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Abstract

Compared with the progress made on human activity
classification, much less success has been achieved on hu-
man interaction understanding (HIU). Apart from the latter
task is much more challenging, the main cause is that re-
cent approaches learn human interactive relations via shal-
low graphical models, which is inadequate to model com-
plicated human interactions. In this paper, we propose a
consistency-aware graph network, which combines the rep-
resentative ability of graph network and the consistency-
aware reasoning to facilitate the HIU task. Our network
consists of three components, a backbone CNN to extract
image features, a factor graph network to learn third-order
interactive relations among participants, and a consistency-
aware reasoning module to enforce labeling and grouping
consistencies. Our key observation is that the consistency-
aware-reasoning bias for HIU can be embedded into an en-
ergy function, minimizing which delivers consistent predic-
tions. An efficient mean-field inference algorithm is pro-
posed, such that all modules of our network could be trained
jointly in an end-to-end manner. Experimental results show
that our approach achieves leading performance on three
benchmarks.

1. Introduction
Analyzing human activities in natural scenes is a fun-

damental task to many potential applications like video
surveillance [34], key-event retrieval [12], social behavior
interpretation [2] and sports analysis [28]. Abundant tech-
niques have been developed for human activity recognition
(HAR, where the goal is to assign an activity label to each
image or video) [7, 25, 16, 32, 21, 42, 42, 27], which have
gained impressive progress on recognition accuracy. How-
ever, the task of human interaction understanding (HIU) is
much less successful mainly because current methods learn
human interactive relations via shallow graphical represen-
tations [41, 40, 39, 25, 7, 44], which is inadequate to model
complicated human interactions, e.g. fighting and chasing
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Figure 1. The graphical representation of HIU in a scene with
three people. We decompose HIU into two sub-tasks: recog-
nizing person-wise actions (as denoted by the node labels, with
KK, BK, HG, NI indicating kick, be-kicked, hug, no-interaction,
respectively) and predicting if any pair of people are interact-
ing (solid edges) or not (dashed edges). Applying consistency-
unaware models to such cases can lead to inconsistent predictions
as highlighted by the red edges and labels (see Section 1 for de-
tails). We address such issue by presenting a consistency-aware
graph network with two types of third-order dependencies incor-
porated.

as two concurrent activities happening in the same scene.
As commonly done in literature [25, 41, 39, 40], we de-

compose HIU into two sub-tasks illustrated by Figure 1
middle: 1) The individual action prediction task assign-
ing each participant an action label; 2) The pairwise in-
teractive prediction task determining if any pair of partic-
ipants are interacting or not. Solving the two sub-tasks pro-
vides a way to disentangle concurrent human activities with
multiple participants, as well as a comprehensive under-
standing to surveillance scenes. Though HIU performance
had been lifted a lot by a conjunctive usage of deep fea-
tures and rich contextual information, there still exist two
main challenges. Since most existing works perform piece-
wise learning of deep feature representations and contextual
models [41, 39], the first challenge is how to learn deep fea-
tures and contextual relations jointly. The second challenge
is how to ensure prediction consistency for the two sub-
tasks of HIU. In this paper, we tackle two types of predic-
tion inconsistencies illustrated by Figure 1 right. The first
type is called the labeling inconsistency, e.g. the action label
of B (i.e. kick) is inconsistent with the action label of C (i.e.
hug) as they are interacting (denoted by a solid edge). The
second type is called the grouping inconsistency, under the
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assumption that interacting people belong to the same group
while non-interacting ones belong to separate groups, and
vice versa. Consequently, the prediction (A, C) are not in-
teracting (denoted by the dashed edge) is inconsistent with
the prediction that (A, B) are interacting and (B, C) are in-
teracting as well. To address the two challenges, we present
a consistency-aware graph network (CAGNet), which con-
sists of a backbone CNN to extract image features, a third-
order graph network (TOGN) to learn human interactive
context, and a consistency-aware reasoning (CAR) mod-
ule to improve the consistency within action and interaction
predictions. All components of CAGNet could be trained
jointly and efficiently with GPU acceleration. We empir-
ically validate the effectiveness of these three components
on three benchmarks of human interaction understanding.

Our contributions are of three aspects. First, we propose
a TOGN for HIU, which is more powerful than the widely
adopted pairwise graph networks in terms of representing
the interactive relations among people. Second, we present
an efficient CAR module to resolve the labeling and group-
ing inconsistencies within HIU predictions. Third, our pro-
posed CAGNet, which takes the TOGN and CAR modules
as its building-blocks, outperforms the state-of-the-art re-
sults by salient margins on three evaluated benchmarks.

