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Abstract

Temporal action proposal generation is an important
and challenging task in video understanding, which aims
at detecting all temporal segments containing action in-
stances of interest. The existing proposal generation ap-
proaches are generally based on pre-defined anchor win-
dows or heuristic bottom-up boundary matching strategies.
This paper presents a simple and efficient framework (RTD-
Net) for direct action proposal generation, by re-purposing
a Transformer-alike architecture. To tackle the essential
visual difference between time and space, we make three
important improvements over the original transformer de-
tection framework (DETR). First, to deal with slowness
prior in videos, we replace the original Transformer en-
coder with a boundary attentive module to better capture
long-range temporal information. Second, due to the am-
biguous temporal boundary and relatively sparse annota-
tions, we present a relaxed matching scheme to relieve the
strict criteria of single assignment to each groundtruth. Fi-
nally, we devise a three-branch head to further improve
the proposal confidence estimation by explicitly predicting
its completeness. Extensive experiments on THUMOS14
and ActivityNet-1.3 benchmarks demonstrate the effective-
ness of RTD-Net, on both tasks of temporal action pro-
posal generation and temporal action detection. Moreover,
due to its simplicity in design, our framework is more ef-
ficient than previous proposal generation methods, without
non-maximum suppression post-processing. The code and
models are made available at https://github.com/
MCG-NJU/RTD-Action.

1. Introduction

As large numbers of videos are captured and uploaded
online (e.g., YouTube, Instagram, and TikTok), video un-
derstanding is becoming an important problem in computer
vision. Action recognition [33, 40, 5, 37, 49, 38] has re-
ceived much research attention from both academia and in-
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Figure 1. Overview of RTD-Net. Given an untrimmed video,
RTD-Net directly generates action proposals based on boundary-
attentive features without hand-crafted design, such as dense an-
chor placement, heuristic matching strategy, and non-maximum
suppression.

dustry, with a focus on classifying trimmed video clip into
action labels. However, these action recognition methods
cannot be directly applied for realistic video analysis due
to the fact that these web videos are untrimmed in nature.
Therefore, temporal action detection [26, 24, 43, 42] is a
demanding technique, which aims to localize each action
instance in long untrimmed videos with the action category
and as well its temporal duration. In general, temporal ac-
tion detection task is composed of two subtasks: temporal
action proposal generation and action classification.

As for temporal proposal generation task, there are
two mainstream approaches. The first type is an anchor-
based [3, 19, 11, 15] method, which generates action pro-
posals based on dense and multi-scale box placement. As
the duration of action instances varies from seconds to min-
utes, it is almost impossible for these anchor-based meth-
ods to cover all these ground-truth instances under a rea-
sonable computation consumption. The second type is a
boundary-based [48, 26, 24] method, which first predicts
the boundary confidence at all frames, and then employs
a bottom-up grouping strategy to match pairs of start and
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end. These methods extract the boundary information at a
local window and simply utilize the local context for mod-
eling. Therefore, these boundary-based methods might be
sensitive to noise and fail to yield robust detection results,
as they easily produce incomplete proposals. Furthermore,
the performance of these two kinds of methods is highly
dependent on the carefully-designed anchor placement or
sophisticated boundary matching mechanisms, which are
hand-crafted with human prior knowledge and require spe-
cific tuning.

We contend that long-range temporal context modeling
is vital for proposal generation. Viewing videos as tem-
poral sequences and employing Transformer architecture to
model global one-dimensional dependencies boosts local-
ization performance. We propose a direct action proposal
generation framework with Transformers. This direct action
proposal generation with parallel decoding allows us to bet-
ter capture inter-proposal relationships from a global view,
thus resulting in more complete and precise localization re-
sults. Moreover, our temporal detection framework stream-
lines the complex action proposal generation pipeline with
a neat set prediction paradigm, where hand-crafted designs
such as anchor box placement, boundary matching strat-
egy, and time-consuming non-maximum suppression are re-
moved. As a result, our framework conducts inference with
a noticeable faster speed. However, due to the essential vi-
sual property difference between time and space, it is non-
trivial to adapt the image detection Transformer architec-
ture for videos.

We observe that the feature slowness in videos [46] and
ambiguous temporal boundaries [31] are two key issues that
require specific consideration for building a direct action
proposal generation method with Transformers. First, al-
though there are many frames along the temporal dimen-
sion, their features change at a very low speed. Direct
employment of self-attention mechanism as in Transformer
encoder will lead to an over-smoothing issue and reduce
the discrimination ability of action boundary. Second, due
to the high-level semantic for action concept, its temporal
boundary might be not so clear as object boundary, and the
ground-truth labels might also contain some noise due to
inconsistency among different labors. So a strict set match-
ing loss might have a negative effect on the convergence of
Transformer, and not be optimal for training and general-
ization.

To address the above issues, we present a Relaxed
Transformer Decoder (RTD) architecture for direct action
proposal generation, as shown in Figure 1. Compared
with the original object detection Transformer, we make
three notable improvements to adapt for the video task.
First, we replace the original Transformer encoder with
a customized boundary-attentive architecture to overcome
the over-smoothing issue. Second, we propose a relaxed

matcher to relieve the strict criteria of single assignment
to a ground-truth. Finally, we devise a three-branch detec-
tion head for training and inference. A completeness head
is added to explicitly estimate the tIoU between regressed
temporal box and ground-truth box. We observe that this
tIoU loss can guide the training of Transformer and regular-
ize three heads to converge to a stable solution.

In summary, our main contributions are as follows:

• For the first time, we adapt the Transformer architec-
ture for direct action proposal generation in videos to
model inter-proposal dependencies from a global view,
and reduce the inference time greatly by streamlining
temporal action proposal generation pipeline with a
simple and neat framework, removing the hand-crafted
designs.

• We make three important improvements over
DETR [4] to address the essential difference between
temporal location in videos and spatial detection in
images, including boundary attentive representation,
relaxation mechanism, and three-branch head design.

• Experiments demonstrate that our method outperforms
the existing state-of-the-art methods on THUMOS14
and achieves comparable performance on ActivityNet-
1.3, in both temporal action proposal generation task
and temporal action detection task.

