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Abstract

This work proposes a weakly-supervised temporal action
localization framework, called D2-Net, which strives to
temporally localize actions using video-level supervision.
Our main contribution is the introduction of a novel loss
formulation, which jointly enhances the discriminability of
latent embeddings and robustness of the output temporal
class activations with respect to foreground-background
noise caused by weak supervision. The proposed formu-
lation comprises a discriminative and a denoising loss term
for enhancing temporal action localization. The discrimi-
native term incorporates a classification loss and utilizes
a top-down attention mechanism to enhance the separa-
bility of latent foreground-background embeddings. The
denoising loss term explicitly addresses the foreground-
background noise in class activations by simultaneously
maximizing intra-video and inter-video mutual information
using a bottom-up attention mechanism. As a result, acti-
vations in the foreground regions are emphasized whereas
those in the background regions are suppressed, thereby
leading to more robust predictions. Comprehensive exper-
iments are performed on multiple benchmarks, including
THUMOS14 and ActivityNet1.2. Our D2-Net performs
favorably in comparison to the existing methods on all
datasets, achieving gains as high as 2.3% in terms of mAP
at IoU=0.5 on THUMOS14. Source code is available at
https://github.com/naraysa/D2-Net.

1. Introduction

Temporal action localization is a challenging problem,
which aims to jointly classify and localize the tempo-
ral boundaries of actions in videos. Most existing ap-
proaches [42, 5, 41, 33, 48, 35] are based on strong super-
vision, requiring manually annotated temporal boundaries
of actions during training. In contrast to these strong frame-
level supervision based methods, weakly-supervised action

localization learns to localize actions in videos, leveraging
only video-level supervision. Weakly-supervised action lo-
calization is therefore of greater importance since the manual
annotation of temporal boundaries in videos is laborious, ex-
pensive and prone to large variations [31, 30].

Existing methods [38, 39, 24, 26, 34] for weakly-
supervised action localization typically use video-level anno-
tations in the form of action classes and learn a sequence of
class-specific scores, called temporal class activation maps
(TCAMs). In general, a classification loss is used to obtain
the discriminative foreground regions in TCAMs. Some ap-
proaches [24, 26, 23, 25] learn TCAMs using action labels
and obtain temporal boundaries via a post-processing step,
while others [34, 16] use a TCAM-generating video classi-
fication branch along with an explicit localization branch
to directly regress action boundaries. Nevertheless, the lo-
calization performance is heavily dependent on the qual-
ity of the TCAMs. The quality of TCAMs is likely to im-
prove in fully-supervised settings where frame-level anno-
tations are available. Such frame-level information (true
foreground and background regions) are unavailable in the
weakly-supervised paradigm. In such a paradigm, the pre-
dicted foreground regions often overlap with the ground-
truth background regions, while predicted background re-
gions are likely to overlap with the ground-truth foreground
regions. This leads to noisy activations, i.e., false positives
and false negatives, in the learned TCAMs. Most existing
weakly-supervised action localization methods that learn
TCAMs typically rely on separating foreground and back-
ground regions (foreground-background separation) and do
not explicitly handle its noisy outputs.

In this work, we address the problem of foreground-
background separation along with explicit tackling of noise
in TCAMs for weakly-supervised action localization. We
propose a unified loss formulation that is jointly optimized
to classify and temporally localize action snippets (group
of frames) in videos. Our loss formulation comprises a dis-
criminative and a denoising loss term. The discriminative
loss seeks to maximally separate backgrounds from actions
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Figure 1. Impact of our proposed loss formulation on the qual-
ity of the output TCAMs. Compared to the baseline (without our
discriminative and denoising loss terms), the introduction of the dis-
criminative loss term improves the separation between foreground
and background activations (e.g., third and fourth ground-truth
action instance from the left). Furthermore, our final D2-Net
comprising both the discriminative and the denoising loss terms
reduces the noise in the TCAMs, leading to more robust TCAMs.

(foregrounds) via interlinked classification and localization
learning objectives (Sec. 3.1). The denoising loss (Sec. 3.2)
complements the discriminative term by explicitly address-
ing the foreground-background noise in activations, thereby
producing robust TCAMs (see Fig. 1).

In our loss formulation, we learn distinct latent embed-
dings such that their foreground-background separation is
maximized based upon the corresponding top-down atten-
tion generated from the output TCAMs. Furthermore, the
embeddings are employed to generate pseudo-labels based
on their foreground scores (bottom-up attention). These
pseudo-labels are utilized to explicitly handle the noise by
emphasizing the corresponding output activations in pseudo-
foreground regions, while suppressing the activations in
pseudo-background regions. This pseudo-background sup-
pression and pseudo-foreground enhancement is achieved
by maximizing the mutual information (MI) between acti-
vations and generated pseudo-labels within an action video
(intra-video). Maximizing MI between predicted activations
and labels decreases the uncertainty of predictions, leading to
more robust predictions. In addition to capturing intra-video
MI, our formulation also strives to maximize MI between the
action class predictions and video-level ground-truth labels,
across videos in a mini-batch (inter-video).
Contributions: We introduce a weakly-supervised action
localization framework, D2-Net, which incorporates a
novel loss formulation that jointly enhances the foreground-
background separability and explicitly tackles the noise to
robustify the output TCAMs. Our main contributions are:

• We introduce a discriminative loss term, which simul-
taneously aims at video categorization and enhanced
foreground-background separation.

• We introduce a denoising loss term to improve the
robustness of TCAMs. Our denoising loss explicitly

addresses noise in TCAMs by maximizing the MI be-
tween activations and labels within a video (intra-video)
and across videos (inter-video). To the best of our
knowledge, we are the first to introduce a loss term
that simultaneously captures MI across multiple snip-
pets within a video and across all videos in a batch for
weakly-supervised action localization.

• Experiments are performed on multiple benchmarks,
including THUMOS14 [7] and ActivityNet1.2 [3]. Our
D2-Net performs favorably against existing weakly-
supervised methods on all datasets, achieving gains as
high as 2.3% mAP at IoU=0.5 on THUMOS14.