2. Related Work
Human Action/Activity Recognition Since the inven-

tion of the two-stream network [32], numerous works on
HAR (predicting each image or video an action class)
have been proposed [16, 37, 17, 38, 5, 23, 43] in order
to extract powerful feature representations of human mo-
tions. These approaches are also applicable to the recog-
nition of collective activities wherein a number of partic-
ipants perform a group activity. Nevertheless, an increas-
ing number of works justify the importance of modeling
the spatio-temporal correlations among action variables of
different people [7, 22, 6, 8, 2, 30, 15, 28, 42, 27]. Early
works in this vein explore conditional random fields (CRFs)
[7, 22, 6], while recent efforts contribute most on the joint
learning of image features and human relations with RNN
[8, 2, 30, 28, 31] or deep graphical models [15, 42, 27].
These approaches are designed to predict each input an ac-
tivity category, leaving the HIU task rather unsolved.

Human Interaction Understanding To understand hu-
man interactions, abundant conditional random field (CRF)-
based models have been proposed [44, 20, 21, 26, 25, 40,
39, 41] to model the interactive relations in both spatial and
temporal domains. The main drawback is that these CRFs
are of shallow graphical-representations, which is neither
effective in terms of learning complicated human interac-
tions nor efficient in solving the associated maximum a pos-
teriori inference [41]. Moreover, they perform deep fea-
ture learning and relational reasoning separately, which typ-

ically results in sub-optimal solutions. Our CAGNet ad-
dresses these issues by presenting a deep graph network,
which synthesizes the feature-learning ability of CNNs and
the contextual-modeling power of graphical representation.

Graph Networks have become popular choices to many
tasks involving modeling and reasoning relations among
components within a system [4, 18, 46, 45, 11, 47]. They
share the computational efficiency of deep architectures
while are more powerful and flexible in terms of modeling
relations in non-grid structures, for instance, the correspon-
dences between two sets of points in a matching problem
[46], the correlations between query and support pixels in
one-shot semantic segmentation [45], human gaze commu-
nication [11], and the inter-person relations for collective
activity classification [42]. As these networks operate on a
graph structure, they are only able to capture pairwise re-
lations. Very recently, work [47] proposes a factor graph
neural network (FGNN) that enables the incorporation of
high-order dependencies. Inspired by this, we propose the
TOGN which shares the same feature-updating mechanism
(detailed in Section 3) with FGNN but uses customized
third-order factor graphs to model the interactive relations
in human activities.

Deep Logical Reasoning As a way to higher-level in-
telligence, logical reasoning has seen a renaissance in very
recent years [9, 10]. Since traditional logical reasoning
has relied on methods and tools which are very different
from deep learning models, such as Prolog language, SMT
solvers and discrete algorithms, a key problem is how to
bridge logic and deep models effectively and efficiently. Re-
cent works viewed graph networks as a general tool to make
such a connection. For example, [3, 4] take graph networks
to incorporate explicitly logic reasoning bias, [24] builds a
neuro-symbolic reasoning module to connect scene repre-
sentation and symbolic programs, and work [1] introduces
a differentiable first-order logic formalism for visual ques-
tion answering. Like [3, 4], our proposed CAR module ex-
plicitly incorporates the consistency-aware-reasoning bias
of HIU as well, but accomplishes the reasoning differently
via solving a particular energy minimization task.

3. Preliminary
As our TOGN shares the identical feature-updating

mechanism with FGNN [47], we first review this tech-
nique concisely. FGNN operates on a bipartite factor graph
G = (V, C, E), where V, C, E denote the node set, the factor
node set and the edge set respectively. Each i ∈ V is associ-
ated with a discrete variable xi ∈ Xi. Each edge (c, i) ∈ E
connects a factor node c ∈ C and a node i ∈ V . The factor
graph defines a factorization of some function f with n vari-
ables. Specifically, f(x1, . . . , xn) =

∏
c∈C fc(xc), where

xc denotes the variables associated with the nodes which
have edge-connections with c. In practice, the functions fc
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Figure 2. An overview of the proposed CAGNet, which includes a base-model, a TOGN and a CAR module. The TOGN is designed to
incorporate two types of factors to learn human-interaction-context, as indicated by yellow and blue nodes. Leveraging the consistency-
aware-reasoning bias of HIU, our CAR block fixes possible inconsistent predictions and improves the interpretability of HIU. Here “KK”,
“BKK” and “NI” represent “kick”, “be-kicked” and “no-interaction”. All model parameters could be trained in an end-to-end manner.