2. Related Work
Action Recognition. Action recognition is a fundamen-
tal task in video understanding, the same as image classi-
fication in the image domain. In addition to provide se-
mantic labels for trimmed videos, action recognition is also
eligible for extracting snippet-level features in untrimmed
videos, which are used in downstream tasks, such as tempo-
ral action detection [48, 24], language-based video ground-
ing [45, 44], and spatio-temporal action detection [22, 21].
There are two main types of video architectures: two-stream
networks [33, 40, 12] extracted video appearance and mo-
tion information from RGB image and stacked optical flow;
3D convolution networks [35, 5, 30] directly captured ap-
pearance and motion clues with spatio-temporal kernels.
We use I3D [5] model to extract video feature sequences
as RTD-Net input.
Temporal Action Proposal Generation. The goal of tem-
poral action proposal generation is to generate proposals
in untrimmed videos flexibly and precisely. Among tem-
poral action proposal generation methods, anchor-based
methods [3, 19, 11, 15, 41, 6] retrieved proposals based
on multi-scale and dense anchors, which is inflexible and
cannot cover all action instances. Boundary-based meth-
ods [48, 26, 24, 23] first evaluated the confidence of starting
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Figure 2. Pipeline of RTD-Net. Our RTD-Net streamlines the process of temporal action proposal generation by viewing it as a direct set
prediction problem. It is composed of three unique designs: a boundary-attentive module for feature extraction, a transformer decoder for
direct and parallel decoding of queries, and a relaxed matcher for training label assignment. Our RTD-Net is able to efficiently generate a
set of smaller number of proposals without any post processing.

and ending points and then matched them to form proposal
candidates. However, they generated results only based on
local information and were easily affected by noise. On
the contrary, our framework makes predictions based on
the whole feature sequence and fully leverages the global
temporal context. Recently, graph-based methods [42, 2]
gained popularity in this field, they exploited long-range
context based on pre-defined graph structure, the construc-
tion of which is highly dependent on human prior knowl-
edge. In contrast, RTD-Net learns its own queries and
directly generates complete and precise proposals without
any hand-crafted design (anchor matching strategy or graph
construction), and is free of time-consuming NMS module.

Transformer and Self-Attention Mechanism. Trans-
former was firstly introduced by [36] in machine transla-
tion task. It tackles the problem of long-range dependency
modeling in sequence modeling task. The major feature in
Transformer is the self-attention mechanism, which sum-
marizes content from the source sequence and is capable
of modeling complex and arbitrary dependencies within a
limited number of layers. Inspired by the recent advances
in NLP tasks [9, 8], self-attention was applied to vision
tasks to leverage large-scale or long-range context. For in-
stance, works based on self-attention blocks appeared in im-
age generation [29], image recognition [29, 28, 7] , action
recognition [16] and object detection [4]. Some [29, 28, 7]
used specialized self-attention blocks as substitutes for
convolutions, and others used self-attention blocks to re-
place components in the convolution networks. Recent
work [10] showed that with Transformer architecture alone,
self-attention blocks could achieve excellent results for im-
age recognition. We use decoder-only Transformer on
videos for temporal proposal generation, where our model

is able to fully exploit the global temporal context and gen-
erate action proposals in a novel and direct paradigm.

3. Method

3.1. Overview

We propose a relaxed transformer decoder network
(RTD-Net) to directly generate temporal action proposals.
Specifically, given an input video X with lf frames, RTD-
Net aims at generating a set of proposals Ψ = {ψn =
(tns , t

n
e )}, locating the underlying human action instances

Ψ̂ = {ψ̂n = (t̂ns , t̂
n
e )}

Ng

n=1, with Ng as the number of action
instances in video X .

In order to tackle the issues caused by feature slowness
and ambiguous temporal boundary, RTD-Net features three
major components: a boundary-attentive module, a relaxed
Transformer decoder, and a three-branch detection head.
The main architecture is illustrated in Figure 2. First, we
use backbone network to extract short-term features. Then
the boundary-attentive module enhances them with discrim-
inative boundary scores, and outputs compact boundary-
attentive representations to be fed into a transformer de-
coder. As shown in experiment, we find that this boundary-
attentive module is important for the subsequent decoding
process. After this, the transformer decoder uses a set of
learned queries to attend to the boundary-attentive repre-
sentations. This parallel decoding process is able to model
all pair-wise constraints among proposal candidates explic-
itly and capture inter-proposal context information with a
global view. Eventually, a three-branch detection head
transforms the decoder embedding to our final prediction
results. Boundary head directly generates temporal boxes,
and binary classification head combined with completeness



head gives a confidence score for each predicted box. For
training, we give a relaxed matching criteria in the matcher,
which alleviates the impact of ambiguous temporal bound-
aries and allows more well-predicted proposals to be as-
signed as positive samples.

3.2. Feature Encoding

We adopt two-stream networks [40, 5] to extract appear-
ance features FA = {ftn,A} from RGB frames and mo-
tion features FM = {ftn,M} from stacked optical flow
at time tn. Features are extracted with a sliding win-
dow of temporal stride τ and arranged into a sequence of
length ls. Following the common practice, we take fea-
tures after the global pooling layer and before the top fully-
connected layer from feature extractor networks. Appear-
ance features and motion features are concatenated along
channel dimension to form our final input feature sequence
F = {ftn}

ls
n=1, where ftn = (ftn,A, ftn,M ).

3.3. Direct Action Proposal Generation Mechanism

Boundary-attentive representations. As analyzed above,
slowness is a general prior for video data, where short-term
features change very slowly in a local window. Meanwhile,
our short-term features are usually extracted from a short
video segment with overlap, which will further smooth vi-
sual features. For temporal action proposal generation, it is
crucial to keep sharp boundary information in visual repre-
sentations to allows for the subsequent decoding process-
ing. To alleviate the issue of feature slowness, we propose
the boundary-attentive module to explicitly enhance short-
term features with discriminative action boundary informa-
tion. Specifically, we multiply the original features with its
own action starting and ending scores, where the scores of
action boundary at each time are estimated with a temporal
evaluation module [26]. In experiments, we find that this
boundary-attentive representation is helpful for our trans-
former decoder to generate more accurate action proposals,
thanks to the explicit leverage of action boundary informa-
tion. MLP encoder is employed to transform the boundary-
attentive representation into a more compact form.
Relaxed Transformer decoder. We use the vanilla Trans-
former decoder to directly output temporal action proposals.
The decoder takes a set of proposal queries and boundary-
attentive representations as input, and outputs action pro-
posal embedding for each query via stacked multi-head
self-attention and encoder-decoder attention blocks. Self-
attention layers model the temporal dependencies between
proposals and refine the corresponding query embedding.
In ‘encoder-decoder’ attention layers, proposal queries at-
tend to all time steps and aggregate action information at
high activation into each query embedding. During train-
ing procedure, this decoder collaborates with a Hungarian
matcher to align positive proposals with groundtruth and the

whole pipeline is trained with a set prediction loss.
Unlike object detection in images, temporal action pro-

posal generation is more ambiguous and sparse in annota-
tion. For instance, only a few actions appear in an obser-
vation window for THUMOS14 and the average number
of action instances in ActivityNet-1.3 is only 1.5. In addi-
tion, the temporal variation of action instances is significant
across different videos, in particular for ActivityNet dataset.
So, the matching criteria that only a single detection result
matches a groundtruth instance might be sub-optimal for
temporal action proposal generation. In practice, we ob-
serve that the visual difference between some temporal seg-
ments around the groundtruth is very small, and the strict
matching criteria will make whole network confused and
thereby hard to converge to a stable solution.