2. Related Work
Several weak supervision strategies have been explored

in the context of action localization, including category la-
bels [38, 24, 39, 26, 34, 46], sparse temporal points [20],
order of actions [29, 2], instance count [23, 44] and single-
frame annotations [18]. Most existing weakly-supervised ac-
tion localization methods employ category labels as weak su-
pervision and typically utilize features extracted from back-
bone networks [40, 4] trained on the action recognition task.
The work of [39] proposes a selection module for detecting
the relevant temporal segments and employs a classification
loss for training. The Autoloc method [34] extends [39] by
adding an explicit localization branch and utilizes an outer-
inner contrastive loss for its training. In contrast, [26, 9]
match similar segments of actions in paired videos by em-
ploying classification and similarity-based losses that require
multiple videos of same actions in a mini-batch. Different
from these works, our approach explicitly addresses the issue
of large number of easy negatives overwhelming a smaller
number of hard positives via sample re-weighting and per-
forms foreground-background separation by inter-linking
classification and localization objectives.
Snippet-level loss: While the work of [25] employs a
background-aware loss along with a self-guided loss for
modeling the background, [22] additionally utilizes an itera-
tive multi-pass erasing step for discovering different action
segments in TCAMs. Differently, the training in [17] alter-
nates between updating a key-instance assignment branch
and a classification branch via Expectation Maximization.
In contrast, the recent work of [13] classifies the fore-
ground/background snippets as in/out-of-distribution based
on the feature magnitude and entropy over foreground
classes. However, all these approaches aggregate per-snippet
losses for training and do not explicitly capture the mutual
information (MI) between the activations and labels, which
is likely to be more beneficial due to the absence of snippet-
level labels in a weakly-supervised setting. Different from
existing methods [25, 22, 17, 13, 23, 24, 1, 9], our approach
addresses the problem of foreground-background noise by
exploiting both inter- and intra-video MI between class acti-
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Figure 2. Overall architecture of our D2-Net. The focus of our design is the introduction of a novel loss formulation that jointly enhances
the discriminability of latent embeddings and explicitly addresses the foreground-background noise in the output class activations. The
network comprises two identical parallel streams (RGB and flow) consisting of three temporal convolutional TC layers. The second TC layer
activations from both streams are averaged to obtain latent embeddings x. The final outputs of both streams are then averaged to obtain the
temporal class activation maps (TCAMs) T of untrimmed input videos. A discriminative loss LDis (Sec. 3.1) is introduced to enhance the
foreground-background separability (L99) of embeddings x by utlizing a top-down attention mechanism, in addition to achieving video
classification. Furthermore, a denoising loss LD (Sec. 3.2) is introduced to explicitly address the foreground-background noise (99K) in the
class activations of T, by utilizing a bottom-up attention. The network is trained jointly using both loss terms LDis and LD .

vations and corresponding labels, resulting in robust TCAMs.
To the best of our knowledge, we are the first to propose a
weakly-supervised action localization approach that simulta-
neously captures MI across multiple snippets within a video
and across videos in a mini-batch (see also Fig. 4).

3. Proposed Method

Our D2-Net strives to improve the separation of
foreground-background feature representations in videos,
while jointly enhancing the robustness of output TCAMs
w.r.t. foreground-background noise. This leads to better dif-
ferentiation between foreground actions and surrounding
background regions, resulting in enhanced action localiza-
tion in the challenging weakly-supervised setting. Here, we
first present our overall architecture, followed by a detailed
description of our proposed losses for training D2-Net.
Overall architecture of D2-Net is illustrated in Fig. 2.
Given a video v, we divide it into non-overlapping snippets
ofL = 16 frames each. Features are then extracted to encode
appearance (RGB) and motion (optical flow) information.
Similar to [24, 26, 23], we use the Inflated 3D (I3D) [4] to
obtain d = 2048 dimensional features for each 16-frame
snippet. Let F ∈ Rs×d denote features for a video, where
s is the number of snippets. The extracted features become
the inputs to our D2-Net, which comprises two parallel
streams for RGB and optical flow. Each stream consists
of three temporal convolutional (TC) layers. The first two
layers learn latent discriminative embeddings x(t) ∈ Rd/2

(with time t ∈ [1, s]), from the input features F. The output
of the final TC layer is passed through a sigmoid activation.
Subsequently, the outputs from both streams are averaged
to obtain TCAMs T ∈ Rs×C representing a sequence of
class-specific scores over time for C action classes. The
main contribution of our work is the introduction of a novel
loss formulation to train the proposed D2-Net. Our training
objective combines a discriminative (LDis) and a denoising
term (LD), with a balancing weight α,

L = LDis + αLD. (1)

These two loss terms utilize foreground-background atten-
tion sequences computed in opposite directions: (i) the dis-
criminative loss LDis utilizes a top-down attention, which
is computed from the output TCAMs (the top-most layer)
and (ii) the denoising loss LD utilizes a bottom-up attention,
which is derived from the foreground scores of the latent
embeddings (intermediate layer features). We describe these
losses in detail in Sec. 3.1 and 3.2.

3.1.Foreground-Background Discriminability:LDis
In this work, we introduce a discriminative loss (LDis)

to learn separable class-agnostic foreground and action-free
background feature representations, in terms of latent embed-
dings, using a top-down attention from the TCAMs. The em-
bedding of a video with s snippets is defined by a weighted
temporal pooling based on the class activations T ∈ Rs×C .
Let the top-down foreground attention λ(t) = maxcT[t, c]
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denote the maximum foreground activation across all ac-
tion classes c ∈ {1, . . . , C}, where t ∈ [1, s] and C is the
number of classes. Then, the class-agnostic foreground and
background embeddings are:

xfg =
∑

λ(t)>τ

λ(t)x(t), xbg =
∑

λb(t)>τ

λb(t)x(t), (2)