could be parameterized with deep networks.
Given G, let [f li ]i∈V be a group of input node features,

and let [glc]c∈C be a group of input factor features, for the
l-th layer of FGNN. Let [te]e∈E be a group of edge features
shared by all FGNN layers. Here f l ∈ RDl , gl ∈ RDl and
t ∈ RH . FGNN updates factor and node features separately
via implementing two modules:

gl+1
c = max

i:(c,i)∈E
Q(tci|ΦlV F )M([glc, f

l
i ]|Θl

V F ), (1)

f l+1
i = max

c:(c,i)∈E
Q(tci|ΦlFV )M([glc, f

l
i ]|Θl

FV ), (2)

where [·, ·] denotes vector concatenation. The first equation
is a factor-to-variable (FV) module and the second equa-
tion is a variable-to-factor (VF) module. M is a MLP (pa-
rameterized by Θ which is shared by all edges) maps the
concatenation of factor and node features to a new feature
vector of length Dl, and Q is another MLP (parameterized
by Φ, which is also shared by all edges) maps its input edge
feature vector to a Dl+1 × Dl weight matrix. Here Dl+1

denotes the length of the updated features (i.e. the length of
the input node features of the next layer), and the operator
max actually performs max-pooling.

Equations (1) and Equation (2) just comprise one layer of
FGNN. To obtain a more powerful representation, one can
stack a number of such layers, in which the output of the
current layer is taken as the input to the subsequent layer.
We refer readers to [47] for more details of FGNN.

4. Our Approach
Task Description and Notations Given an input im-

age I and the bounding boxes (RoIs) of n detected hu-
man bodies, the HIU task is decomposed into two sub-
tasks: 1) predicting the action category y = (yi)

n
i=1 for

every individual where y ∈ Y (Y takes all action cate-
gories), and 2) predicting all pairwise interactive relations
z = (zj,k)j=1,...,n;k=1,...,n for each pair of people, where

zj,k ∈ {0, 1} represents if the j-th and the k-th participants
are interacting (zs,t = 1) or not (zs,t = 0). All vectors in
this paper will be column vectors unless otherwise stated.

4.1. Model Overview

Figure 2 gives an overview of the proposed CAGNet,
which consists of three components including a base-model,
a TOGN and a CAR module. Given an input image and
the detected human bodies as RoIs, the base-model takes
a backbone CNN to extract features from the input, which
are then processed by a RoIAlign module [13] to generate
local features for each individual. Afterwards the local fea-
tures are processed by one FC layer to generate base fea-
tures as inputs to TOGN. Our TOGN graph (Section 4.2)
includes two types of variable nodes (circles): one type is
the y node to represent the action category of the associ-
ated person, the other type is the z node to represent the
existence of interactive relation between a pair of people.
The graph also includes a series of factor nodes (squares) in
order to capture two types of third-order dependencies, re-
spectively encoded by the (yi, yj , zi,j) triplets (blue factor
nodes) and the (zu,v, zv,w, zu,w) triplets (the yellow factor
node). We take the base features to initialize TOGN, and
perform feature updating by passing messages between fac-
tor nodes and variable nodes such that rich contextual infor-
mation could be embedded. Though TOGN is able to learn
rich contextual representations to facilitate the HIU task, the
labeling and grouping consistencies among variables are not
explicitly modeled. To alleviate this, we introduce a CAR
module, which essentially conducts a deductive reasoning
leveraging the oracles presented in Section 4.3. In prac-
tice the reasoning is implemented via solving a surrogate
mean-field inference with differentiable high-order energy
functions, which allows end-to-end learning of all modules
within our CAGNet with GPU acceleration (Section 4.4).



4.2. Third-Order Graph Network for HIU

We now elaborate our TOGN for HIU in order capture
two categories of third-order dependencies among action
and interactive-relation variables.

Third-Order Factor Graph Formally, we define the
factor graph as G = (V,F , E), where V is the set of vari-
able nodes, F is the set of factor nodes, and E is the set
of edges. The node set is split into two disjoint subsets:
V = Vy∪Vz,Vy∩Vz = ∅. Specifically, Vy = {1, · · · , n},
and Vz = {n + 1, · · · , n +

(
n
2

)
}. For each node i ∈ Vy , a

variable yi ∈ Y is associated with it to represent the action
category of the i-th individual. Let g(u, v) be a function:

g(u, v) : Vy × Vy 7→ Vz,∀u, v ∈ Vy, u < v. (3)

For each node k ∈ Vz , a variable zu,v ∈ {0, 1} is associated
with it to represent if the pair of people (u, v) are interacting
(zu,v = 1) or not (zu,v = 0), where k = g(u, v).

