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Abstract

Joint forecasting of human trajectory and pose dynam-
ics is a fundamental building block of various applications
ranging from robotics and autonomous driving to surveil-
lance systems. Predicting body dynamics requires captur-
ing subtle information embedded in the humans’ interac-
tions with each other and with the objects present in the
scene. In this paper, we propose a novel TRajectory and
POse Dynamics (nicknamed TRiPOD) method based on
graph attentional networks to model the human-human and
human-object interactions both in the input space and the
output space (decoded future output). The model is sup-
plemented by a message passing interface over the graphs
to fuse these different levels of interactions efficiently. Fur-
thermore, to incorporate a real-world challenge, we pro-
pound to learn an indicator representing whether an es-
timated body joint is visible/invisible at each frame, e.g.
due to occlusion or being outside the sensor field of view.
Finally, we introduce a new benchmark for this joint task
based on two challenging datasets (PoseTrack and 3DPW)
and propose evaluation metrics to measure the effectiveness
of predictions in the global space, even when there are invis-
ible cases of joints. Our evaluation shows that TRiPOD out-
performs all prior work and state-of-the-art specifically de-
signed for each of the trajectory and pose forecasting tasks.

1. Introduction

The ability to forecast human movements (pose dynam-
ics and trajectory) in time is an essential component for
many real-world applications, including robotics [38, 48],
healthcare [32], detection of perilous behavioral patterns in
surveillance systems [37, 53].

While this problem sounds interesting, it is extremely
challenging in real-world scenes due to the different factors
involved. Humans are intuitively social agents, able to ef-
fortlessly conceive a detailed level of semantics from the
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Figure 1. An example of a real-world scene containing different levels of
interactions (human to human and human to objects). The top-left graph
shows the weighted interaction graphs between humans (blue edges) and
between humans and objects in the scene (green edges). The top-right
graph illustrates the evolved social interactions over time in the future. The
red arrows indicate an example of a relation being intensified over time.

scene, which contributes to making swift decisions for their
next movements. To accurately forecast their trajectory and
pose dynamics, one primary factor is the interactions be-
tween people in the scene and the influences their joints
have on each other. For example, consider a tennis-playing
scene, when the opponent starts serving and hits a stroke,
the other person is probable to take a ready position in the
near future (e.g. see the purple agent in Fig. 1). Besides,
the objects involved in the scene can provide informative
clues for future prediction. For instance, when the person
observes the ball in the tennis example, he/she would take
a striking pose to return it. However, the movements of all
the persons in the scene are not always highly correlated
with each other nor the humans to objects. For instance,
in Fig. 1, the pose and motion of tennis players will be
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barely affected by the skateboarder or his skateboard. This
defines different levels of interactions that need to be dis-
covered by the forecasting model. In addition, these differ-
ent levels of interactions can change over time, i.e. getting
strengthen or weaken. In Fig. 1, lines thickened in future
human-human graph (indicated by red arrows), show that
the skateboarder’s movements increasingly correlate with
the parent and the kid (passengers), while some others lose
correlations over time. Finally, a person might move out-
side the sensor field-of-view or be a partially/fully occluded
by an object. In these cases, it is important to have an in-
dication of visibility/invisibility for each prediction, which
can be interpreted as its reliability score, conducive for the
applications such as navigation safety and a collision risk
assessment for an autonomous robot/vehicle.

Existing solutions often neglect some of these challeng-
ing factors and hence fall short when applied to real-world
in-the-wild scenarios. Pose dynamics forecasting methods
[14, 40, 41, 58] mostly forecast the changes in joints with
respect to a center position, ignoring the global position
changes. They often do not effectively model all the in-
formative environmental and social interactions in the scene
either. Similarly, the influence of individual joints is usually
overlooked in trajectory forecasting [22, 27]. Moreover, ex-
isting frameworks often assume that all tracks and/or body
joints are always observable in the past and future, which is
an impractical assumption in many real-world scenarios.

To address these challenges, we push the current state of
existing solutions for human pose dynamics and trajectory
forecasting one step forward toward more practical scenar-
ios in-the-wild by considering all these factors together. To
this end, similar to other works that use attentional graphs
for various purposes [27, 33], we model the input skeleton
body joints, the social human-human and human-object in-
teractions with different attention graphs. Since, these two
types of information are different by nature, we give an ef-
fective solution to fuse them and as well make them insensi-
tive to their choice of order by applying an iterative message
passing. Furthermore, on account of the fact that humans
may retain their influences on each other consistently in fu-
ture, we do not content with only representing the history of
interactions, but also we preserve their spatio-temporal at-
tentional relationships by modeling them also in future pre-
diction phase. To overcome the problem of accumulative
error in sequential models for long-term sequences and to
speed up the convergence, we take a curriculum learning ap-
proach to train our model. Finally, since there is no proper
benchmark dataset for such real-world problem, we intro-
duce a new benchmark by repurposing existing datasets and
introducing relevant evaluation metrics.

In summary, the main contributions of our paper are to
1) propose a model that considers all the mentioned chal-
lenges together by (i) modeling the human skeleton, so-
cial and human-objects interactions through different dense

and sparse graph incorporating attention, (ii) introducing
a message passing approach to efficiently fuse different
level of interactions, (iii) dynamically modelling the spatio-
temporal attentional human interactions during decoding
phase, (iv) addressing the concept of joint invisibility or
body disappearance in trajectory and pose dynamics fore-
casting problem, (v) suggesting a curriculum learning strat-
egy to compensate accumulating error in recurrent models,
2) introduce proper evaluation metrics and a new bench-
mark for this real-world problem.