where τ=0.5 and λb(t)=1−λ(t) is the background atten-
tion. Maximizing the distance between foreground and
background embeddings enhances the separability of the
corresponding output activations, leading to improved local-
ization. In addition, different sets of action classes are likely
to share certain characteristics among them e.g., Hammer
Throw and Discus Throw have similar spatial context and
motion. Hence, clustering foreground embeddings amongst
themselves at a coarse level is likely to aid “coarse-to-fine”
snippet-level classification. Similarly, clustering background
embeddings helps in learning an approximate universal back-
ground embedding, which is likely to aid in generalization
at test time to new backgrounds. Hence, three weight terms,
wfb, wfg and wbg, are introduced in our LDis, targeting
foreground-background separation, foreground grouping and
background grouping, respectively. They are defined as:

wfb = max(0, cos(xfg, x̃bg)),

wfg = γ(1− cos(xfg, x̃fg)),

wbg = γ(1− cos(xbg, x̃bg)), (3)

where x and x̃ denote embeddings from different videos
in a mini-batch. Here, γ denotes the intra-class compact-
ness weight used for grouping same class (foreground vs.
background) embeddings. Alongside robust localization,
our other objective is the multi-label classification of ac-
tion categories. A major challenge is introduced by the
class-imbalance problem, where easy background snippets
overwhelmingly outnumber the hard foregrounds. To ad-
dress this, inspired by the focal loss for object detection [14],
we propose to include penalty terms based on the weights
(Eq. 3), in our LDis. To this end, a video-level prediction
p ∈ RC is obtained by performing a temporal top-k pooling
on T. Our LDis term, which jointly addresses the class-
imbalance and enhances foreground-background separation,
is defined by

LDis = −
∑

c:y[c]=1

(1− p[c] + wfg + wfb)
β log(p[c])

−
∑

c:y[c]=0

(p[c] + wbg + wfb)
β log(1− p[c]), (4)

where y ∈ {0, 1}C denotes the video-level label and β is
the focusing parameter. The first term in Eq. 4 denotes the
loss for a positive action class, while the second term in-
corporates the loss for a negative class. The weight term

wfb (see Eq. 3) is added for both positive action classes
and background classes since it represents the foreground-
background separation. The terms wfg and wbg enhance
intra-class compactness for the positive and background
classes, respectively. The first term in Eq. 4 indicates that
the loss due to a positive action class c is low only when (i)
its predicted probability p[c] is high, and (ii) the foreground
grouping wfg and foreground-background separation wfb
for the corresponding video are both simultaneously low.
A similar observation holds in the second term for the neg-
ative class. Thus, LDis enhances the discriminability of
embeddings x(t) by encouraging foreground-background
separation while simultaneously achieving classification.

3.2. Robust Temporal Class Activation Maps: LD
Our discriminative loss LDis improves action localiza-

tion by enhancing the distinctiveness of latent embeddings.
However, the temporal locations of true foreground regions
are unknown under weak supervision, resulting in noisy out-
put temporal class activations (and noisy top-down attention)
learned from video-level labels. Consequently, the fore-
ground and background embeddings (xfg and xbg), learned
from the top-down attention λ(t), are likely to be noisy. Our
goal is to explicitly reduce this foreground-background noise
caused by the absence of snippet-level labels and improve
the robustness of the output class activations. To this end, we
introduce a denoising loss LD comprising a novel pseudo-
Determinant based Mutual Information (pDMI) loss. Our
LD exploits both intra- and inter-video mutual information
(MI) between the class activations and corresponding labels.

Our pseudo-Determinant based Mutual Information
(pDMI) loss is inspired by the Determinant based Mutual
Information (DMI) [43]. The original DMI, proposed for
multi-class classification, is computed as the determinant
of a joint distribution matrix, i.e., DMI(P,Y)=|det(U)|.
Here, U = 1/nPY is the joint distribution over the predicted
posterior probabilities P and the ground-truth (noisy) labels
Y. The matrices P and Y are of sizes C × n and n × C,
where n denotes the mini-batch size and C the number of
classes. The DMI loss Ldmi is defined as

Ldmi = −E[log(|det(U)|)], (5)

where E denotes Expectation. Note that Ldmi depends on
the determinant of U. To ensure a non-zero det(U), the
label matrix Y must be full-rank, i.e., a mini-batch must
contain instances from all classes. This is prohibitive for
a large number of classes. Such a mini-batch sampling for
action localization also leads to memory issues in GPUs
due to the long duration of untrimmed videos in the dataset,
especially when capturing inter-video MI.

Our pDMI loss overcomes these limitations and ensures
a non-degenerate value of DMI by avoiding an explicit com-
putation of the determinant. To this end, we observe that for

4



Figure 3. Condition number (ηU) vs. Determinant (|det(U)|) for
joint distribution matrices U. On the left: 25k randomly sampled
U. On the right: U obtained during our snippet-level training. In
both cases, minimizing ηU leads to maximizing |det(U)| (DMI).

the DMI loss to tend to zero, the determinant of the joint
distribution |det(U)| must tend to one. Formally,

Ldmi −→ 0 =⇒ |det(U)| −→ 1 =⇒ U −→ I. (6)

As a result, DMI is maximum when |det(U)|=1, with the
identity matrix I as an optima for U of size C × C (since
elements of U∈[0, 1]). Furthermore, the condition number
η for the optimal solution I is minimum, i.e., η=1. Hence,
instead of maximizing |det(U)|, we can alternatively min-
imize its η. In effect, U becomes better-conditioned and
this improves the robustness of the activations towards label
noise. The proposed pDMI loss Lpdmi is then given by

Lpdmi = E[log(pDMI(P,Y))] = E[log(ηU)], (7)

where ηU denotes the condition number of U. Since the
rank of U is r ≤ C, ηU is computed as σ1/σr, where
{σ1, . . . , σr} are non-zero singular values of U. Thus, our
pDMI loss avoids an explicit computation of the determinant
and overcomes the limitations of the standard DMI. Fig. 3
shows plots of ηU vs. |det(U)| for joint distribution matrices
U that are randomly sampled (left) and encountered during
intra-video MI training (right, described in Sec. 3.2.1). It can
be observed that minimizing ηU indeed maximizes |det(U)|,
i.e., DMI, in turn maximizing MI. Consequently, our pDMI
serves as a promising alternative to the original DMI when
optimizing with noisy temporal action labels.