To encode different relations, we create two groups of
factor nodes. The first group is

Fy = {(i, j, g(i, j)) | ∀i, j ∈ Vy, i < j}, (4)

which is taken to implicitly model the correlations among
yi, yj and zi,j based on their base features. Intuitively, ac-
tion labels (yi, yj) are highly correlated when the associated
people are interacting (taking the kicking interaction in Fig-
ure 2 as an example), while this correlation vanishes if they
are not interacting (e.g., Person 2 and Person 3 in Figure 2).

The second group of factors is defined as

Fz = {(g(r, s), g(s, t), g(r, t)) | ∀r, s, t ∈ Vy, r < s < t},
(5)

which is leveraged to implicitly model the correlations
among zr,s, zs,t and zr,t for each triplet of people (r, s, t).
With such factors, we encourage the model to learn repre-
sentations for the prediction of consistent interactive rela-
tions for each triplet. Fortunately, higher-order consisten-
cies can be guaranteed if all third-order consistencies are
satisfied (detailed in Section 4.3).

In summary, the factor node set is F = Fy ∪ Fz . Given
F and V , the edge set E is set up by connecting variable
nodes with factor nodes. Specifically, for each factor node
c = (i, j, k) ∈ F , we put three edges (c, i), (c, j) and (c, k)
into E , which finalizes the construction of the TOGN graph.

Initial Node Feature For each node i ∈ Vy , let φi be
the base feature extracted from the bounding box region of
the i-th person using the base-model. For each (u, v) ∈
Vy × Vy , u < v, let j = g(u, v) ∈ Vz . We concatenate
φu and φv , and use the concatenation as the base feature
(denoted by φj) for the variable node j. In order to compute
the initial node features, we apply to the base features the

linear transformations:

f1i = FCy(φi), ∀i ∈ Vy, (6)

f1j = FCz(φj), ∀j ∈ Vz, (7)

which project the original features into RD1 space:
Initial Factor Feature The factor features are com-

puted based on node features. For each factor node c =
(i, j, g(i, j)) ∈ Fy , the initial factor feature g1

c ∈ RD1 is
computed with:

g1
c =

f1i + f1j + f1g(i,j)

3
. (8)

For each d = (g(r, s), g(s, t), g(r, t)) ∈ Fz , the associ-
ated factor feature g1

d ∈ RD1 is obtained using:

g1
d =

f1g(r,s) + f1g(s,t) + f1g(r,t)

3
. (9)

Edge Feature For each edge e = (q, p) ∈ E , the related
feature te ∈ RH is given by:

te = ReLU
(
FCe([f1p ,g

1
q ])
)
, (10)

where p ∈ V, q ∈ F and FCe maps the concatenated feature
vector to RH space.

Taking as inputs the factor graph and the initial features,
the first TOGN layer performs feature updating with the
method described in Section 3. Afterwards we take the
updated features as inputs to the next TOGN layer (which
shares the factor graph and the feature updating algorithm
with the first TOGN layer, but using different model param-
eters), and perform feature updating again. Empirically, we
find that TOGN with 10 such layers works well for HIU.
Finally, we compute the classification scores for individual
actions and pairwise interactive relations using

θi = Softmax
(
α(f∗i )

)
∀i ∈ Vy, (11)

θj = Softmax
(
β(f∗j )

)
∀j ∈ Vz, (12)

where f∗i , f∗j are updated node features output by the last
TOGN layer, α and β are linear functions which compute
classification scores for individual actions (θi ∈ R|Y|) and
pairwise interactive relations (θj ∈ {0, 1}), respectively.

4.3. Consistency-Aware Reasoning

To resolve possible inconsistencies (recall Figure 1) in-
curred by using consistency-unaware models like CNN,
PGNN and TOGN, we first present two deductive reason-
ing bias for human interaction understanding:

• The compatibility oracle: For any pair of interact-
ing (denoted by↔) people A and B, their action cat-
egories must be compatible (denoted by �). In logical
words, this rule is represented by A↔ B ⇒ yA� yB .



• The transitivity oracle: Considering the interactive
relations among a triplet of people (A,B,C), we have
(A↔ B) & (B ↔ C)⇒ (A↔ C).