2. Related work

A. Pose dynamics forecasting. Generally, pose dynamics
forecasting aims to predict the future human pose coordi-
nates in which global motion (trajectory) is excluded. Early
approaches modeled human dynamics by utilizing hand-
crafted features and applying probabilistic graphical mod-
els [60, 61]. Recently, deep sequence-to-sequence mod-
els [8, 14, 19, 31, 41, 57, 58] have been used to capture such
dynamics. Following the success of RNNs in capturing
temporal dependencies, these models have been extensively
used in capturing pose dynamics [13, 14, 18, 41, 46]. Since
future forecasting of human pose dynamics is not a deter-
ministic task, some works have utilized VAEs and GANs
[5, 25, 57, 65, 66, 68] and some focusing on the scene
context [11, 15]. With the popularity of recently proposed
transformers [54, 2], Mao et al. [40] introduced an attention-
based motion extraction model that aggregates current mo-
tion with its history. Likewise, in [10], a transformer-based
architecture is used for capturing the spatio-temporal corre-
lations of the human pose. All the aforementioned works
are limited to only predicting local dynamics since global
motion is subtracted from the human body joint coordi-
nates. Further, interactions between joints in skeleton level
and individual level are not modeled or captured. We argue
that simultaneously capturing global and local dynamics is
essential in forecasting reliable and robust 2D and 3D hu-
man poses and in general fine-grained human understand-
ing. Moreover, human joints’ movements are tightly cou-
pled in the skeleton level and between interacting individu-
als. The problem is best formulated in a social manner.
B. Human trajectory predictions. The goal of human
trajectory prediction is to predict a set of 2D coordinates
for each human characterizing its global motion. Hu-
man social interactions in crowds have always been con-
sidered an important cue for predicting humans’ global
trajectories, which were dominantly ignored by pose dy-
namic frameworks. Its literate goes back to pre-deep
learning era when hand-crafted features were mainly used
[4, 24, 43, 45, 47, 64]. Although being successful, these
works are task-dependent and require domain expert knowl-
edge to carefully design hand-crafted rules. Recent deep
data-driven models [3, 17, 23, 33, 35, 39, 49, 34, 6] used



a recurrent neural network and a social pooling layer on
top to capture spatio-temporal social feature representa-
tion to predict the future trajectory of each individual.
More recently, graph-structured models have been used
to model human global motion and the existing interac-
tions [15, 28, 30, 33, 50, 44, 59]. [28, 33] used graph at-
tention networks [55] to model social interactions. Trajec-
tron [30] proposed a graph-structured model that predicts
many potential future trajectories. Trajectron++ [50] also
proposed a graph-based model that incorporates environ-
mental information such as semantic maps and integrated
with robotic planning. In [21] a transformer-based method
is proposed. Some other works improve the accuracy by in-
corporating novel trainable modules. For instance, [26] pro-
posed a neural motion message passing model to explicitly
model the directed interactions between actors, [16] pro-
posed a trajectory proposal network to ensure safe and mul-
timodal predictions and [52] proposed reciprocal learning
to train forward and backward networks. While performing
well, all these works lack modeling detailed human joints
dynamics. Capturing and forecasting such fine-grained hu-
man body motions, i.e. human poses, is essential for safe
autonomous agents navigating through humans.
C. Pose dynamics and trajectory forecasting. As dis-
cussed earlier, learning fine-grained human joint dynamics
as well as global motion are major components of a hu-
man understanding model that lead to development of a safe
agent navigating in a crowd [38]. Recently, there have been
some attempts to tackle the two problems in a unified man-
ner. [11] released a new synthetic dataset from a game en-
gine and focused on utilizing scene context to tackle the uni-
fied task. [1] unified human pose and trajectory forecasting
in a socially-aware manner. Despite the novelty in the for-
mulation of the problem by these works, social interactions
are ignored or modelled in a basic way, making these works
unable to handle invisible joints and complex in-the-wild
scenarios. Here, we encode social interactions spatially and
temporally via attention networks and message passing, and
explicitly modeling human-objects interactions.

3. Trajectory and Pose Dynamics Forecasting

Humans are, by nature, social agents with complex in-
teractions with not only other similar agents but also differ-
ent parameters of the scene. All of these interactions and
the conception of an agent from its surroundings build its
actions, forming its future body pose and trajectory. Gen-
erally, the problem of joint human trajectory and pose dy-
namics forecasting can be defined as estimating the person’s
most probable future pose and trajectory given their prior
history. Needless to say that when it comes to prediction in-
the-wild, many other environmental factors come into play
in addition to the individual’s history. Likewise, our goal
is to model the complex human-human and human-object

interactions in a way that can also predict all the joint visi-
bility indicators in the future.
Problem Definition. Formally, assuming the past global
history of a person p ∈ P as Xp

1:τo
= {xp1,x

p
2, ...,x

p
τo},

where xpt ∈ RF with F as the number of parameters de-
scribing the state of all the joints for person p, our goal is to
predict the set of poses Yp