3.2.1 Snippet-level and Video-level Noise Removal

To robustify the TCAMs, we employ ourLpdmi at two levels:
(i) snippet-level to exploit intra-video MI, and (ii) video-level
to exploit inter-video MI. Snippet-level denoising incorpo-
rates a bottom-up attention to emphasize the foreground acti-
vations, while suppressing the background ones by capturing
the MI between the temporal activations and corresponding
foreground labels within a video. On the other hand, the
video-level denoising step exploits MI between the video
representations and corresponding labels, across videos, to
achieve the same objective. Fig. 4 shows a conceptual illus-
tration of loss computation with and without capturing MI.
Snippet-level joint distribution: It captures the MI
between the foreground-background activations and the

Mutual information (MI)

P

Y
y1 y2 yn

𝓛1 𝓛2 𝓛n

Total loss

P

Y

p1 p2 pn

y1 y2 yn

Total loss
𝓛

pi : Prediction vector of size C 
yi: Label vector of size C At snippet-level, C = 2 (fg vs bg).

Per-snippet / per-video loss Mutual Information (MI) based loss

At video-level, C = #Action classes.

n: #snippets in a video (snippet-level) OR #videos in a batch (video-level) 

p1 p2 pn

Figure 4. A conceptual illustration of loss computation with (on
the right) and without (on the left) capturing mutual information
(MI). Typically, existing methods compute the loss without MI (e.g.,
cross-entropy loss) by aggregating individual losses (Li) between
prediction pi and labels yi either at a per-video or per-snippet level.
Instead, we compute a collective loss across (i) all snippets within
a video (snippet-level) and (ii) all videos in a batch (video-level),
by capturing the MI between predictions (P) and labels (Y).

snippet-level pseudo-labels within a video. For this, we
utilize a bottom-up attention mechanism, which encodes the
foreground scores λ′(t) of latent embeddings x(t) for the
corresponding snippets. The scores λ′(t) are computed w.r.t.
a reference background embedding xref and are given by

λ′(t) = 0.5(1− cos(x(t),xref )), t ∈ [1, s], (8)

where x
[m]
ref = 0.9x

[m−1]
ref +0.1x

µ,[m]
bg is progressively com-

puted as a running mean of xbg over m iterations. Here,
x
µ,[m]
bg denotes the mean of the background embeddings

in a mini-batch at iteration m. Let tf={t:λ
′
(t)>0.5} and

tb={t:λ
′
(t)<0.5} denote the time instants for selecting the

foreground and background activations w.r.t. λ
′
(t). Using

the pseudo-foreground temporal locations tf , a row matrix
λf of width nf=|tf | is constructed using top-down attention
λ(t), t∈tf . Similarly, λb of width nb=|tb| is constructed for
the pseudo-background snippets. Then, the prediction matrix
P1 and pseudo-label matrix Y1 are given by

P1 =

[
λf λb

1− λf 1− λb

]
, Y1 = 1/z

[
1nf

0nf

0nb
1nb

]
, (9)

where z=nf+nb, P1∈R2×z , Y1∈Rz×2, 1k and 0k are k
dimensional column vectors of ones and zeros. The snippet-
level joint distribution is then defined as U1 = P1Y1.
Video-level joint distribution: Here, the noise stems from
the video-level prediction p ∈ RC and is predominantly
caused by the temporal top-k pooling. Under the weakly-
supervised setting, all the top-k locations predicted for an
action class need not necessarily belong to that class. More-
over, actions in untrimmed videos may not span k=ds/8e
snippets. Hence, denoising the video-level prediction p even-
tually robustifies the output class activations at the snippet-
level. Let the prediction P2 and label Y2 be

P2 =
[
p1, . . . ,pn

]
and Y2 = 1/n

[
y1, . . . ,yn

]>
, (10)
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where pi ∈ RC and yi ∈ {0, 1}C denote the video-level
prediction and associated label of i-th video in a mini-batch.
Then, the video-level joint distribution that captures the MI
between class activations and action classes across videos is
U2=P2Y2. We finally define our denoising loss as

LD = LDS + LDV (11)
= E[log(pDMI(P1,Y1))] + E[log(pDMI(P2,Y2))],

where the pDMI loss is given by Eq. 7. Here, LDS and LDV
denote the snippet-level and video-level losses. Thus, our
denoising loss improves the TCAMs, at the snippet-level
and video-level, by making them robust to the foreground-
background noise under the weakly-supervised setting.

3.3. Inference: Action Localization from TCAMs

At inference, given a video, D2-Net outputs a bottom-up
attention sequence λ

′
(Eq. 8) of length s and a class acti-

vation map T of size s × C. We perform top-k pooling to
obtain the predicted class probabilities p ∈ RC , which are
then used to find the relevant action classes above a threshold
pth = 0.5max(p). For every relevant class c, its correspond-
ing class activations Tc ∈ Rs are multiplied element-wise
with λ

′ ∈ Rs to obtain a refined sequence rc = λ
′
Tc. The

snippets with activations above a threshold are retained and
a 1-D connected component is used to obtain segment pro-
posals. Multiple thresholds are used to obtain a larger pool
of proposals. Each proposal is then scored using the con-
trast between the mean activation of the proposal itself and
its surrounding areas [34], S = Si − So, where Si and So
respectively denote the mean activation of the proposal and
its neighboring background. The neighboring background
is obtained by inflating the proposal on either side by 25%
of its width, as in [34]. Proposals with high overlap are re-
moved using class-wise NMS. Only high-scoring proposals
(i.e., S > Sth) are retained as final detections.