Typical compatible examples include (handshake, hand-
shake), (pass, receive) and (punch, fall), and typical in-
compatible examples are (handshake, hug), (punch, pass),
(highfive, handshake). Instead of predesignating such com-
patibility, which might change across datasets, our CAR
module is able to learn them directly from data. Exam-
ples obey or violate the transitivity are shown in Figure 3.
Though this oracle only considers triplets of people, it is
straightforward to prove that the higher-order transitivity
associated with an arbitrary number of people is simply a
conclusion of the third-order transitivity. Intuitively, by en-
forcing the transitivity across all triplets, participants in the
scene are split into different groups, such that individuals
in the identical group are interacting with each other, while
people in different groups have no interaction.

With such oracles, predictions of the TOGN described in
Section 4.2 could be refined by applying the traditional log-
ical reasoning algorithms like resolution. However, embed-
ding such reasoning into deep learning frameworks directly
is highly challenging. As a workaround, our reasoning ap-
proach first embeds the knowledge into an energy function
defined by

E(y, z;x) =
∑
i∈Vy

−θi(yi) +
∑

(j,k,l)∈Fy

[
− θj,k(zj,k)+

KC(yj , yk, zj,k)
]

+
∑

(r,s,t)∈Fz

KT (zr,s, zs,t, zr,t), (13)

where θj,k(zj,k) = θg(j,k)(zj,k). The data terms −θi and
−θj,k (computed by Equations (11) and (12)) are utilized
to penalize particular y-label and z-label assignments re-
spectively based on the learned deep representations. The
functions KC and KT are the so-called Pn-Potts models
[19] defined by

KC(yj , yk, zj,k) =

{
λC(yj , yk) if zj,k = 1,

0 otherwise.
(14)

KT (zr,s, zs,t, zr,t) =

{
λT if (zr,s, zs,t, zr,t) ∈ Γ,

0 otherwise.
(15)

Here Γ is a set {(1, 1, 0), (1, 0, 1), (0, 1, 1)} that includes all
cases violating the transitivity oracle, λC(yj , yk) and λT are
penalties incurred by predictions which violate the compat-
ibility and transitivity oracles. It is easy to check that when
λC and λT are sufficiently large, minimizing the energy
(13) delivers desirable y and z predictions which satisfy the
compatibility and transitivity oracles. In this paper, instead

A
B

C

A
B

C

A
B

C

A
B

C

Three valid cases An invalid caseA talking scene

Figure 3. Predictions obey and violate the transitivity oracle in a
talking scene with three people. Here solid edges represent pre-
dicted interactive relations (z = 1) and dashed edges indicate pre-
dicted non-interactive relations (z = 0).

of predesignating suitable λC and λT values, we learn them
from data in conjunction with other parameters of CAGNet.

Mean-Field Inference Minimizing (13) is NP-complete.
Here we derive an efficient mean-field inference algorithm
by first approximating the joint distribution P (y, z|x) ∝
exp(−E(y, z;x)) with a product of independent marginal
distributions:

P (y, z|x) ≈
∏
i∈Vy

Qi(yi)
∏

l∈Vz :g(j,k)=l

Qj,k(zj,k). (16)

Then we derive the mean-field updates of all marginal
distributions using the techniques described in [36], which
gives

Q̃ti(yi) =
∑

j∈V \{i}

∑
yj

λC(yi, yk)Qt−1j (yj)Q
t−1
i,j (zi,j = 1),

(17)

Qti(yi) =
exp

(
θi(yi)− Q̃ti(yi)

)
Zi

, (18)

where Zi is a normalization constant. The marginal distri-
butions on z variables are

Q̃tk,l(zk,l) =
∑
yk,yl

zk,lλ
C(yk, yl)Q

t−1
k (yk)Qt−1l (yl)+∑

m∈V \{k,l}

∑
zk,m,zm,l

1
(
(zk,m, zm,l, zk,l) ∈ Γ

)
λT

Qt−1k,m(zk,m)Qt−1m,l (zm,l), (19)

Qtk,l(zk,l) =
exp

(
θk,l(zk,l)− Q̃tk,l(zk,l)

)
Zk,l

, (20)

where 1(·) is an indicator function (gives 1 if the testing
condition holds, and 0 otherwise), t ∈ {1, 2, . . . , T}, Zk,l is
a normalization constant. We initialize the marginal distri-
butionsQ0

i (yi),Q0
k,l(zk,l) by applying the softmax function

to the scores output by the graph network. The inference
is summarized by Algorithm 1. Note that we can perform
the updates of all expectations (Equation (17) and (19)) and
marginal probabilities (Equation (18) and (20)) in parallel,
which yields very efficient inference.