To deal with this problem, we propose a relaxed match-
ing scheme, where multiple detected action proposals are
assigned as positive when matching to the groundtruth.
Specifically, we use a tIoU threshold to distinguish positive
and negative samples, where tIoU is calculated as the inter-
section between target and prediction over their union. The
predictions with tIoU higher than a certain threshold will
be marked as positive samples. In experiments, we observe
that this simple relaxation will relieve the training difficulty
of RTD-Net and is helpful to improve the final performance.
Three-branch head design. RTD-Net generates final pre-
dictions by designing three feed forward networks (FFNs)
as detection heads. We generalize the box head and class
head in object detection to predict temporal action propos-
als. Boundary head decodes temporal boundary tuple of an
action proposal ψn = (tns , t

n
e ), which consists of a starting

frame tns and an ending frame tne . Binary classification head
predicts foreground confidence score pbc of each proposal.
In addition, a completeness head is proposed to evaluate
prediction completeness pc with respect to the groundtruth.

A high-quality proposal requires not only high fore-
ground confidence but also accurate boundaries. Some-
times, the binary classification score alone fails to be a re-
liable measure of predictions due to the confused action
boundaries. RTD-Net introduces a completeness head to
predict a completeness score pc that measures the overlap
between predictions and targets. This additional complete-
ness score is able to explicitly incorporate temporal local-
ization quality to improve the proposal confidence score es-
timation, thus making the whole pipeline more stable.

3.4. Training

In our training, we first scale video features into a fixed
length for subsequent processing. Specifically, following
the common practice, we employ a sliding window strat-
egy with a fixed overlap ratio on THUMOS14 dataset and
a re-scaling operation on ActivityNet-1.3 dataset. In THU-
MOS14, only observation windows that contain at least one



target are selected for training.
Boundary-attentive module. Starting and ending scores
are predicted as boundary probabilities. We follow the foot-
steps of BSN [26], and use a three-layer convolution net-
work as the boundary probability predictor. This predictor
is trained in a frame level to generate starting and ending
probability ptn,s and ptn,e for each temporal location tn.
Label assignment of RTD-Net. The ground-truth instance
set Ψ̂ = {ψ̂n = (t̂ns , t̂

n
e )}

Ng

n=1 is composed of Ng targets,
where t̂ns and t̂ne are starting and ending temporal locations
of ψ̂n. Likewise, the prediction set ofNp samples is denoted
as Ψ = {ψn = (tns , t

n
e )}

Np

n=1. We assume Np is larger than
Ng and augment Ψ̂ to be size Np by padding ∅. Similar to
DETR [4], RTD-Net first searches for an optimal bipartite
matching between these two sets and the cost of the matcher
is defined as:

C =
∑

n:σ(n) ̸=∅

α · ℓ1(ψn, ψ̂(σ(n)))−β · tIoU(ψn, ψ̂(σ(n))−γ·pbc,n,

(1)
where σ is a permutation of Np elements to match the pre-

diction to targets, α, β, and γ are hyper-parameters and
specified as 1, 5, 2 in experiments. Here we use both ℓ1
loss and tIoU loss for bipartite matching due to its comple-
mentarity. Based on the Hungarian algorithm, the matcher
is able to search for the best permutation with the lowest
cost. Besides, a relaxation mechanism is proposed to ad-
dress sparse annotations and ambiguous boundaries of ac-
tion instances. We calculate tIoU between targets and pre-
dictions, and also mark those predictions with tIoU higher
than a certain threshold as positive samples. After relax-
ation, the updated assignment of predictions is notated as
σ′.
Loss of the binary classification head. We define the bi-
nary classification loss function as:

Lcls = −γ · 1

N

N∑
n=1

(p̂n log pbc,n+(1− p̂n) log(1−pbc,n)),

(2)
where pbc,n is the binary classification probability and N is
the total number of training proposals. p̂n is 1 if the sample
is marked positive, and otherwise 0.
Loss of the boundary head. Training loss function for the
boundary head is defined as follows:

Lboundary =
1

Npos

∑
n:σ′(n)̸=∅

(α · Lloc,n+β · Loverlap,n),

(3)
where ℓ1 loss is used in localization loss and tIoU loss is
used in overlap measure:

Lloc,n = ||t̂σ
′(n)

s − ts(n)||l1 + ||t̂σ
′(n)

e − te(n)||l1,

Loverlap,n = 1− tIoU(ψn, ψ̂(σ
′(n))).

(4)

Loss of the completeness head. To generate a robust and
reliable measure of predictions, we introduce a complete-
ness head to aid the binary classification head. Each pro-
posal sampled for training calculates the tIoU with all tar-
gets, and the maximum tIoU is denoted as ĝtIoU . We adopt
temporal convolution layers followed with one fully con-
nected layer upon decoder outputs to predict completeness.
To guide the training completeness branch, a loss based on
tIoU is proposed:

Lcomplete =
1

Ntrain

Ntrain∑
n=1

(pc,n − ĝtIoU,n)
2. (5)

At the beginning, the boundary head fails to predict high-
quality proposals, and thus the completeness head cannot
be effectively trained with low-quality proposals. We follow
DRN [44] to apply a two-step training strategy. In the first
step, we freeze the parameters of the completeness head and
train RTD-Net by minimizing Equations (2) and (3). In the
second step, we fix other parts of RTD-Net and only train
the completeness head.

3.5. Inference

Due to the direct proposal generation scheme in our
RTD, we follow a simple proposal generation pipeline with-
out post-processing methods as non-maximum suppression,
that are widely used in previous methods [24, 26, 6].

Boundary-attentive module. To preserve the magni-
tude of features, we normalize the probability sequence
{(ptn,s, ptn,e)}

ls
n=1 to the range of [0,1] and then scale it

by αr. αr is a scaling factor that re-scales boundary scores
for stronger discrimination ability, and its choice will be dis-
cussed in ablation study. Feature sequence F = {ftn}

ls
n=1

are multiplied with starting and ending scores separately,
and then concatenated along channel dimension. Equipped
with positional embedding, the visual representations are
forward to a three-layer MLP encoder. Positional embed-
ding is introduced here for temporal discrimination. The
MLP encoder models the channel correlation and compacts
boundary-attentive representations.

Proposal generation. In Transformer decoder, the previ-
ous boundary attentive representations are directly retrieved
with a set of learnt queries. In the end, for each query, three
heads directly output its proposal boundaries, binary classi-
fication score, and completeness score.

Score fusion. To make a more reliable confidence esti-
mation for each proposal, we fuse the binary classification
score pbc and completeness score pc for each proposal with
a simple average. The resulted final proposal set is directly
evaluated without any post-processing method.



Table 1. Comparison with other state-of-the-art proposal genera-
tion methods on the test set of THUMOS14 in terms of AR@AN.
SNMS stands for Soft-NMS.