+1,+τf for the future τf frames.
Yp

+1,+τf = {ypτo+1,y
p
τo+2, ...,y

p
τo+τf

}, ∀p ∈ P (1)

where ypt ∈ RF . Throughout the paper, we consider
any arbitrary variable, e.g. φt being defined at time t
and φt1:t2 = {φt1 , φt1+1, ..., φt2} between times t1 and
t2 and hold same convention for all variables. We also
use the +t notation as an indication of the future time. In
our case, the state of each joint k ∈ K, is specified by
3 major indicators, i.e. offset ∆` (temporal location ve-
locities), absolute locations ` and joint visibility score s,
which is a binary value being 0 if the joint is invisible,
i.e. xpt = {(∆`pt (k), `pt (k), spt (k)) | k=1 : K}, where
∆`, ` ∈ Rd; s ∈ [0, 1]. ypt is defined the same as xpt
(details are available in supplementary material). Unlike
existing methods on pose forecasting, we use inputs in the
original space, which means that the poses are not centered
and contain the global trajectory. The importance of mod-
eling these two sources is demonstrated in [1].
TRiPOD Model: Our TRajectory and POse Dynamics
(TRiPOD) model consists of multiple components (Fig. 2)
and sub-components, described in detail as follows.
A. Attentional Human Pose History. The dynamics of
human body skeleton are the primary information that con-
vey important knowledge for modeling the past history of
pose and trajectory and also their prediction in future. This
emphasizes the importance of how this information is rep-
resented to the pose forecasting models.

Most earlier methods in pose forecasting [14, 31, 42] uti-
lize the joint coordinates, or other primary information upon
coordinates such as velocities, to form a raw feature vector
as their input. However, doing so ignores the significance
of the natural connectivities in human body skeletons. In-
spired by recent works [36, 67], we model skeleton pose
as a graph, leveraging joint connections. However, as the
influence of joints on each other is not uniform, we use
an attentive graph encoder to model them. The inputs to
this pose attention graph ATT In(.) are state information of
each body joint in each input frame Xp

t .
GpIn,t = ATT In(Xp

t ;WIn) (2)
where WIn is the set of the parameters of input pose atten-
tion graph. Accordingly, the output would be GpIn,t, which
is a body pose representation, attending over different joint
interactions. Then, an encoder RNN en (e.g. LSTM) en-
codes the past history of each person’s skeleton graph, up
to time step t as Eq. (3), with Wen as the encoder’s param-
eters and hen,0:τo−1 as hidden states.

Zp = RNN en(GpIn,1:τo
,hen,0:τo−1;Wen) (3)
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Figure 2. An overview of the TRiPOD model proposed for human pose dynamics and trajectory forecasting in-the-wild. First, the history of poses are
initially encoded using an attentive graph upon the body skeleton joints. Then, the encoded history is used to model interactions in Human to Human (H2H)
and a Human to Object (H2O) attention graphs through a couple of iterative message passing. The future poses are then predicted, with the aid of the refined
social interactions at every steps in the future.

resulting in the encoded past global pose history Zp.
B. Object and Global Scene Features. As alluded ear-
lier, to conceive the high-level semantics in the scene, the
model should understand interactions between humans and
objects and the scene context since the humans’ pose is
highly correlated to them. For this purpose, an object de-
tector is used to extract the objects in the scene in the last
observation frames, i.e. τo. The final object representations
(O) is then obtained by passing the object feature vectors
including visual feature, geometrical information, and its
class label, through few embedding layers. Regarding the
holistic scene features (C) of all observation frames, we use
a spatio-temporal model to represent the sequence and then
the feature vectors are passed through a couple of embed-
ding layers to form the final features.
C. Human to Object Attention Module. Since all the hu-
mans are not completely interrelated with all the objects in
the scene, we also want the model to learn these different
levels of interactions. To achieve this, we utilize a graph at-
tention module (ATTH2O) for encoding the human to ob-
ject (H2O) interactions, which takes as input the encoded
past representation of person Zp and the described object
featuresO and outputs the H2O encoded interactionHpH2O.

HpH2O = ATTH2O(Zp,ZP\p,O;WH2O) (4)

where P \ p represents all the people in the scene exclud-
ing person p and WH2O represents the parameters of H2O
attention graph (Blue wavy links in Fig. 2).
D. Social Attention Module. Next, to augment the level
of semantic in human pose dynamics forecasting in real-
world, we encode humans’ social interactions. [28, 33]
used graph attention networks [55] to model social interac-
tions. However, they incorporated it with simplistic inputs,
without considering object interactions. Similar to the H2O
attention module since different persons have different lev-
els of interaction in the scene, their relation is modeled with
an attention graph ATTH2H , taking each person’s repre-

sentation produced by the ATTH2O graph and outputs a
representation HpH2H containing weighted social interac-
tions. Similarly, WH2H is the parameters of H2H attention
graph (Red wavy links in Fig. 2).

HpH2H = ATTH2H(HpH2O,H
P\p
H2O;WH2H) (5)

E. Message Passing. So far, we have two different sources
of information (human-human and human-object interac-
tion) that are different by nature, even the types of effects
they have are distinct. Thereby, an efficient approach is re-
quired to combine these two sources. We apply an itera-
tive message passing inspired by approaches primarily pro-
posed for obtaining useful information of molecular data
[20]. However, we reformed it to employ in our problem, to
combine this two types of information effectively and make
the framework invariant to their choice of order. We extend
the message passing concept to share information internally
and between nodes of two different attention graphs.