As mentioned, Algorithm 1 is a surrogate of the
consistency-aware reasoning task taking the two oracles as



UT BIT TVHI
Method F1 Accuracy mean IoU F1 Accuracy mean IoU F1 Accuracy mean IoU
VGG19 [33] 85.69 91.68 69.03 85.22 89.60 67.03 70.68 76.90 52.30
ResNet50 [14] 90.62 94.64 76.70 87.12 91.20 71.41 81.18 82.61 66.33
Inception V3 [35] 92.20 95.86 80.30 87.84 91.61 72.00 83.00 86.91 71.53
Base model + CAR 92.81 96.26 81.51 88.72 92.23 73.99 83.07 87.23 72.29
TOGN (ours) 93.45 96.50 84.53 91.26 94.84 78.27 90.41 92.51 79.40
TOGN+CARC (ours) 94.32 97.03 85.06 92.70 95.34 80.78 91.90 93.44 82.07
TOGN+CART (ours) 93.82 96.71 83.90 92.30 95.20 80.22 90.35 92.63 79.05
TOGN+CARCT (ours) 94.55 97.06 85.50 92.79 95.41 81.32 92.83 95.29 84.02

Table 1. Ablation study on three benchmarks. All results are in percentage. The proposed TOGN performs much better than the best base
model (Inception V3). The proposed CAR module further improves HIU results by clear margins. Bold texts denote best results.

Algorithm 1: The mean-field inference.

Input: The graph G, θi(yi), θk,l(zk,l), λC and λT .
Output: θ̌i(yi), θ̌k,l(zk,l).

1 Initialization: Let Q0
i (yi) = exp(θi(yi))

Zi
, and let

Q0
k,l(zk,l) =

exp(θk,l(zk,l))
Zk,l

.
2 for t = 1, 2, . . . , T do
3 Compute Q̃ti(yi), Q̃tk,l(zk,l), Qti(yi) and

Qtk,l(zk,l) using Equations (17) to (20).
4 end
5 θ̌i(yi)← θi(yi)− Q̃Ti (yi),

θ̌k,l(zk,l)← θk,l(zk,l)− Q̃tk,l(zk,l).

its knowledge-base. This algorithm actually forms the last
layer of our CAGNet, which outputs updated action scores
θ̌i ∀i ∈ V y and interactive scores θ̌j,k, ∀l ∈ Vz and
g(j, k) = l. Our experimental results in Section 5 demon-
strate that such updated scores are able to deliver more con-
sistent HIU predictions.

4.4. End-to-End Learning

The mean-field inference algorithm allows the back-
propagation of the error signals ∂Loss

∂Q to all parameters of
CAGNet (including that of the base-model, the TOGN and
the CAR module), which enables the joint training of all pa-
rameters from scratch. In practice, we resort to a two-stage
training due to the limitation of computational resources.
The first stage learns a base-model with the backbone CNN
initialized by a model pre-trained on ImageNet. The sec-
ond stage trains the TOGN, λC(yj , yk) and λT jointly with
fixed backbone-parameters. We train all models using the
identical cross-entropy losses computed on both y and z
predictions.

Implementation Details Our implementation is based
on PyTorch deep learning toolbox and a workstation with
three pieces of NVIDIA GeForce GTX 1080 Ti GPU. We
test several backbone CNNs including VGG19 [33], ResNet
50 [14] and Inception V3 [35]. We use the official im-

plementation of RoIAlign by PyTorch, which outputs fea-
ture maps with a size of 5 × 5 × 1056 (using Inception
V3). We add dropout (the ratio is 0.3) followed by a layer-
normalization to every FC layer of CAGNet except for the
ones computing final classification scores. For the mean-
field inference we set λC(yj , yk) = 0.5 and λT = 0.1
for initialization. We adopt mini-batch SGD with Adam to
learn the network parameters, and train all models in 200
epochs. We augment training data with random combina-
tions of scaling, cropping, horizontal flipping and color jit-
tering. For the scaling and flipping operations, the bounding
boxes are scaled and flipped as well.