Method @50 @100 @200 @500
TAG+NMS [48] 18.55 29.00 39.61 -

TURN+NMS [15] 21.86 31.89 43.02 57.63
CTAP+NMS [13] 32.49 42.61 51.97 -
BSN+SNMS [26] 37.46 46.06 53.21 60.64

BSN*+SNMS 36.73 44.14 49.12 52.26
MGG [27] 39.93 47.75 54.65 61.36

BMN+SNMS [24] 39.36 47.72 54.70 62.07
BMN*+SNMS 37.03 44.12 49.49 54.27

DBG+SNMS [23] 37.32 46.67 54.50 62.21
RapNet+SNMS [14] 40.35 48.23 54.92 61.41
BC-GNN+SNMS [2] 40.50 49.60 56.33 62.80

RTD-Net* 41.52 49.32 56.41 62.91

* results are reported based on P-GCN I3D features.

4. Experiments

4.1. Dataset and Setup

THUMOS14 [20]. THUMOS14 dataset consists of 1,010
validation videos and 1,574 testing videos of 101 action
classes in total. Among them 20 action classes are se-
lected for temporal action detection. It contains 200 and
213 untrimmed videos with temporal annotations in valida-
tion and testing sets.
ActivityNet-1.3 [18]. ActivityNet-1.3 dataset contains
19,994 untrimmed videos with 200 action categories tem-
porally annotated, and it is divided into training, validation
and testing sets by the ratio of 2:1:1.
Implementation details. We adopt two-stream network
TSN [40] and I3D [5] for feature encoding. Since TSN fea-
tures better preserve local information, they are fed into the
temporal evaluation module [26] for boundary confidence
prediction. Compared with TSN features, I3D features have
larger receptive fields and contain more contextual informa-
tion. I3D features are enhanced by boundary probabilities
and then input into MLP encoder for transformation and
compression. During THUMOS14 feature extraction, the
frame stride is set to 8 and 5 for I3D and TSN respectively.
As for ActivityNet-1.3, the sampling frame stride is 16.

On THUMOS14, we perform proposal generation in a
sliding window manner and the length of each sliding win-
dow is set to 100 and the overlap ratio is set to 0.75 and 0.5
at training and testing respectively. As for ActivityNet-1.3,
feature sequences are rescaled to 100 via linear interpola-
tion. To train RTD-Net from scratch, we use AdamW for
optimization. The batch size is set to 32 and the learning
rate is set to 0.0001.

4.2. Temporal Action Proposal Generation

Evaluation metrics. To evaluate the quality of proposals,
we calculate Average Recall (AR) with Average Number
(AN) of proposals and area under AR vs AN curve per

Table 2. Comparison with other state-of-the-art proposal gener-
ation methods on validation set of ActivityNet-1.3 in terms of
AR@AN and AUC. Among them, only RTD-Net is free of NMS.

Method [25] CTAP [13] BSN [26] MGG [27] BMN [24] RTD-Net
AR@1 (val) - - 32.17 - - 33.05

AR@100 (val) 73.01 73.17 74.16 74.54 75.01 73.21
AUC (val) 64.40 65.72 66.17 66.43 67.10 65.78

video, which are denoted by AR@AN and AUC. Follow-
ing the standard protocol, we use tIoU thresholds set [0.5
: 0.05 : 1.0] on THUMOS14 and [0.5 : 0.05 : 0.95] on
ActivityNet-1.3.
Comparison with state-of-the-art methods. Due to the
high discriminative power of I3D features, we use it in
our RTD-Net for proposal generation. For fair compar-
ison, we also implement BSN [26] and BMN [24] with
the same I3D features by the public available code. The
experiment results on THUMOS14 are summarized in Ta-
ble 1. Since BSN and BMN are highly dependent on the
local context, therefore its performance drops on I3D fea-
tures with large receptive fields. The result demonstrates
that our method can fully exploit rich contexts of I3D fea-
tures and generate better results. Compared with previous
state-of-the-art methods, our method achieves the best per-
formance. Meanwhile, the performance improvement for
smaller AN is slightly more evident and our RTD does not
employ any post-processing method such as NMS. As il-
lustrated in Table 2, RTD-Net also achieves comparable re-
sults on ActivityNet-1.3. We analyze that annotations in
ActivityNet-1.3 are relatively sparse and the average num-
ber of instance is 1.54 in a video (THUMOS14: 15.29).
However, our RTD-Net models the pairwise context, and
thus it generally requires multiple instances in each video.
In-depth analysis of RTD-Net proposals. We compare
the results of RTD-Net with bottom-up methods BSN and
BMN, via a false positive analysis. Inspired by [1], we
sort predictions by their scores and take the top-10G pre-
dictions per video. Two major errors in proposal genera-
tion task are discussed, localization error and background
error. Localization error is when a proposal is predicted as
foreground, has a minimum tIoU of 0.1 but does not meet
the tIoU threshold. Background error is when a proposal
is predicted as foreground but its tIoU with ground truth in-
stance is smaller than 0.1. In Figure 4, we observe RTD-Net
predictions has the most of true positive samples at every
amount of predictions. The proportion of localization error
in RTD-Net is notably smaller than those in BSN and BMN,
confirming the overall precision of RTD predictions.

We visualize qualitative results in Figure 3. Specifically,
while BSN makes two incomplete predictions for one action
instance, RTD-Net predicts one complete proposal that ac-
curately covers the whole action (the first row). Bottom-up
methods like BSN only exploit context in a local window,
hence they are unaware of similar features out of range.
As a result, they are not robust to local noise and eas-



Table 3. Ablation study on the boundary probability scaling factor
on THUMOS14, measured by AR@AN.

Scaling factor α @50 @100 @200 @500
None 36.22 45.38 52.62 59.61

1 40.39 48.80 56.04 63.41
2 41.52 49.32 56.41 62.91
5 39.76 47.52 54.10 60.87

Table 4. Ablation study on feature encoders on THUMOS14, mea-
sured by AR@AN.

Encoder
Size of

Receptive field* @50 @100 @200 @500

MLP 64 41.52 49.32 56.41 62.91
Transformer 64 33.69 40.36 46.33 52.38
Transformer 16 36.01 41.97 46.92 53.26

* ’Size of Receptive field’ means the temporal receptive field size of
the input I3D features, the value is measured by frames per time step.

ily yield incomplete proposals. In the multi-instance set-
ting (the second row), RTD-Net has better localization re-
sults with more precise boundaries or larger overlap with
groundtruths. Benefit from global contextual information,
RTD-Net is better aware of visual relationships between ac-
tion proposals, and visual differences between foregrounds
and backgrounds. Therefore, RTD-Net can easily distin-
guish between foreground and background segments, and
localize proposals precisely.
Time analysis in inference. RTD-Net also has a notable
advantage in inference speed. Compared with BSN, the in-
ference time per sample of RTD-Net is much less (0.114s
vs 5.804s, where 5.794s for BSN post-processing). Due to
the direct proposal generation mechanism, RTD-Net is free
of time-consuming post-processing methods such as non-
maximum suppression. The experiment of inference speed
is conducted on one RTX 2080Ti GPU. Detailed efficiency
analysis is provided in Appendices C.