4. Experiments
Datasets: We evaluate D2-Net on multiple challeng-
ing temporal action localization benchmarks. The THU-
MOS14 [7] dataset contains temporal annotations for 200
validation and 212 test videos from 20 action categories. The
dataset is challenging since each video contains 15 action
instances on an average. As in [26, 1], the validation and test
set are used for training and evaluating, respectively. The
ActivityNet1.2 [3] dataset has annotations of 100 categories
in 4819 training and 2383 validation videos, with 1.5 activity
instances per video on an average. As in [34, 26], we use the
training and validation sets to respectively train and evaluate.
Implementation details: For each snippet, 2048-d features
are extracted from RGB and Flow I3D models pre-trained
on Kinetics [4]. The kernel size and dilation rate of the tem-
poral convolutional layers are: (3, 1) for THUMOS14 and

Table 1. State-of-the-art comparison on the THUMOS14 dataset.
Methods with superscript ‘+’ require strong frame-level supervi-
sion for training. Our D2-Net performs favorably in comparison
to existing weakly-supervised methods and achieves consistent
improvements, in terms of mean average precision (mAP).

Approach mAP @ IoU
0.1 0.2 0.3 0.4 0.5

R-C3D [41]+ 54.5 51.5 44.8 35.6 28.9
GTAD [42]+ - - 54.5 47.6 40.2
TAL-Net [5]+ 59.8 57.1 53.2 48.5 42.8
P-GCN [45]+ 69.5 67.8 63.6 57.8 49.1

Autoloc [34] - - 35.8 29.0 21.2
W-TALC [26] 53.7 48.5 39.2 29.9 22.0
CMCS [15] 57.4 50.8 41.2 32.1 23.1
BM [25] 64.2 59.5 49.1 38.4 27.5
3C-Net [23] 59.1 53.5 44.2 34.1 26.6
BaS-Net [12] 58.2 52.3 44.6 36.0 27.0
DGAM [32] 60.0 54.2 46.8 38.2 28.8
DML [9] 62.3 - 46.8 - 29.6
A2CL-PT [21] 61.2 56.1 48.1 39.0 30.1
EM-MIL [17] 59.1 52.7 45.5 36.8 30.5
ACM-BANet [22] 64.6 57.7 48.9 40.9 32.3
HAM-Net [8] 65.4 59.0 50.3 41.1 31.0
UM [13] 67.5 61.2 52.3 43.4 33.7
ASL [19] 67.0 - 51.8 - 31.1
CoLA [47] 66.2 59.5 51.5 41.9 32.2
Ours: D2-Net 65.7 60.2 52.3 43.4 36.0

(5, 2) for ActivityNet1.2. The first two convolutions in each
stream are followed by a leaky ReLU with 0.2 negative slope.
Our D2-Net is trained with a mini-batch size of 10 for 20K
iterations, using the Adam [10] optimizer with a 10−4 learn-
ing rate and 0.005 weight decay. The k for top-k is set to
ds/8e, as in [26, 23]. All the hyperparameters are chosen
via cross-validation. The balancing parameter α is set to 0.2
and 10−3 for THUMOS14 and ActivityNet1.2. The intra-
class compactness weight γ and focusing parameter β are
set to 0.01 and 2 for both datasets. Multiple thresholds from
0.025 to 0.5 with increments of 0.025 are used for proposal
generation. The NMS threshold is set to 0.5 while the score
threshold Sth for retaining detections in a video is set to 10%
of the maximum proposal score in that video.

4.1. State-of-the-art Comparison

Tab. 1 and 2 compare D2-Net with state-of-the-art
methods on THUMOS14 and ActivityNet1.2, respectively.
Methods with ’+’ require strong supervision for training.
THUMOS14: Similar to ours, all weakly-supervised meth-
ods in Tab. 1 use an I3D backbone, except Autoloc [34],
which uses TSN [40]. While BM [25] considers an additional
background class, DGAM [32] extends BM using a VAE [11].
Although DML [9] and EM-MIL [17] achieve a promising
mAP of 29.6 and 30.5 at IoU=0.5, they do not generalize
well to ActivityNet1.2 (see Tab. 2). As discussed earlier,
the recent work of UM [13] employs out-of-distribution
detection of background snippets. We also empirically
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Table 2. State-of-the-art comparison on the ActivityNet1.2
dataset. Our D2-Net performs favorably compared to existing
weakly-supervised approaches. Furthermore, our D2-Net per-
forms comparably to SSN [48], which is trained with strong super-
vision (denoted with superscript ‘+’). AVG denotes the mean of the
mAP values for IoU in [0.5, 0.95] with steps of 0.05.

Approach mAP @ IoU AVG0.5 0.75 0.95

SSN [48]+ 41.3 27.0 6.1 26.6

DML [9] 35.2 - - -
EM-MIL [17] 37.4 - - 20.3
CMCS [15] 36.8 22.0 5.6 22.4
3C-Net [23] 37.2 - - 21.7
BaS-Net [12] 38.5 24.2 5.6 24.3
DGAM [32] 41.0 23.5 5.3 24.4
UM [13] 41.2 25.6 6.0 25.9
ASL [19] 40.2 - - 25.8
Ours: D2-Net 42.3 25.5 5.8 26.0

validate the complementarity of our approach with UM by
intergrating the loss terms and observe an average gain of
1% mAP across different IoUs. Our D2-Net performs well
against existing weakly-supervised approaches, including
the recent CoLA [47] and ASL [19]. Our approach achieves
an absolute gain of 2.3% at IoU=0.5 over the best existing
method (UM). Moreover, promising localization performance
is obtained at other IoU thresholds.
ActivityNet1.2: Similar to our D2-Net, all weakly-
supervised methods in Tab. 2 use I3D backbone. Following
standard evaluation protocol [3], we report the mean of the
mAP scores (denoted as AVG) at different IoU thresholds
([0.5, 0.95] in steps of 0.05). The generative modeling based
approach DGAM [32] and background suppression based
BaS-Net [12] perform comparably, achieving mean mAP
scores of 24.4 and 24.3, respectively. In comparison, the
recent approaches such as UM [13] and ASL [19] achieve
localization performances of 25.9 and 25.8, respectively,
in terms of mean mAP. Our proposed D2-Net performs
comparably against these existing approaches and achieves
a promising localization performance of 26.0 mean mAP.
Additional results are provided in the appendix.