In simplistic terms, we describe our message passing
module on the two undirected graphs of ATTH2O and
ATTH2H . Assume we have a set of node features f , where
f is the nodes in ATTH2O or ATTH2H graphs, and edge
features of epu ∈ {WH2H ,WH2O}, each node is then al-
lowed to exchange information with its neighbours through
a couple of N time steps. Firstly, the node feature would
become updated through a run of the H2O attention graph
and is then fed to the H2H attention graph. We repeat this
message passing process for a specified number of times
N . After one such step, each node state would gain a pri-
mary perception of its immediate neighbors. Then, repeat-
ing more steps enhances these perceptions by incorporating
second-order information and so on. Our message passing
involves two main procedures: message passing (Eq. (6))
and the node update (Eq. (7)). During the message passing,
each person’s node’s hidden state is updated based on the
message mp

n+1 while that of objects remains intact.
mp
n+1 = ATT

u∈neighbors(p)
(fpn, f

u
n , epu), (6)



where ATT∈{ATTH2O,ATTH2H}, p∈{P} and u∈{O,P}.

fpn+1 = Un(fpn,m
p
n+1), (7)

u denotes the neighbors of p in H2O & H2H graphs and Un
is the update function at step n, here an average function.
F. Future Social Interactions. To accurately predict fu-
ture poses, only incorporating historical human social in-
teractions is not sufficient. The model should also dynam-
ically reconsider social interactions in the future, leverag-
ing other people’s actions during the same window of time.
This valuable source of information, in addition to the loss
supervision, can effectively improve training and perfor-
mance during inference, as shown in the experimental sec-
tion. This interactive decoding is mainly ignored by the
previous works. We address this issue by retaining the fu-
ture interactions through the attentional H2H graph. For-
mally, after encoding all the previous individual and social
history, scene and human-object interactions into a single
representation for each person, the corresponding features
are used as the input hidden state of a decoder predictor
(hpdec,0 = fpN ) to generate the set of future poses recursively
after applying an embedding function ψ.

yp+t+1 = ψ
(
RNN dec(y

p
+t,h

p
dec,+t;Wdec);Wψ

)
(8)

Where t ∈ (0, ..., τf − 1) and yp+t+1 is the output global
pose predicted for person p at time τo + t + 1. Then the
persons’ representations are refined by the social attention
graph forming the hidden state of the next time step (Eq.
(9)) and the whole process continues until time step τf .

hp+t+1 = ATTH2H(hpdec,+t,h
P\p
dec,+t;WH2H) (9)

G. Training Strategies. A common problem in pose fore-
casting methods is that in the training phase, the model can-
not recover from its accumulating errors at each time step
and therefore, feeding this error as the input to the next step
propagates it throughout the network and results in a large
discrepancy between prediction and ground-truth poses in
long-term. To address this problem, we first make the fi-
nal prediction to consider both the input and output of the
RNN decoder at each time step using a skip connection to
retain the output’s continuity and can recover from the er-
ror. Second, we employ the concept of curriculum learning
[9] and adopted it to train our model, which is starting with
easier sub-tasks and gradually increasing the difficulty level
of the tasks. This approach expedites the speed of conver-
gence. Hence, we divide our future pose prediction problem
for τf frames into τf

ω sub problems where ω is the number
of frames injected at each step. The model is first trained on
the first sub-frames of prediction and after that, it learned
this sub-task, then the second set of sub-frames are added
to be trained. Note that the loss is calculated based on the
new injected frames and the previous ones at each step.

Training Loss: As is proven in [1], naturally the two
problems of body pose dynamics forecasting and trajectory

forecasting are highly correlated and should be approached
jointly. Hence, we define a joint loss function in the global
data coordinates and use the three described source of in-
formation as input (i.e. offset ∆`, absolute locations `
and invisibility indicator s). For the first two, we mini-
mize the norm (the MSE `2) error values of the ground-
truth (∆`, `) and the prediction (∆̂`, ˆ̀). For the visibility
score, we employ a Binary Cross Entropy loss. In training
mode, if a joint is invisible in the truth, no gradient based
on MSE loss (L`2) is calculated for it, while the visibility
loss (LBCE) still penalizes the predictions. This concept
is implemented by setting the value of loss to zero for that
joints using a visibility mask M and a normalization fac-
tor η. Considering Θ as the collections of all weights, i.e.
Θ =

(
WIn,Wen,WH2O,WH2H ,Wdec,Wψ

)
, we use

the following to train our model.

Θ∗ = argmin
Θ

Ep,t[L(ypt , ŷ
p
t )] (10)

L(yp
t , ŷ

p
t ) =

1

η

(
L`2(∆`pt , ∆̂`

p

t ) + L`2(`pt , ˆ̀p
t )
)
×M

+LBCE (spt , ŝ
p
t )

(11)

4. Benchmarking
There is no standard dataset available that can provide a

fair pipeline for this problem, considering all the mentioned
challenges. Furthermore, there is no metric for pose dynam-
ics and trajectory forecasting, which accounts for joints’
invisibility cases (such as occlusion or being outside the
scene). We form a standard assessment platform as a bench-
mark, available at https://somof.stanford.edu, (i)
using existing multi-person datasets by repurposing them
for human pose dynamics forecasting and (ii) by proposing
new metrics, taking the both source of errors, i.e. predicted
joint locations and visibility indicators, into account.
4.1. Metrics Generally, consistent with prior work [1, 40,
41], the fundamental procedure to report our evaluation re-
sults is based on the Mean Per Joint Position Error (MPJPE)
[29], which is the average Euclidean distance (d`2) between
ground-truth and estimated joint positions (but in our case
in the global coordinate), averaged over number of persons
in the sequence at each frame i ∈ {τo+1, ..., τo+τf}. How-
ever, since we introduce the concept of invisible joints, we
propose other types of metrics accounting for those cases.
Visibility-Ignored Metric (VIM). This metric is the simple
MPJPE metric except that the invisible joints (if exist) are
not penalized and are simply discarded by considering truth.
Visibility-Aware Metric (VAM). The second metric is pro-
posed for performance evaluation in the presence of joint
invisibility. Here, the goal is to calculate the distance of ev-
ery joint per person in each time between the ground-truth
and the prediction. When assuming the possibility of a joint
being invisible, for every predicted joint, q, and its equiva-
lent in ground-truth, g, three possible scenarios can be pre-
sumed (see Fig. 3): 1) Both joints are invisible. 2) One joint

https://somof.stanford.edu
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Figure 3. Illustration of VAM (joint visibility-aware metric). Pale joints
are the missing joints in ground-truth (green) and prediction (blue) skele-
tons. The values on top of arrows are the penalty values. For other joints,
the penalty is calculated by the minimum of error distance and cutoff β.