4.3. Ablation Study

Study on scaling factor. We re-weight video features with
the predicted boundary probability sequence to enhance the
features at possible boundary locations. Scaling factor αr

needs careful consideration, because it determines a proba-
bility threshold to decide the features at which location to
enhance and to suppress, i.e. αr = 2 enhances features
at locations with a boundary probability more than 0.5 and
suppresses those at locations with a probability less than
0.5. Table 3 shows AR@AN on THUMOS14 dataset under
different settings of the scaling factor. Comparing the re-
sults under different αr settings, we observe that boundary-
attentive representation boosts the performance up to 4% of
average recall, and αr = 2 maximizes the improvement.
Study on feature encoders. We analyze the design of the
boundary-attentive module by experimenting on different
encoder choices and input feature with different receptive

Table 5. Ablation study on the relaxed matcher on THUMOS14
and ActivityNet-1.3, measured by AR@AN and AUC.

Relaxed matcher @50 @100 @200 @500 AR@1 AR@100 AUC
✗ 41.07 49.20 56.23 62.77 32.73 71.88 65.50
✓ 41.52 49.32 56.41 62.91 33.05 73.21 65.78

Table 6. Ablation study on the tIoU guided ranking on THU-
MOS14, measured by AR@AN.

Score @50 @100 @200 @500
Classification 41.08 49.03 56.07 62.93

Classification + Completeness 41.52 49.32 56.41 62.91

Ground Truth BSN Proposals RTD Proposals
time

95.1s 99.3s

97.1s 99.4s
score = 0.561

94.9s 96.7s
score = 0.568

94.6s 99.2s
score = 0.744

94.7s

94.7s

101.3s

101.4s

93.6s

101.2s
score = 0.851

score = 0.899

score = 0.736

score = 0.770
137.4s

141.2s

141.3s

134.9s

134.4s 141.1s

Figure 3. Qualitative results of RTD-Net on THUMOS14. The
proposals shown are the top predictions for corresponding
groundtruths based on the scoring scheme for each model.

field sizes. We compare results between MLP and Trans-
former encoder with the same high-level feature inputs. The
first two rows in Table 4 show that MLP outperforms Trans-
former encoder by a large margin and we analyze that
the performance drop might be caused by the over-smooth
of self-attention in Transformer. To further investigate the
performance, we experiment on the Transformer encoder
with features of a smaller receptive field to reduce the over-
smoothing effect, and the performance increases to around
36%@50 but is still worse than our MLP encoder.
Study on relaxed matcher. With the relaxed matching cri-
teria, some high-quality proposals, assigned negative in the
original matcher, will become positive samples. As illus-
trated in Table 5, the relaxed matcher can improve the AR
and AUC metrics. In practice, we first train with the strict
bipartite matching criteria to generate sparse predictions,
then finetune with the relaxed matching scheme to improve
the overall recall (more details in Appendices A.2).
Study on completeness modeling. The completeness head
is designed to aid the binary classification score for a more
reliable measure of predictions. We perform experiments
on THUMOS14 testing set, and evaluate proposals in terms
of AR@AN. Table 6 reports the results of ablation study on



Table 7. Temporal action detection results on the test set of THU-
MOS14 in terms of mAP at different tIoU thresholds. Proposals
are combined with the classifiers of UntrimmedNet [39] and P-
GCN [43].

Method Classifier 0.7 0.6 0.5 0.4 0.3
SST [3] UNet 4.7 10.9 20.0 31.5 41.2

TURN [15] UNet 6.3 14.1 24.5 35.3 46.3
BSN [26] UNet 20.0 28.4 36.9 45.0 53.5
MGG [27] UNet 21.3 29.5 37.4 46.8 53.9
BMN [24] UNet 20.5 29.7 38.8 47.4 56.0
DBG [23] UNet 21.7 30.2 39.8 49.4 57.8

G-TAD [42] UNet 23.4 30.8 40.2 47.6 54.5
BC-GNN [2] UNet 23.1 31.2 40.4 49.1 57.1

RTD-Net UNet 25.0 36.4 45.1 53.1 58.5
BSN [26] P-GCN - - 49.1 57.8 63.6

G-TAD [42] P-GCN 22.9 37.6 51.6 60.4 66.4
RTD-Net P-GCN 23.7 38.8 51.9 62.3 68.3

Table 8. Temporal action detection results on the validation set
of ActivityNet-1.3 in terms of mAP at different tIoU thresholds.
Proposals are combined with the classifier of UntrimmedNet [39].

Method 0.95 0.75 0.5 Average
SCC [17] 4.70 17.90 40.00 21.70
CDC [32] 0.21 25.88 43.83 22.77
SSN [48] 5.49 23.48 39.12 23.98

Lin et al.[25] 7.09 29.65 44.39 29.17
BSN [26] 8.02 29.96 46.45 30.03
BMN [24] 8.29 34.78 50.07 33.85
RTD-Net 8.61 30.68 47.21 30.83

the completeness head. We see that the combination clas-
sification and completeness scores outperforms the result
of simply using a classification score. We find that the es-
timated tIoU score is able to correct some well-predicted
proposals but with a low classification score, and hence can
boost the AR metrics especially at a smaller AN.

4.4. Action Detection with RTD proposals

Evaluation metrics. To evaluate the results of temporal
action detection task, we calculate Mean Average Precision
(mAP). On THUMOS14, mAP with tIoU thresholds set [0.3
: 0.1 : 0.7] are calculated. On ActivityNet-1.3, mAP with
tIoU thresholds set {0.5, 0.75, 0.95} and average mAP with
tIoU thresholds set [0.5 : 0.05 : 0.95] are reported.
Comparison with state-of-the-art methods. To evaluate
the quality of our proposals for action detection, we follow a
two-stage temporal action detection pipeline. First, we gen-
erate a set of action proposals for each video with our RTD-
Net and keep top-200 and top-100 proposals for subsequent
detection on THUMOS14 and ActivityNet-1.3. Then we
score each proposal with two specific strategies. One strat-
egy is using a global classification score from Untrimmed-
Net [39] and keeping top-2 predicted labels for each video.
Then, we assign the classification score to each proposal
and use fusion proposal confidence score and global classi-
fication score as detection score. The other strategy is that
we employ the proposal-level classifier P-GCN [43] to pre-
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Figure 4. False positive profile of three proposal generation meth-
ods: RTD-Net, BSN and BMN. The three graphs demonstrate
the FP error breakdown within the top 10-G (G = the number of
ground truths) predictions per video. Maximum tIoU for localiza-
tion error is set to 0.5.

dict action labels for each proposal and use the predicted
score for evaluation.