4.2. Ablation Study

As discussed earlier, our D2-Net comprises a discrim-
inative LDis and a denoising loss LD. Here, we perform
comparisons by replacing the two proposed loss terms (LDis
and LD) in our framework with either the standard cross-
entropy loss LCE or the focal loss LF . In addition, we
also show the performance of our D2-Net with only LDis.
Tab. 3 presents these performance comparisons, in terms
of mAP and F1, on THUMOS14. Employing a standard
cross-entropy loss (LCE in Tab. 3) in our framework re-
sults in an mAP score of 23.0 at IoU=0.5. We observe that

Table 3. Performance comparison by replacing our two loss terms
(LDis and LD) in the proposed D2-Net with either the standard
cross-entropy loss (LCE) or the focal loss (LF ). In addition, we
also show the performance of our D2-Net with only LDis. Re-
sults are shown in terms of mAP and F1 score at IoU=0.5, on
THUMOS14. Replacing the proposed loss terms in our framework
with LCE and LF results in mAP scores at IoU=0.5 of 23.0 and
26.7, respectively. Our D2-Net with the discriminative loss term
LDis achieves consistent improvement in performance over LF

with an absolute gain of 5.5% in terms of mAP at IoU=0.5. Further-
more, our final D2-Net comprising both loss terms (LDis and LD)
achieves the best performance with absolute gains of 12.9% and
9.2% in terms of mAP at IoU=0.5 over LCE and LF , respectively.

Loss term mAP @ IoU F1
0.1 0.2 0.3 0.4 0.5

LCE 55.0 47.6 38.7 30.7 23.0 23.5
LF 58.8 52.4 44.3 35.7 26.7 27.2

LDis 65.4 59.7 50.1 40.4 32.2 30.7
D2-Net: LDis + LD 65.7 60.2 52.3 43.4 36.0 36.7

Table 4. Impact of MI-based denoising on THUMOS14. Our
D2-Net, employing MI-based pDMI loss in LD performs favor-
ably compared to utilizing standard losses (L1 and BCE) in LD .

L1 BCE Ours: D2-Net

mAP at IoU=0.5 32.9 33.5 36.0

training with the standard focal loss (obtained by zeroing
the weights w in Eq. 4) helps alleviate the issue of a large
number of easy samples overwhelming hard samples. This
setting, LF in Tab. 3, gains 3.7% mAP at IoU=0.5 overLCE ,
thereby highlighting the need to tackle imbalance between
easy backgrounds and hard foregrounds. To the best of our
knowledge, we are the first to evaluate the standard focal
loss, LF , in weakly-supervised action localization setting.
Our D2-Net with the discriminative loss term LDis, which
jointly addresses class-imbalance and enhances background-
foreground separation, provides consistent improvements
over LF and achieves 32.2% mAP at IoU=0.5. An absolute
gain of 5.5% in terms of mAP at IoU=0.5 is obtained by the
introduction of our proposed LDis in place of LF . Further-
more, our D2-Net comprising both LDis and LD obtains
the best results with an mAP score of 36.0% at IoU=0.5.
Our D2-Net achieves absolute gains of 12.9% and 9.2% in
terms of mAP at IoU=0.5, over LCE and LF , respectively. It
is noteworthy that our final D2-Net, containing both LDis
and LD, obtains a significant gain of 5.9% in terms of F1
score over LDis alone. This improvement over LDis alone
is obtained due to explicitly addressing the noise in TCAMs
by our LD, leading to a substantial reduction (28%) in the
number of false positives without affecting the recall.
Impact of MI-based denoising: We also perform an exper-
iment by replacing the proposed pDMI loss in our LD with
the standard L1 and BCE losses for denoising the snippet-
level activations. The L1 and BCE losses, which do not
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Figure 5. Qualitative temporal action localization results of our proposed D2-Net on example test videos, with Diving, Throw Discus
actions from THUMOS14, and Mowing Lawn activity from ActivityNet1.2. For each video, example frames (top row), ground-truth GT
segments (green), baseline detections (red) and D2-Net detections (blue) are shown. The height of a detection is indicative of its score. The
Baseline incorrectly merges multiple GT instances, has false positives in background regions and falsely detects the presence of the
activity over the entire video length. Our D2-Net correctly detects multiple instances (e.g., 1 to 5 GT in Diving, 3 to 5 in Throw Discus)
and suppresses most false positives in the background regions, achieving promising localization performance.

explicitly capture MI, achieve mAP scores of 32.9% and
33.5% at IoU=0.5, respectively, on THUMOS14 (see Tab. 4).
Our D2-Net, which employs MI-based pDMI loss in LD,
achieves improved results with an mAP score at IoU=0.5 of
36.0%. These results suggest that our MI-based denoising is
able to robustify the TCAMs in a weakly-supervised setting.

Qualitative results: Fig. 5 shows a qualitative comparison
between the baseline (red) and D2-Net (blue), along with
the ground-truth (GT) action segments (green). The base-
line employs only LF and is the same as the one used in
Fig. 1. Example test videos with Diving and Throw Dis-
cus actions from THUMOS14 are shown in the first two
rows. The baseline incorrectly merges multiple GT instances
(e.g., 1 to 5 GT in Diving) and produces false positives in
background regions (e.g., towards the beginning of Diving
video). Our D2-Net correctly detects these multiple action
instances and suppresses most false positives in the back-
ground regions. The third row shows an example test video
with Mowing Lawn activity from ActivityNet1.2. The base-
line incorrectly detects the presence of the activity over the
entire video length. In contrast, our D2-Net improves the
detection of multiple activity instances, leading to promising

localization performance. Additional results and discussions
are provided in the appendix.