is invisible in either the prediction or ground-truth. 3) Both
joints are visible. These cases can be modeled by two sin-
gleton sets for each joint in ground-truth (G = (∅ or {g}))
and prediction (Q = (∅ or {q})). To do so, inspired by the
concept of miss-distance in OSPA metric [51], which is a
distance metric (by mathematical definition) for comparing
two sets of point patterns, we define dβo (G,Q) as the dis-
tance between the two Singleton sets as follows:

dβo (G,Q) =
(
d(β)(G,Q)2 + β2|cg − cq|2

) 1
2 , (12)

where the cg ∈ {0, 1} and cq ∈ {0, 1} as the cardinality of
the two singleton sets, d(β)(G,Q) = min(β, d`2({g}, {q}))
is the distance between two joints (if both visible) cut off at
β > 0. Note d(β)(G,Q) is zero if any of the sets are empty.

The value of dβo (G,Q) for all three possible scenarios
are shown in Fig. 3. Finally, the Visibility-Aware Metric
(VAM) dv for all persons’ K joints is

dv = 1
α

∑
p∈P

∑
G,Q∈K d

β
o (Gp, Qp) (13)

where α is the normalization variable which can be defined
as the summation of maximum cardinality of the prediction
and ground-truth sets over each joint and each person:
α =

∑
p∈P

∑
g,q∈K max(cpg, c

p
q).

Visibility Score Metric. As the third metric, we evaluate
the model only on the visibility scores s. For this purpose,
we apply two criteria, the Intersection over Union (IoU) and
the F1-score measure for all the joints in future frames, av-
erages over the number of joints and the number of persons.
4.2. Data Since the proposed method’s main objective is to
model and predict human poses in-the-wild, the choice of
the dataset used for evaluation should also conform to the
criteria in the real world. To this end, we re-purpose the re-
cently released 3D Poses in the Wild dataset (3DPW) [56]
and the PoseTrack [7] to create a standard pipeline for
human pose dynamics and trajectory forecasting, to unify
both communities, and to create a platform with proper
data splits and metrics to ensure a fair comparison between
different approaches. These datasets reasonably provide
us with the unconstrained set of information for complex
real-world scenarios and contain both pose annotations and
global trajectory data. The PoseTrack containing poses with
invisible joints enables us to reconsider the occlusion and
disappearing individuals problem in pose dynamics fore-
casting, which is essential to reflect the trustworthiness of
the predictions. Details are elaborated in the supplement.

5. Experiments
In this section, we evaluate the performance of the TRi-

POD model on the proposed benchmark and compare it
against state-of-the-art methods. We further conduct abla-
tion study and provide some qualitative results.

We use a one layer sequence-to-sequence model for en-
coding and decoding poses, with LSTM modules with a hid-
den dimension of 256. To model the attention mechanism
in graph, we utilize the graph attention networks (GATs)
[55] which is dense in case of input pose and H2H module
and sparse for H2O in which only humans and objects are
linked. Also, the social graph in decoding phase has shared
parameters with the H2H graph. To extract the objects, a
mask-rcnn-R-50-FPN-3x model, pre-trained on COCO with
box AP of 41.0 [62] is used and for spatio-temporally rep-
resenting the scene context, the I3D model [12] pre-trained
on Kinetics is employed. Then, different two layer embed-
ding modules are applied to the object and I3D features.
The hyper-parameters are selected through experiments on
a validation set (details are available in supplementary ma-
terial). To report the results, each experiment is performed
three time and their average values are reported.

5.1. Quantitative Results
A. Baselines. Generally, the two problems of pose dynam-
ics and trajectory forecasting had been commonly treated as
isolated problems by the community and thereby the num-
ber of approaches that jointly model these information are
limited. Consequently, to investigate the effectiveness of
the proposed method, we break down the problem and re-
train the task with the models in each community separately
and then combine their results in prediction. Various works
have been conducted in these two community, however, we
try to select the most popular and recent state-of-the-art
methods that are conceptually similar to our problem and
could be simply applied. Ultimately, we select [40, 41] and
[3, 22, 27] as the most popular and recent state-of-the-art
methods in human pose dynamics and trajectory forecast-
ing, respectively, and did our best to fairly retrain these
methods by effectively setting up their parameters and pre-
pare data in compliance to how should be used to obtain the
best results (data preparation details for baselines are avail-
able in supplementary material). We also compare against
SC-MPF [1] that considers the two problems jointly. Note,
other prior works do not mainly consider the joint problem.
Joint Evaluation: We first compare the results jointly in
global space and in the next step represent the comparison
in each problem separately. For 3DPW, the results are re-
ported based on visibility ignore metric (VIM), since it does
not have invisible joint cases (in this case, VIM acts the
same as simple MPJPE metric). Table 1 evidences that we
achieve the best results for joint pose dynamics and trajec-
tory forecasting on 3DPW. For PoseTrack, since the dataset
contains cases in which the joints are occluded or poses dis-