The result on THUMOS14 is shown in Table 7 and our
RTD-Net based detection outperforms other state-of-the-art
methods especially under high tIoU settings, which indi-
cates that proposals generated by RTD-Net are more accu-
rate. When combined with P-GCN classifier, our method
achieves mAP improvements over other proposal genera-
tion methods such as BSN [26] and G-TAD [42] at all tIoU
thresholds. This experiment demonstrates that RTD propos-
als are able to boost the performance of temporal action de-
tection task. As Table 8 illustrates, we achieve comparable
results on ActivityNet-1.3. BSN and BMN [24] predict a
large number of proposals (nearly 900 proposals per video)
and select top-100 of them, while RTD-Net only makes 100
predictions. Compared with BSN and BMN, RTD-Net im-
proves mAP under high tIoU settings (tIoU = 0.95), since
RTD-Net proposals have more precise boundaries.

5. Conclusion
In this paper, we have proposed a simple pipeline

for direct action proposal generation by re-purposing a
Transformer-alike architecture. To bridge the essential dif-
ference between videos and images, we introduce three
important improvements over the original DETR frame-
work, namely a boundary attentive representation, a relaxed
Transformer decoder (RTD), and a three-branch prediction
head design. Thanks to the parallel decoding of multiple
proposals with explicit context modeling, our RTD-Net out-
performs the previous state-of-the-art methods in temporal
action proposal generation task on THUMOS14 and also
yields a superior performance for action detection on this
dataset. In addition, free of NMS post-processing, our de-
tection pipeline is more efficient than previous methods.
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A. Additional Ablation Studies
A.1. Boundary Attentive Module

Study on attentive representations. To further analyze
the design of the boundary-attentive module, we perform
ablations on projection placement (i.e., location of MLP)
and boundary enhancement methods. For projection place-
ment, we consider the alternatives of pre-enhancement and
post-enhancement. For boundary enhancement methods,
we also tried concatenating boundary weights with features
along the channel dimension. Results of Table A show that
pre-enhancement projection has a better performance and
multiplication enhancement outperforms concatenation en-
hancement. We analyze that pre-enhancement projection
provides a more compact representation for boundary en-
hancement and attention introduces a more direct and ex-
plicit feature enhancement strategy.

Table A. Ablation study on MLP encoders on THUMOS14, mea-
sured by AR@AN.

Projection
placement

Boundary
enhancement @50 @100 @200 @500

Pre multiply 41.52 49.32 56.41 62.91
Post multiply 38.81 47.36 54.86 62.30
Pre concat 37.92 45.33 52.12 60.86

Study on temporal positional embedding in encoder. In
this section, we show the importance of temporal positional
embedding in the boundary attentive module. We experi-
ment with removing positional embedding at MLP encoder
or directly adding it into encoder. We contend that con-
catenating positional embedding with video features explic-
itly gives the encoded features the relative order of the se-
quence, and simplifies the difficulty of proposal generation
by having temporal locations encoded in the features. The
results in Table B show that the model performance de-
creases by 4.4% on AR@50, without temporal positional
embedding in encoder.

Table B. Ablation study on position embedding of MLP encoder
on THUMOS14, measured by AR@AN.

Positional embedding
in encoder @50 @100 @200 @500

w/o 37.07 45.05 51.58 58.31
w/ 41.52 49.32 56.41 62.91

Effect of feature receptive field on MLP encoder. Table C
is an extension of Table 4 in Section 4.3 to prove that the
over-smoothing effect of encoder self-attention causes per-
formance drop. We extend our experiment to alleviate the
possibility that features with smaller receptive field boosts
the performance in general. By comparing MLP encoder
performance of input features with receptive field size of
16 and 64, we conclude that smaller receptive field would

decrease the performance of MLP encoder. The increase
of performance with Transformer encoder is because that
smaller receptive field reduces the over-smoothing effect for
Transformer encoder.

Table C. Ablation study on the effect of feature receptive field on
MLP encoder on THUMOS14, measured by AR@AN.

Size of
Receptive field @50 @100 @200 @500

64 41.52 49.32 56.41 62.91
16 39.56 47.36 53.82 60.47

A.2. Relaxed Transformer Decoder

Study on the relaxation mechanism. We present the two-
step “top-1 to top-k” matching scheme. In our strategy,
we first train with the strict bipartite matching criteria to
generate sparse predictions, then fine-tune with the relaxed
matching scheme to improve the overall recall. The first
step of our strategy is necessary because it makes the pos-
itive samples sparsely distributed and minor-overlapped,
thus the model is free of NMS.

In the fine-tuning phase, we freeze the modules except
for binary classification and boundary embeddings. Specif-
ically, we calculate tIoU between targets and predictions,
and employ three different settings of the relaxation mech-
anism. First, we mark predictions with tIoU higher than a
threshold as positive samples and get an updated matching
permutation σ′. We calculate both classification and local-
ization loss according to the updated assignment σ′. Sec-
ond, only loss for the binary classification head is calculated
with σ′. The target of this relaxation setting is to improve
the quality measurement (confidence) of positive (but not
optimal) proposals, and stabilize the distribution of optimal
predictions. The last one is assigning the closest prediction
of each groundtruth as positive elements (predictions of bi-
partite matching are not necessarily the geometrically clos-
est), and calculate losses on this updated assignment σ′′. As
Table D illustrates, the results of all three settings are close,
demonstrating the influence of the relaxation mechanism is
robust to settings (rule and scope).

With the relaxation mechanism, our model witnesses an
evident improvement on AR and AUC. With the optimal
bipartite matching, RTD-Net predicts proposals of bipartite
matching (top-1 proposals) well, while it suppresses several
other predictions around the groundtruth (top-k proposals),
which results in a decrease of AR at large AN and over-
all AUC. In the fine-tuning phase, our model improves the
scoring of top-k proposals with the relaxation mechanism,
and the performance of top-1 proposals is not affected. As a
result, the relaxation mechanism boosts the overall perfor-
mance of RTD-Net.

Similar to us, [50] exploits a “stop-grad” operation,



namely they freeze the FCOS detector [34] and train their
PSS head in the fine-tuning phase. The difference is
that [50] firstly makes top-k predictions well and then learns
to predict top-1 proposals. RTD-Net exploits a “top-1 to
top-k” strategy, while [50] leverages a “top-k to top-1”
scheme. Both of them aim to optimize the procedure of la-
bel assignment at the cost of removing heuristic NMS, and
markedly reduce the inference time.

Table D. Ablation study on the rule of relaxation mechanism on
ActivityNet-1.3 validation set, measured by AR@AN and AUC.