5. Conclusion
We propose a weakly-supervised action localization ap-

proach, called D2-Net, that comprises a discriminative and
a denoising loss. The discriminative loss term strives for
improved foreground-background separability through in-
terlinked classification and localization objectives. The de-
noising loss term complements the discriminative term by
tackling the foreground-background noise in the activations.
This is achieved by maximizing the mutual information be-
tween activations and labels within a video (intra-video) and
across videos (inter-video). Comprehensive experiments
performed on multiple benchmarks show that our D2-Net
performs favorably against existing methods on all datasets.
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Table 5. Performance comparison by ablating the penalty term in
LDis, on the THUMOS14 dataset. The penalty term in our LDis

includes the standard focal loss penalty along with the proposed
grouping and separating terms (wfg , wbg and wfb). In compar-
ison to the standard focal loss LF , our LDis without the focal
loss penalty term achieves promising performance. This is further
improved by our final LDis, indicating the efficacy of integrating
wfg , wbg and wfb into the penalty term.

Loss term mAP @ IoU
0.1 0.2 0.3 0.4 0.5

LF 58.8 52.4 44.3 35.7 26.7
LDis w/o focal penalty 62.9 57.5 47.2 37.9 29.2
LDis 65.4 59.7 50.1 40.4 32.2

Here, we present additional qualitative and quantitative
analysis of the weakly-supervised action localization perfor-
mance of our proposed D2-Net. The quantitative analysis
w.r.t. robustness and impact of design choices are presented
in Sec. A, followed by the qualitative results in Sec. B.

A. Additional Quantitative Analysis
In this section, we present additional quantitative results

w.r.t. model sensitivity, ablations and state-of-the-art com-
parison on the Charades [37] dataset.
Ablations for penalty term in LDis: Here, we present an
ablation to analyse the impact of the weights in the penalty
term of our proposed discriminative loss term (Eq. 4 in main
paper). Tab. 5 shows the performance comparison on the
THUMOS14 dataset for ablating the penalty term. The
penalty term in standard focal loss (LF in Tab. 5) comprises
only the prediction dependent term (e.g., (1 − p[c]) for a
positive class). In contrast, our LDis without focal penalty
comprises only the grouping and clustering weights (e.g.,
(wfg + wfb) for a positive class). Furthermore, our final
LDis includes both the standard focal penalty along with the
grouping and clustering weights. Tab. 5 shows that replacing
the standard penalty term with our grouping and cluster-
ing weights based penalty term (denoted as LDis w/o focal
penalty) achieves promising performance over LF . The
performance is further improved in our final LDis, which
combines the standard penalty along with our grouping and
clustering weights in the penalty term. This shows the ef-
ficacy of integrating our grouping and clustering weights
(wfg , wbg and wfb) into the penalty term, for improving the
localization.
Impact of snippet-level and video-level denoising: Tab. 6
shows the impact of individually integrating the mutual in-
formation (MI) based snippet-level (LDS) and video-level
(LDV ) denoising terms with LDis. Integrating both these
terms individually improves the localization performance
over LDis alone. While integrating LDS achieves 34.3%
mAP at IoU=0.5, integrating LDV suppresses more false
positives and results in an mAP of 33.2%. Furthermore,

Table 6. Impact of snippet-level and video-level denoising on the
THUMOS14 dataset. Integrating snippet-level (LDS) and video-
level (LDV ) denoising terms individually with LDis improves the
localization performance over LDis alone. Moreover, integrating
both denoising terms with the discriminative loss term (i.e., LDis +
LD) in our D2-Net achieves improved localization performance,
indicating the importance of both snippet-level and video-level
denoising for temporal localization.

Loss term mAP @ IoU
0.1 0.2 0.3 0.4 0.5

LDis 65.4 59.7 50.1 40.4 32.2
LDis + LDS 63.0 57.1 50.1 41.9 34.3
LDis + LDV 65.4 59.8 51.3 42.0 33.2
D2-Net (LDis + LD) 65.8 60.1 52.3 43.4 36.0

Table 7. Impact of varying γ on the THUMOS14 dataset. Sub-
optimal localization performances are observed when there is
no/very high intra-class grouping, i.e., γ is 0 or 1. Promising local-
ization performance is achieved when the intra-class embeddings
are coarsely grouped, i.e., γ ∈ [0.01, 0.1].

Gamma (γ) mAP @ IoU
0.1 0.2 0.3 0.4 0.5

0.0 64.8 59.3 51.8 42.5 34.2
0.01 65.8 60.1 52.3 43.4 36.0
0.1 65.5 60.0 52.0 43.1 35.7
1.0 65.2 59.9 51.3 41.9 33.7

Table 8. State-of-the-art comparison on the Charades dataset.
Our D2-Net performs favorably compared to existing weakly-
supervised approaches.

ActGraph [28] WSGN [6] Ours: D2-Net

mAP 15.8 18.3 19.2

our D2-Net, which integrates both snippet-level and video-
level denoising terms with the discriminative loss term (i.e.,
LDis+LD) achieves improved localization performance, in-
dicating the importance of both snippet-level and video-level
denoising for temporal localization.
Impact of varying γ: Tab. 7 shows the impact of varying the
degree of intra-glass grouping on the THUMOS14 dataset.
We observe that when there is no/very high intra-class group-
ing amongst the foreground embeddings (or background
embeddings), the temporal localization of actions is ham-
pered. Furthermore, promising localization performance is
achieved when the intra-class grouping is performed at a
coarse level, i.e., γ ∈ [0.01, 0.1]. This shows that group-
ing the intra-class embeddings coarsely amongst themselves
helps in learning discriminative embeddings, leading to im-
proved localization performance.
State-of-the-art Comparison: The Charades [37] dataset
comprises 9848 indoor videos with 157 everyday activity
classes. On an average, there are 6.8 activity instances per
video, with complex activities co-occurring. As in [36], we
use the standard training and validation split and follow the
same localization evaluation. Tab. 8 shows the performance
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Figure 6. Action localization performance w.r.t. balancing parameter α in (a) and focusing parameter β in (b) on the THUMOS14 dataset.
The performance is shown for both validation and test sets. These experiments show that our D2-Net is reasonably robust to such variations
of the balancing and focusing parameters and achieves promising localization performance.

comparison of our approach with existing weakly-supervised
methods on the Charades dataset. Note that a strongly-
supervised approach of TGM [27] achieves an mAP of 22.3.
Among the weakly-supervised approaches, the graph con-
volution networks based ActGraph [28] achieves 15.8%
mAP, while Gaussian networks-based WSGN [6] obtains 18.3.
Our D2-Net performs favorably against existing weakly-
supervised methods, achieving a promising performance of
19.2 mAP.