Table 1. Error rate in 3DPW (in cm) and PoseTrack (in pixel). In each column the best obtained result is highlighted with boldface typesetting.
3DPW PoseTrack

VIM (Invisibility ignored) VIM (Invisibility ignored) VAM (Invisibility considered β = 200)
prediction time in milliseconds prediction time in milliseconds prediction time in milliseconds

100 240 500 640 900 80 160 320 400 560 80 160 320 400 560
Center pose Trajectory

PF-RNN [41] + S-LSTM [3] 73.2 126.79 180.03 201.75 277.53 87.05 103.35 129.19 138.66 160.96 101.37 114.09 133.88 145.39 160.49
PF-RNN [41] + S-GAN [22] 68.40 119.72 172.73 195.88 263.05 84.74 98.94 121.35 129.55 150.16 99.96 111.51 129.3 140.08 154.09
PF-RNN [41] + ST-GAT [27] 67.12 116.53 164.61 189.82 250.88 80.93 95.72 119.03 127.66 149.44 96.16 109.06 127.5 137.75 152.49
Mo-Att [40] + S-LSTM [3] 65.24 109.67 168.94 200.16 268.14 84.45 101.63 121.16 135.48 157.48 100.02 113.89 130.41 144.27 158.24
Mo-Att [40] + S-GAN [22] 63.41 106.25 161.89 193.98 258.51 81.33 97.45 118.74 125.78 147.12 99.21 109.56 129.08 139.25 152.47
Mo-Att [40] + ST-GAT [27] 62.41 94.59 153.24 188.02 249.91 78.14 93.75 115.61 119.31 140.83 97.16 107.42 125.36 136.04 149.78

Joint Trajectory & Pose
SC-MPF [1] 45.44 73.73 129.23 159.47 208.31 21.41 39.92 66.32 77.73 93.41 82.74 95.67 106.5 113.19 133.78

TRiPOD 31.04 50.8 84.74 104.05 150.41 15.36 26.32 46.45 57.94 71.78 50.62 60.77 79.69 80.07 96.98
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Figure 4. Comparison of visibility score metrics. (A): All data considered.
(B): Joints with at least one case of disappearance in future are considered.

appear by the persons leaving the scene, we employ all the
three proposed metrics (see subsection 4.1) for its evalua-
tion. Table 1 shows that we consistently outperform other
methods in both ignored and considered joint visibility met-
rics (VIM and VAM) in PoseTrack. Fig. 4 demonstrates the
evaluation results for the visibility score metric. The visibil-
ity scores s for baselines are considered to be always true,
since they assume all joints are visible during the whole past
and future. The goal is to investigate the performance of the
model in recognizing visible/invisible cases. To do so, The
IoU and F1-score of the binary vectors (s) are calculated
(as described in subsection 4.1). Then two approaches are
adopted: A) The whole data is used in the metric evaluation.
Generally, in PoseTrack, 27.28% and 28.82% of joints are
invisible in the observation and the future frames, respec-
tively. B) Since the visible cases are more frequent, to better
show the gap between the performance of TRiPOD and the
baselines in predicting invisibility, we perform evaluations
only on joints with at least one future case of invisibility.
This experiment shows the performance difference between
methods when some joints disappear in some future frames.
Fig. 4 shows that TRiPOD is able to estimate joint invisibil-
ity, and this claim can be better seen when always-present
joints are not considered in the evaluation.
Separate Evaluation: For more comparison, we also eval-
uate the TRiPOD model on center pose and trajectory inde-
pendently and compare results with baselines in each com-
munity. Fig. 5 illustrates that our TRiPOD model achieves
the lowest error rate (VIM) for center pose prediction in
both datasets and in trajectory forecasting performs in par
with ST-GAT in 3DPW and outperforms others in Pose-

Table 2. Ablation study on 3DPW based on VIM (ignored invisibility).
Each notation is defined as: C: Scene context, P : Input pose representa-
tion, tensors (T) or attention graph (G). H: Social module (max operation
(M) or attention graph (G)). O: Human-object graph. M: Message pass-
ing. FH: Human interactions in future. CL: Curriculum Learning.

C P H O M FH prediction time in milliseconds
100 240 500 640 900

S-MPF [1] 7 T M 7 7 7 52.89 89.27 146.2 176.98 249.18
SC-MPF [1] 3 T M 7 7 7 45.44 73.73 129.23 159.47 208.31

Baseline 1 3 T G 7 7 7 39.74 64.44 106.13 128.36 181.32
Baseline 2 3 G G 7 7 7 33.99 54.57 93.75 114.75 167.32
Baseline 3 3 G G 3 7 7 32.64 52.73 91.25 111.9 166.68
Baseline 4 3 G G 3 3 7 32.85 52.64 88.77 108.38 161.72

TRiPOD 3 G G 3 3 3 31.56 51.97 86.53 107.52 153.12
TRiPOD(CL) 3 G G 3 3 3 31.04 50.8 84.74 104.05 150.41

Track (a more challenging dataset with invisible joints).
Results Discussion: The results in Table 1 and Fig. 5 reveal
that although using the combination of two state-of-the-
art methods in each community (Mo-Att+ST-GAT) can im-
prove results, the outputs for the naive joint learning method
SC-MPF proves that the tasks of pose and trajectory fore-
casting are interrelated and results can be significantly im-
proved when they are modeled jointly. Finally, the TRiPOD
shows its superiority by jointly modeling the two tasks and
incorporating effectively different levels of historical and
futures interactions in the scene and allowing the model to
be aware of the possibility of joint invisibility.
B. Ablation Study. In particular, we examine each compo-
nent’s contributions in TRiPOD by performing an ablation
study on the 3DPW in Table 2. The first two rows are the
results for the SC-MPF baseline that uses a max-pooling so-
cial operation, and the second set of results (baselines 1 to 4)
are for experiments in which each component is added to the
model one by one, showing the effect of each module in the
final performance. The results indicate that every module
improves the prediction results which evidences the bene-
fits of exploiting different levels of semantic from the scene
both in observation and prediction. We also performed an
ablation study on the number of iterations for message pass-
ing and the results reported in this table are based on three
iterations (the results for this ablation are available in the
supplementary material). Finally, the best performance is
obtained by training using a curriculum learning scheme.
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Figure 6. Qualitative results of TRiPOD, SC-MPF and Mo-Att+ST-GAT. (A) and (B) are samples taken from 3DPW and the others are from PoseTrack.