Rule Scope AR@1 AR@100 AUC
None None 32.73 71.88 65.50

threshold cls + loc 33.05 73.21 65.78
threshold cls 33.10 73.12 65.77

top1 cls + loc 32.95 73.25 65.77

Study on temporal positional embedding in decoder. Ex-
plicit temporal positional embedding also plays a key role in
the relaxed transformer decoder. We experiment with no po-
sitional embedding, add positional embedding at encoder-
decoder attention input and similar to detr, add positional
embedding only at attention. As shown in Table E, adding
positional embedding at attention achieves the best perfor-
mance. RTD-Net achieves 37.43% on AR@50 without
positional embedding in the decoder, which decreases by
about 4%. Adding positional embedding at input causes
performance drop as well, by 2.0% on AR@50.

Table E. Ablation study on position embedding of transformer de-
coder on THUMOS14, measured by AR@AN.

Positional embedding @50 @100 @200 @500
None 37.43 46.01 53.90 61.32

At input 39.53 47.13 53.83 61.67
At attn. 41.52 49.32 56.41 62.91

Study on the number of decoder layers. We conduct ex-
periments on the number of decoder layers and the results
are displayed in Table F. RTD-Net achieves the best perfor-
mance with 6 decoder layers, in terms of AR@AN. When
the number of decoder layers increases from 1 to 2, it im-
proves AR@50 by around 6.2, but this improvement de-
creases to 1.8 when the number of decoder layers increases
from 2 to 3.

Table F. Ablation study on the number of decoder layers on THU-
MOS14, measured by AR@AN.

Number of decoder layers @50 @100 @200 @500
1 32.76 42.93 51.09 58.19
2 38.92 47.47 53.14 60.11
3 40.71 47.57 53.84 60.30
6 41.52 49.32 56.41 62.91
9 38.36 46.70 53.70 60.01

A.3. Non-Maximum Suppression

In Table G, we conduct experiments on RTD-Net with
and without NMS, and observe similar results. NMS is not
necessary in RTD-Net because the predictions are relatively
sparse and minor-overlapped with our two-step training
strategy (details in Appendices A.2). In contrast, BSN [26]
and BMN [24] generate highly overlapped proposals with
similar confidence, as shown in Figure G of Appendices.
Therefore, NMS is needed for these dense proposal genera-
tors to suppress such proposals.

Table G. Ablation study on non-maximum suppression on THU-
MOS14, measured by AR@AN.

Method @50 @100 @200 @500
RTD-Net 41.52 49.32 56.41 62.91

RTD-Net+SNMS 42.02 49.40 54.98 61.16

B. Visualization
Visualization of boundary-attentive representations.
Figure A(a) shows the pattern for input video feature. Ver-
tical line patterns are visible in input features, indicating
different temporal locations sharing similar feature repre-
sentation. That is the slowness phenomena that we discover
in short-term video features. To alleviate this slowness, we
explicitly multiply starting and ending attentive scores with
features. Figure A(b) illustrates the starting and ending at-
tentive feature. We observe the aforementioned vertical line
patterns are broken by horizontal darker line patterns, indi-
cating that effectiveness of boundary information in repre-
sentation enhancement.
Analysis on the over-smoothing effect. We further explore
the reason for the over-smoothing effect with self-attention
mechanism of the transformer encoder. Figure B shows the
self-attention map of a sample from THUMOS14 [20]. The
x-axis is the input temporal locations, and the y-axis is the
output temporal locations. A diagonal activation pattern is
observed in Figure B, with many short vertical line patterns
visible around the diagonal activation. The vertical patterns
indicate that many different output locations share the same
input activation, which result in the over-smoothing effect.
The input short-term feature already has the problem of
slowness, adding temporal attention to this feature would
aggravate the slowness and result in weaker performance.
Visualization of decoder attention maps. In this subsec-
tion, we present the activation map from self-attention layer
and encoder-decoder attention layer in RTD decoder lay-
ers. Figure C shows the NQ × NT (NT is the number of
time steps in each snippet, NQ is the number of queries
predicted for each snippet) encoder-decoder activation map
from Layer 1, 3 and 5 (last) of decoder layers from a ran-
domly selected video snippet. Vertical patterns are visible
in these activation maps. Each blue vertical beam corre-



(a) (b)

Figure A. (a) is visualization of input short-term feature of a randomly sampled video segment, this feature has a receptive field of 64
frames; (b) is visualization of starting and ending attentive features. Best viewed in color.

Figure B. Visualization of self-attention activation map in Trans-
former encoder. Best viewed in color.

sponds to the ending of an action instance, which indicates
that proposal queries are more focused on the features from
the ending region of an action.

Figure D shows theNQ×NQ query self-attention activa-
tion map from the last layer of decoder. High activations are
visible along the y-axis, indicating that proposal queries are
keen at learning from some well predicted queries (eg. 1st,
14th and 27th) at inter-proposal modeling. The 14th query
in Figure D is the highest ranked and also a well-predicted
proposal in results.

C. Additional Comparisons with SOTA
AR curves under all tIoU thresholds. RTD-Net gener-
ates more precise and more complete proposals, compared
with previous methods. We compare RTD-Net with bottom-
up method BSN under different tIoU thresholds for recall.
In Figure E, we demonstrate that: 1) RTD-Net outperforms
BSN under every tIoU threshold, especially at smaller num-
ber of proposal conditions. 2) RTD-Net outperforms BSN
under high tIoU thresholds, indicating that when the true
positive standard is strict with localization, RTD-Net still
achieves higher recall with better localized predictions.
Efficiency Analysis. Our RTD-Net only presents the trans-
former decoder, while keeping the original MLP encoder
for feature extraction. Therefore, our encoder is with linear
run-time and memory complexity. Our decoder uses cross
attention and the complexity is O(NT × NQ). In practice,
NQ could be smaller than sequence length. In our experi-

Table H. Run-time breakdown analysis of RTD-Net and BSN.
(a) RTD-Net

Boundary-probability MLP Transformer Three-branch
predictor + re-weight encoder decoder Head

RTD-Net 49.29ms 0.32ms 8.97ms 0.89ms

(b) BSN
TEM PGM PEM SNMS

BSN 53.23ms 243.79ms 7.68ms 6026.34ms

ment, we found our method uses 1,519 MB GPU memory
while existing SOTA methods such as BMN uses 7,152 MB.
In addition, we provide a run-time breakdown for RTD-Net
and BSN in Table H. We infer with 3-minute video input on
one RTX 2080-Ti GPU. We follow [26, 24] to exclude the
backbone feature extractor. It is noted that, for a 3-minute
video, RTD-Net predicts 640 proposals without any post-
processing module while BSN outputs about 3k predictions
for the time-consuming SNMS post-processing.