5. Experiment
Dataset We use three benchmarks including UT [29],

BIT [44] and TVHI [26]. UT contains 120 short videos of
6 action classes: handshake, hug, kick, punch, push and no-
action. As done by [39], we extend original action classes
by introducing a passive class for each of the three asym-
metrical action classes including kick, punch and push (be-
kicked, be-punched and be-pushed). Consequently, we have
9 action classes in total. Following [39], we split samples
of UT into 2 subsets for training and testing. BIT covers 9
interaction classes including box, handshake, highfive, hug,
kick, pat, bend, push and others, where each class contains
50 short videos. Of each class 34 videos are chosen for
training and the rest for testing as recommended by [44].
TVHI contains 300 short videos of television shows, which
covers 5 action classes including handshake, highve, hug,
kiss and no-action. As suggested by [26], we split samples
of TVHI into two parts for training and testing.

5.1. Ablation

Evaluation Metric Since the numbers of instances
across different classes are significantly imbalanced, we use
multiple metrics including F1-score, overall accuracy and
mean IoU for evaluation. Specifically, we calculate the
macro-averaged-F1 scores on y and z predictions respec-
tively (using the f1 score function in sklearn package), and
present the mean of the two F1 scores. Likewise, overall ac-



curacy calculates the mean of the action-classification accu-
racy and the interactive-relation-classification accuracy. To
obtain mean IoU, we first compute IoU value on each class,
then average all IoU values. We first analyze the capabili-
ties of different components in the proposed CAGNet, using
results provided by Table 1.

Choice of Backbone-CNN. Here we evaluate base mod-
els (see Figure 2) taking different backbone CNNs to extract
image features. We test three popular backbones: VGG19
[33], Inception V3 [35] and ResNet50 [14], and the results
correspond to the first three rows (from top to bottom) in
Table 1. Inception V3 performs notably better than other
backbones on all benchmarks. The reason might be that
Inception V3 is able to learn multi-scale feature representa-
tions, which stacks into a feature pyramid to better capture
the appearance of human actions. Hence we use Inception
V3 as the backbone for all subsequent experiments.

Power of the TOGN Remember that the proposed
TOGN takes the features extracted by Inception V3 as in-
puts, and learn third-order dependencies among structured
variables. Overall, the proposed TOGN outperforms all
basemodels on the three benchmarks under all considered
metrics. In particular, TOGN results are moderately higher
than the best basemodel (i.e. Inception V3) on UT, and are
significantly better than the basemodel on BIT (91.26 vs.
87.84 on F1) and TVHI (90.41 vs. 83.0 on F1), thanks to
the rich contextual representations learned by our TOGN.
Note that the performance gain on UT is much less com-
pared with results on other benchmarks. This is probably
because human interactions in UT (each video contains just
two individuals, and the background is clear) are simpler
than BIT and TVHI, and the performance on this dataset
tends to be saturated.

Effect of the CAR Module Here we compare four mod-
els: 1) Base model + CAR that consists of the base-model
(Inception V3 as backbone) followed by the proposed CAR
module; 2) TOGN+CARC is the proposed CAGNet with-
out taking the transitivity oracle into consideration; 3)
TOGN+CART is the proposed CAGNet without taking the
compatibility oracle into consideration; 4) TOGN+CARCT

actually is our full CAGNet. Here we can draw two con-
clusions based on the results in Table 1. First, the in-
corporation of the CAR module (Base model + CAR and
TOGN+CARCT) boosts HIU performance (2.42, 2.78 and
4.62 points better than TOGN on TVHI in terms of F1, Ac-
curacy and mean IoU), which validates the significance of
exploiting consistency-aware-reasoning. Second, both or-
acles are critical to achieve the best results. Though in-
corporating either the compatibility (TOGN+CARC) or the
transitivity oracle (TOGN+CART) already performs better
than TOGN, TOGN with both oracles (TOGN+CARCT)
performs notably better than using each of them separately,
which suggests that these two oracles complement each

Method F1 (%) Accuracy (%) mean IoU (%)
GN [42] 80.57 82.76 66.82
Modified GN [42] 84.18 87.86 71.31
Joint + AS [39] 83.50 87.33 71.64
QP + CCCP [41] 83.42 87.25 71.61
CAGNet (ours) 92.83 95.29 84.02

Table 2. Comparison with recent methods on TVHI. Our CAGNet
overshoots competitive models under all evaluation metrics.

Method F1 (%) Accuracy (%) mean IoU (%)
GN [42] 70.52 78.52 65.89
Modified GN [42] 89.95 93.38 76.42
Joint + AS [39] 88.61 91.77 72.12
QP + CCCP [41] 88.80 91.92 72.46
CAGNet (ours) 92.79 95.41 81.32

Table 3. Comparison with recent methods on BIT. Our CAGNet
performs much better than other recent approaches.