5.2. Qualitative Results

To better understand the contribution of the TRiPOD
model in improving the understanding of different interac-
tions in the scene, occlusion, or termination of pose exis-
tence, we visualize the prediction results for a number of
samples, comparing the TRiPOD against SC-MPF and Mo-
Att+ST-GAT outputs. Fig. 6 (A) and (C) illustrate cases that
evidence the effect of interpreting the interactions between
humans and objects in the scene. Being aware of the ob-
jects and the person’s history, the model could effectively
predict the final pose in the future very close to that of the
truth compared to the baselines’ prediction. Similarly, case
(B) shows the same effect when the interactions between
humans are modeled effectively in TRiPOD. Sample (D)
further evidences the importance of the model being aware
to estimate occlusion. Instead of outputting improper out-
lier predictions (joints in black curves in (D)), the model is
capable of recognizing occlusion cases with the help of both
occlusion handling indicators and also the interpretation of
the object and its location in the scene. Finally, the two bot-
tom cases (E and F) show an agent leaving the scene or the
joints being out of the camera sight. TRiPOD is favorably
capable of handling such cases. The pink curves indicate
such faulty predictions in sample future prediction.

6. Conclusion

In this paper, we proposed a model for joint human pose
dynamics and trajectory forecasting. Instead of only pay-
ing attention to the individual’s history, our model consid-
ers different levels of semantics and interactions in the scene
by attentionally modeling skeleton pose, social and human-
object interactions through different graphs, and incorpo-
rating global context. The model also reinforces the future
predictions, letting them be socially inter-correlated in the
future in each time-step. Our method is also able to handle
occlusion and pose disappearance cases. The accumulative
error problem in long-term sequences is effectively handled
through training model in a curriculum concept. Finally,
we introduce a benchmark and relevant metrics to jointly
solve the pose dynamics and trajectory forecasting problem
in more realistic scenarios. Our experiments demonstrated
that our TRiPOD model outperforms state-of-the-art meth-
ods in this problem. Directions for future works can be in-
corporating 3D information (when camera parameters are
available) and considering multi-modal future predictions.
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A. Discussion
Why two separated H2H and H2O graphs? In this sec-
tion, we discuss the reasons for considering the human to
human (H2H) and human to objects (H2O) as two different
graphs. First, these two sources of information are natu-
rally different and the type of information and influences
obtained from them are also disparate. Therefore, consider-
ing them as similar nodes of a single graph is not intuitively
a sensible practice. Second, densely connecting these two
different types of information as a single huge graph and
training them all together makes it difficult for the model
to converge, increases the model’s complexity and the over-
all computation. Besides, the quality of the final features
obtained are not necessarily effective. Therefore, a better
practice is to consider the H2H and H2O as two different
graphs but devising a solution to effectively fuse these two
sources of information and their effects (described as itera-
tive message passing in the paper).

B. Benchmark Data Details
Here, we provide more details about the two datasets that

we used and re-purposed to create our human pose dynam-
ics and trajectory forecasting benchmark.
3D Poses in the Wild (3DPW) [56]: The recently re-
leased 3DPW is a challenging outdoor dataset captured us-
ing IMU sensors, with a moving camera and consists of
60 long video clips divided into 3 train, test and valida-
tion splits. We divided the video clips into multiple non-
overlapping 30-frame shorter sequences sampling over ev-
ery two frames resulting in 342 sequences and to investi-
gate the importance of predicting pose dynamics and tra-
jectories in complex scenarios, we only consider the multi-
person sequences containing social interactions. We use the
3 provided splits, However, switched the train and test splits
since the number of sequences in test have become larger
after the aforementioned preprocess. The body poses are
in world coordinate and the results are reported in centime-
ter (cm). In 3DPW, the pose annotations are represented by
3D locations of 24 body joints. Since some of the joints,
such as fingers and toes, are not important for the current
problem, we limit our selection to a subset of 13 main body
joints including the neck, shoulders, elbows, wrists, knees,
hips, and ankles. In 3DPW, we feed 1000ms of past history
into the model and the goal is to predict the next 1000ms of
future data.
PoseTrack [7]: The PoseTrack is a large-scale multi-person
dataset which covers a diverse variety of interactions includ-
ing person-person and person-object in dynamic crowded
scenarios. In PoseTrack, pose annotations are provided for
30 consecutive frames centered in the middle of the se-
quence. The pose forecasting in this dataset is challeng-
ing because of the wide variety of human actions in real-
world scenarios and the large number of individuals in each

sequences with large body motions and a high number of
occlusions and disappearing individuals cases. Since this
dataset contains cases with huge portion of joints being in-
visible during the time, we perform some preprocess steps
to make it practicable for the current problem. We main-
tained only those persons that are not completely invisible
in all the observation frames (means at least some partial
past history should be available for a person to enable the
model forecasts its future). Moreover, there were some
faulty, inaccurate annotations in the dataset that we did our
best to refine them. The overall number of sequences is 516
which are from the training split of this dataset. We use 60%
of these sequences for training our model and the rest were
split equally for validation and test. We use a set of 14 joints
in 2D space defining the poses including the head, neck,
shoulders, elbows, wrists, knees, hips, and ankles. The data
being used is in image coordinate and therefore the results
are reported in pixel. In PoseTrack sequences, we trained
our model by observing the past 560ms frames and learning
to minimize the prediction error over the next 560ms.

