Top 1% error comparison on the ETH-UCY dataset (left) and the nuScenes bird’s eye view (right). Our base
method of integrating EWTA with the backbone of Trajectron++ (cyan) outperforms the previous state-of-the-art (magenta). Joint learning
with the contrastive loss (blue) yields large improvements on the challenging scenarios while not reducing the overall average accuracy.
The improvements are indicated by dashed arrows. While the resampling/reweighting baselines also improve on the hard cases, they
increase the average error a lot (overfitting). The model-based baselines for long-tailed (LDAM and BAGS) yield only small improvements
on ETH-UCY or worse performance on nuScenes bird’s eye view.
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Figure 8. Average vs. Top 1% error comparison on the nuScenes egocentric view dataset (left) and the Waymo open dataset (right). Our
approach utilizing the contrastive loss (blue) yields a significant improvement on the challenging scenarios while not reducing the overall
average accuracy. The improvements are indicated by dashed arrows. While the resampling/reweighting baselines also improve on the
hard cases, they increase the average error a lot (overfitting). The model-based baselines for long-tailed (LDAM and BAGS) yield smaller
improvements than our method.

ETH-UCY nuScenes-Bird’s Eye View nuScenes Egocentric View ‘Waymo Open Dataset
All Top 3% Top 2% Top 1% All Top 3% Top 2% Top 1% All | Top3% | Top2% | Top 1% | All | Top 3% | Top2% | Top 1%
Baseline 0.16/0.32 | 0.47/1.07 | 0.51/1.13 | 0.42/0.87 | 0.19/0.32 | 0.48/0.88 | 0.50/0.88 | 0.59/1.02 | 7.10 29.98 31.13 36.16 6.39 24.87 25.49 27.32

+resample [61] | 0.25/0.53 | 0.56/1.16 | 0.61/1.24 | 0.61/1.22 | 0.21/0.37 | 0.55/0.98 | 0.61/1.07 | 0.78/1.33 | 10.20 | 18.90 19.37 21.62 | 1048 | 19.46 18.91 19.69
+reweight [29] | 0.28/0.56 | 0.41/0.78 | 0.44/0.81 | 0.43/0.76 | 0.33/0.58 | 0.74/1.28 | 0.80/1.38 | 0.99/1.67 | 14.47 | 15.33 15.42 16.20 | 14.00 | 17.01 16.80 16.44
+reweight [13] | 0.28/0.56 | 0.43/0.83 | 0.45/0.86 | 0.44/0.78 | 0.34/0.60 | 0.75/1.33 | 0.80/1.42 | 0.99/1.71 | 16.54 | 15.29 15.34 1546 | 17.43 | 20.34 19.40 18.79
+ contrastive 0.16/0.32 | 0.46/1.03 | 0.48/1.03 | 0.38/0.71 | 0.18/0.30 | 0.44/0.73 | 0.46/0.72 | 0.54/0.85 | 7.04 25.05 25.26 27.49 6.49 22.36 22.72 24.09

Table 6. Comparison to the common resampling/reweighting techniques on the four datasets. For each method, we show the min-FDE/min-
ADE over all samples and over top 1-3% challenging samples. Our method yields large improvements on the challenging ones while
maintaining the average. This is in contrast to the reweighting/resampling baselines, which lead to much worse performance on average
(see the error increase on the All’ columns). Baseline indicates Traj++ EWTA for bird’s eye view and FLN-RPN [47] for egocentric view.
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Figure 9. Plot of the feature space using tSNE [70] on three different datasets (a and b are different scenes from the ETH-UCY dataset).
Top. Training only with the supervised regression loss. Bottom. The resulting feature space when trained jointly with the contrastive loss.
Large brighte circles indicate the top 1% challenging scenarios. The darker the color of the sample, the easier it is.
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Figure 10. More results from our approach on the ETH-UCY dataset. For all these challenging scenarios, our approach reasons successfully
about the social relations to other pedestrians and yields better prediction than the baseline.
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Figure 11. More results from our approach on the nuScenes dataset (bird’s-eye view). For all these challenging scenarios, our approach
reasons successfully about the semantic cues and predicts the correct trajectory.
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(a)

(d) A vehicle turning right to pass-by the ego-car

(c) A walking pedestrian and challenging egomotion
Figure 12. More results from our approach on both egocentric view datasets: nuScenes (a-b) and Waymo (c-d). For each example, we show

both the last observed image (top) and the future image (bottom) along with the predictions (FLN-RPN [47] and Ours) and the ground
truth. We visualize the best hypothesis for each method. The future egomotion is also shown as arrow indicating the motion of the ego-car.
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