Method F1 (%) Accuracy (%) mean IoU (%)
GN [42] 89.25 91.78 78.24
Modified GN [42] 93.38 96.39 84.13
Joint + AS [39] 92.20 95.86 80.30
QP + CCCP [41] 89.71 93.23 80.35
CAGNet (ours) 94.55 97.06 85.50

Table 4. Comparison with recent methods on UT. Our CAGNet
performs moderately better than other recent approaches.

other for HIU.

5.2. Comparison with Recent Methods

We consider three recent approaches. Joint + AS [39]
first extracts motion features of individual actions with
backbone CNN. Afterwards the deep and contextual fea-
tures of human interactions are fused by structured SVM.
This method is able to predict y and z in a joint manner.
QP + CCCP [41] takes a structured model to represent the
correlations between y and z variables as well. It also de-
veloped an inference algorithm (namely QP + CCCP) to
solve the related inference problem. GN [42] is a recent
state-of-the-art for recognizing collective human activities.
This model is empowered by both the representative abil-
ity of deep CNNs and the attention mechanism of PGNN.
Note that GN does not yield z predictions. We fix this with
two solutions. First, we just set zi,j = 1 if the learned re-
lation value is greater than 0.5 (see Equation (2) in [42]),
otherwise we set zi,j = 0 (this solution does not introduce
new parameters). Second, we attach a head to the tail of
GN to make z predictions, and train parameters of this head
with cross-entropy loss. We call such a solution the Mod-
ified GN. We find that such a straightforward modification
offers a boost of performance on HIU compared against the
original GN (see Table 2 to Table 4). The reason is that
Modified GN is trained with additional supervision on in-
teractive relations, which guides the network to learn more



(a) Groundtruth (b) Base model (c) Modified GN (d) CAGNet

Figure 4. Visualize HIU results predicted by different models. Figures are best viewed in color. Each row shows an example (from top
to bottom, the first two rows are from BIT and the rest are from TVHI). Columns from left to right correspond to results of groundtruth,
base-model, Modified GN, and CAGNet. Green lines denote predicted interactive pairs (z = 1). Texts present predicted individual actions
(y variables), where HG, KS, HF, KK, OT mean hug, kiss, high-five, kick, others respectively. Note that the predictions of CAGNet (the
rightmost column) always obey the two oracles defined in Section 4.3.

useful representations for the prediction of z.
For fair comparison, all methods take Inception V3 as

the backbone to extract image features. Results on three
datasets are provided in Table 2, Table 3 and Table 4. We
can see that CAGNet outperforms modified GN and shal-
low structured models ( Joint + AS and QP + CCCP) sig-
nificantly on all evaluated benchmarks. Compared with
CAGNet which is able to model higher-order relations,
modified GN is only able to model pairwise interactive
relations, hence it is consistency-unaware. Consequently
GN and modified GN perform much worse than CAGNet.
Albeit sharing the same feature extractor (Inception V3)
with CAGNet, Joint + AS and QP + CCCP learn human
interactive relations via shallow structured models with-
out incorporating higher-order contextual dependencies and
consistency-aware reasoning, hence their performances are
much worse than our CAGNet.

To provide a qualitative analysis of different models, we
visualize a few predictions in Figure 4. Though the pre-
dicted action labels are inconsistent or the predicted inter-
active relations violate the transitivity oracle using either
the Base-model or the modified GN, thanks to our proposed

TOGN and CAR module, CAGNet is able to make perfect
predictions, at least on these examples.

6. Conclusion

Under the observation that labeling consistencies across
different atomic predictions are of great importance to
achieve semantic and accurate understanding of human in-
teractions, we have presented the so-called CAGNet which
is able to resolve the labeling and grouping inconsisten-
cies within HIU predictions. Our network relies on a
TOGN module and a CAR module. The TOGN module ad-
dresses the inconsistency by learning better contextual fea-
tures with higher-order graph networks, while the proposed
CAR module tackles the issue by exploiting the deductive
reasoning bias of HIU explicitly. For efficient training and
prediction, we have cut the desired deductive reasoning into
solving a surrogate energy-minimization, which reduces the
chance of obtaining inconsistent HIU predictions and al-
lows the training of all model parameters in an end-to-end
way. Note that our CAR module is motivated by the HIU
task, instead of proposing a comprehensive system for deep



logical reasoning. Ablation study and comparison against
the state-of-the-arts on three benchmarks have justified the
effectiveness of the proposed approach.
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