C. Input Data Types
As mentioned in the paper, we used both the offset and

absolute positions as the model’s input data. We practically
investigated that using both offset and absolute provides the
best results. The reason is that although the offset is zero
mean and improves the training process, a small error in
offset prediction can deviate significantly from the absolute
value in high dimensions or in a long time horizon. On the
other hand, the absolute is not zero mean value but keeps
offset error bounded to the absolute position. Considering
both information together can recompense the mutual er-
rors.

D. Baselines Setups
The Posetrack containing invisible joints entails some

initial setups for the baselines (center pose [41, 40] or tra-
jectory forecasting[3, 22, 27]) to make it possible for them
to be trained on this dataset. For training the baselines with
both datasets, pose information is first centered by subtract-
ing the neck position from every joint and the pose dynam-
ics forecasting methods [41, 40] are trained on the local
poses of the datasets. Simultaneously, the trajectory, con-
sidered as neck positions, is also learned by the three state-
of-the-art trajectory forecasting methods [3, 22, 27]. Then,
during prediction, we add the trajectory predictions to the
local pose to obtain the global poses (results in paper, Table
1).

Moreover, to train the baselines on the PoseTrack, which
contains invisible joints, we perform a similar procedure we
take for training our model which means if a joint disap-
pears from ground-truth during training, no gradient for that
joint is calculated. Besides, as the neck position is required



for centering the pose for pose dynamics forecasting base-
lines, we tried our best to refine the dataset manually, to
have a good estimation of neck in occluded cases and for
other cases that the agent leaves the scene we completely
discard the pose. During back propagation we simply ig-
nore these samples (do not calculate loss for them) and in
test time, we use the centered poses obtained from refined
neck as input and the output is whatever model predicts.
Important to note that we use the refined data only for cen-
tering the pose for input and the evaluation is performed
with the original data.

For the reported SC-MPF results in Table 1, we used the
original SC-MPF code and metrics (requested from the au-
thors). However, the PoseTrack data used in the SC-MPF
paper is a very smaller subset of the dataset to ensure all
joints for all persons in the selected sequences are fully vis-
ible as they did not model joint invisibility. We removed
those assumptions from the input dataset, creating more re-
alistic benchmarks, and used the whole dataset for the eval-
uation.

E. Experimental Settings
Regarding the objects used for H2O graph, we represent

each object with four main features: 1) the extracted visual
feature obtained from the detector 2) together with its loca-
tion defined as the center location of the extracted bounding
box, 3) the height and width of the bounding box, normal-
ized over the sequence resolution and 4) the object class la-
bel as the final feature. The final object representations are
obtained by passing these features through multiple MLP
layers of sizes 5000, 1024 and 256. Similarly, The embed-
ding dimensions of the MLP used for the context are 512
and 256. The hyper-parameters are selected through exper-
iments on the validation set. We applied an initial learning
rate of 5e−5 with a decay factor of 0.95 and an Adam op-
timizer and the step size of 2 frames being injected in each
step of curriculum learning to train the model. The cut off
value (β) is set to be 200 pixels. The GATs used are all sin-
gle layer with 3 heads. Each experiment is performed three
times and their average values are reported.

F. Additional Results
Here we provide the results for an ablation study on the

number of steps performed in the iterative message passing.
Table 3 shows the results. As expected, when the number
of message passing iterations increase the performance first
improves and then starts declining. This is commonly ex-
plored by prior graph-based learning literature [63], a cru-
cial aspect of the graph-level representation learning is that
node representations become refined and more global with
the increase of the number of iterations. Therefore, it is es-
sential to find the sufficient number of iterations for the best
performance, as outlined herein.

Table 3. Error rate for ablation study on 3DPW dataset (in cm) using
different number of message passing iterations.

Message Passing milliseconds
#iterations 100 240 500 640 900 AVG
1 iteration 32.49 52.71 90.39 110.51 163.46 89.91
2 iterations 32.43 52.6 89.06 109.14 159.54 88.55
3 iterations 31.56 51.97 86.53 107.52 153.12 86.14
4 iterations 33.58 52.98 91.21 111.75 163.63 90.63

Table 4. Error rate for ablation study on 3DPW dataset (in cm) using a
sparse or dense graph as input skeleton representation.

Input representation
milliseconds

100 240 500 640 900 AVG
Sparse Graph 33.81 53.01 89.49 110.44 158.65 89.08
Dense Graph 31.56 51.97 86.53 107.52 153.12 86.14

We also investigated the effect of using a sparse or dense
graph as the input skeleton representation, which is connect-
ing the human joints in compliance with the nature of hu-
man body skeleton or representing them as fully connected
graphs and letting the model to learn their relationships.The
results for this study is illustrated in Table 4. The results
indicate that the model can perform better when it learns
the human joint relations by itself rather than sparse natu-
ral connections. This verifies the fact that the relationship
between joints of an individual is not a simple hierarchical
connection but every joint can have a segregated effect on
each of the other joints directly.