RTD-Net directly generates high-quality proposals with
a smaller number of predictions. Due to the pair-wise mod-
eling in our decoder, our predictions do not suffer from the
flooding of redundant, highly-overlapping proposals. As
shown in Figure F, RTD-Net predicts fewer proposals than
BSN [26], but still achieves higher average recall under all
metrics on THUMOS14.
Generalizability of proposals. The ability of generating
high quality proposals for unseen action categories is an
important property of a temporal action proposal gener-
ation method. Following BSN [26] and BMN [24], we
choose two non-overlapped action subsets: “Sports, Ex-
ercise, and Recreation” and “Socializing, Relaxing, and
Leisure” of ActivityNet-1.3, as seen and unseen subsets
separately. Seen subset contains 87 action classes with 4455
training and 2198 validation videos, and unseen subset con-
tains 38 action classes with 1903 training and 896 valida-
tion videos. Based on I3D features, we train RTD-Net with
seen and seen+unseen training videos separately, and eval-
uate on both seen and unseen validation videos. Results in
Table I demonstrate that the performance remains competi-
tive in unseen categories, suggesting that RTD-Net achieves
great generalizability to generate high quality proposals for



Figure C. Visualization of encoder-decoder attention activation map, averaged among multiple heads. The y-axis is action queries and the
x-axis represents time steps from encoder features. From yellow to blue represents the intensity of activation, the bluer the stronger the
activation. The white and orange bar underneath the x-axis demonstrates groundtruth instances in this snippet. The orange part represents
action and the rest represents background. Best viewed in color.
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Figure D. Visualization of the self-attention layer in the last layer
of Transformer decoder, averaged among multiple heads. Best
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Figure E. Visualization of Average Recall at different proposal
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Figure F. Comparison of number of proposals between RTD-Net
and BSN.

unseen classes, and is able to predict accurate temporal ac-
tion proposals regardless of semantics.
Table I. Generalization evaluation of RTD-Net on ActivityNet-1.3.

Seen(val) Unseen(val)
AR@100 AUC AR@100 AUC

Seen+Unseen(train) 70.25 62.66 73.09 65.52
Seen(train) 69.80 61.32 72.27 64.54

Qualitative results. We visualize qualitative results in Fig-
ure G. The top-5 predictions of BMN [24] share similar
starting seconds and scores, and the same ending seconds.
Bottom-up methods like BMN retrieve all proposals around
locations with high boundary scores, while many of them
are redundant and evaluated with similar confidence. If pro-
posals around another groundtruth all have confidence over
0.9, the rankings of these proposals with confidence around
0.5 fall down, resulting in a low recall of this groundtruth.
Therefore, heuristic NMS is introduced to address the above
issues, which increases the inference time drastically. In
contrast, a variation in localization appears in RTD predic-
tions. Starting and ending locations of RTD proposals are
varying from one another. More importantly, scores of RTD
proposals are consistent with their rankings. Incomplete
predictions are evaluated with lower scores, and ranked af-
ter those well-predicted proposals. As a result, RTD-Net is
free of NMS module and has a much faster inference speed.

D. Performance on HACS Segments
Dataset. HACS Segments dataset [47] contain 50,000
untrimmed videos and share the same 200 action categories
with ActivityNet-1.3 dataset [18]. To evaluate the quality of
proposals, we calculate Average Recall with Average Num-
ber of proposals per video (AR@AN), and the Area under
the AR vs AN curve (AUC) as metrics on HACS Segments
dataset, which are the same as ActivityNet-1.3 dataset.
Comparison with state-of-the-art methods. We simply
train RTD-Net on HACS Segments, with the same set-
tings on ActivityNet-1.3. As Table J illustrates, RTD-
Net achieves comparable results with only 100 queries per
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Figure G. Qualitative results of RTD-Net on ActivityNet-1.3.
The proposals shown are the top-5 predictions for corresponding
groundtruths based on the scoring scheme for each model.

Table J. Comparison with other state-of-the-art proposal gener-
ation methods on validation set of HACS Segments in terms of
AR@AN and AUC. Among them, only RTD-Net is free of NMS.

Method TAG+NMS [48] BSN+SNMS [26] RTD-Net
AR@1 (val) - - 16.34

AR@100 (val) 55.88 63.62 61.11
AUC (val) 49.15 53.41 53.41
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Figure H. Comparison of ending scores predicted by TSN and I3D
feature extractors.

video. In contrast, BSN [26] predicts a large number of
proposals and calculates evaluation metrics with top-100
of them. With top-100 proposals, BSN achieves a higher
AR@100 than RTD-Net, while AUC of BSN and RTD-
Net is the same. The comparison demonstrate RTD-Net
achieves higher AR at small AN (e.g., AR@1), which indi-
cates the efficiency of the direct action proposal generation
mechanism.

E. Feature Encoding
Choices of feature extractors. There are two main types
of feature extractors, one is 2D CNN (e.g., TSN [40]), the
other captures temporal relations (e.g., I3D [5]). Bottom-
up methods (e.g., BSN and BMN) first evaluate boundary
confidence of all locations, and then explicitly match start-
ing and ending points. With 2D CNN features that preserve
local information better, bottom-up methods can achieve a
higher recall of boundaries and better performance, which
can be proved in the next section. Compared with 2D
CNN features, I3D features have larger receptive fields and
contain more temporal contexts. RTD-Net exploits self-
attention blocks for proposal-proposal relations, and lever-
ages encoder-decoder blocks to learn action-background
differences. Therefore it can make full use of contextual
information of I3D features and directly generate center lo-
cations and duration of proposals.
Comparison of boundary scores on different feature ex-
tractors. According to the mechanism of the temporal eval-
uation module, temporal locations with boundary scores
higher than a threshold or being with peak scores (namely
their boundary scores Si are higher than their neighbors
Si−1 and Si+1) are considered as candidates of action
boundaries. Figure H displays the ending scores by TSN
and I3D features, and groundtruth ending points are marked
with vertical red dotted lines. We observe that TSN predic-
tions covers every groundtruths with its local maximas but
the first, achieving high recall of ending prediction. In con-
trast, the temporal evaluation module based on I3D features
only captures the first groundtruth, resulting in a weaker re-
call. This might explains the performance drop of BSN and
BMN with I3D feature input and gives solid support for our
feature choice of the temporal evaluation module.
Effect of feature modality. In Table K, we show the ef-
fect of feature modality on our framework by comparing
the performance of RTD-Net under features from differ-
ent modalities. We experiment with features from RGB,
Optical flow and the fusion of both modalities. We find
that Flow features outperforms RGB features by 1.5% on
AR@50, which indicates that motion information is more
significant than appearance information in temporal action
proposal generation. The fusion of both modalities here are
in an early-fusion fashion, which requires both features con-
catenated in the beginning of the training and inference of
the network. The early fusion features outperforms Flow
features by 2.7% on AR@50.

Table K. Comparison of RGB and optical flow on THUMOS14,
measured by AR@AN.

Modality @50 @100 @200 @500
RGB 37.28 45.49 52.73 60.61
Flow 38.75 47.30 54.11 61.11

Early Fusion 41.52 49.32 56.41 62.91
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