Robustness Analysis: Here, we analyse the robustness of
our D2-Net w.r.t. variations in the balancing parameter α
and focusing parameter β. The performance variations of
our approach on both validation and test sets of the THU-
MOS14 dataset are shown in Fig. 6. The validation accuracy
is obtained through cross-validation. The two parameters
α and β are varied independently, while keeping the other
constant at its respective optimal setting. Varying the balanc-
ing weight α results in a performance variation as shown in
Fig. 6a. We observe that the performance is optimal when
α is around 0.2 and decreases slowly on either side. As α
is increased, the denoising loss term (LD in Eq. 1 of main
paper) overpowers the discriminative loss (LDis), resulting
in a decreased localization performance. In contrast, as α
is decreased, the noise in the temporal class activations re-
mains, resulting in reduced localization performance. Hence,
we set α = 0.2 in our experiments. Similarly, an optimal
localization performance of 36.0 mAP is achieved when the
focusing parameter β is set to 2 and decreases on either
side of it (see Fig. 6b). Note that a similar variation in per-
formance is also observed when using the standard focal
loss [14] for generic object detection. Hence, as in [14], we
set β as 2 throughout our experiments. These experiments
show that our D2-Net is reasonably robust to such varia-
tions of the balancing and focusing parameters and achieves
promising localization performance.

B. Additional Qualitative Results
Here, we present qualitative temporal action localization

results of our D2-Net framework on example videos from
the THUMOS14 [7] and ActivityNet1.2 [3] datasets. In each
figure (Fig. 7 to 15), sample frames from a video are shown
in the top row followed by the ground-truth segments (green)
and predicted detections (blue). The height of a detection is
indicative of its score.

THUMOS14: Fig. 7 to 8 and Fig. 10 to 11 illustrate the
localization results of our D2-Net on example videos, with
Pole Vault, Javelin Throw, Volleyball Spiking and High Jump
actions from the THUMOS14 dataset. Examples show differ-
ent scenarios: temporally adjacent instances (Javelin Throw,
High Jump), well separated instances (Pole Vault) and action
pause (Volleyball Spiking). Our D2-Net detects many of
these actions, reasonably well. Generally, well separated
actions are detected correctly, as in Pole Vault (Fig. 7). Fur-
ther, an action instance and its slow motion replay are anno-
tated incorrectly as a single action for the fourth instance in
Javelin Throw (Fig. 8), which is correctly detected as two
instances by our approach. Accurately detecting the action
instances containing video pauses in between, similar to the
first and second instances in Volleyball Spiking (Fig. 10), is
challenging due to the absence of motion information in the
corresponding snippets. The temporally adjacent instances
of High Jump (Fig. 11) are correctly delineated. These re-
sults show that our approach achieves promising localization
performance on these variety of actions.

ActivityNet1.2: Fig. 12 to 15 illustrate the localization
results of our D2-Net on example videos, with Cricket,
Washing Hands, Playing Harmonica and Windsurfing ac-
tions from the ActivityNet1.2 dataset. Examples show differ-
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Pole Vault

Figure 7. Well separated action instances of Pole Vault are generally accurately detected by our D2-Net.

Javelin Throw

Figure 8. Fourth instance of Javelin Throw is incorrectly annotated as a single instance though it has two instances: action and its slow
motion replay. Our D2-Net correctly detects the two as separate instances.

ent scenarios: well separated instances (Cricket), temporally
adjacent activities (Washing Hands), long and short activity
instances (Playing Harmonica), and long activity (Wind-
surfing). Well separated activity instances, similar to the
instances of Cricket (Fig. 12) are generally detected cor-
rectly. The two instances of Washing Hands (Fig. 13) are
detected as a single instance, since the background that is
separating the two instances is indiscriminable from the fore-
ground activity. While the long and short activity instances
are both detected correctly for Playing Harmonica activ-
ity (Fig. 14), an additional false detection is observed due
to the visual presence of the performer on stage (but not
playing) in the corresponding image frames. Though the
annotation for the end of Windsurfing activity is inaccurate
and includes background regions also as foreground activity,
our D2-Net correctly detects the end of the temporally long
activity (Fig. 15). These qualitative results show that our
proposed approach achieves promising action localization
performance on a variety of activities.
Foreground-Background Separation: Fig. 9 shows the
foreground-background separability comparison, utilizing
t-SNE scatter plots, between the baseline and our D2-Net.
Here, foreground and background embeddings per video

are obtained by average pooling (temporally) the latent em-
beddings at their respective ground-truth snippet locations.
Fig. 9 shows that the foreground and background embed-
dings in the baseline overlap with each other. In contrast, our
D2-Net better separates the foreground and background,
compared to the baseline, leading to improved localization
of foreground actions in the videos.

Baseline Proposed (D2-Net)

Background embedding Foreground embedding

Figure 9. Illustration of foreground-background separability
obtained in the latent embedding space of (a) the baseline using the
standard focal loss and (b) our D2-Net via t-SNE scatter plots on
the THUMOS14 test set. In both cases, foreground and background
embeddings per video are obtained as the mean of latent embed-
dings at their respective ground-truth locations. Our D2-Net better
separates the foreground and background, compared to the baseline.
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Volleyball Spiking

Figure 10. The first two instances of Volleyball Spiking have a considerable pause in the video, resulting in the absence of motion for the
corresponding frames. E.g., an inset of sample frames in the second instance shows the pause in the video containing zero motion. This
absence of discriminative motion information leads to four incorrect detections for these two GT instances.

High Jump

Figure 11. Temporally adjacent action instances of High Jump (sixth and seventh instances) are correctly detected as distinct instances by
our D2-Net.

Figure 12. Well separated instances of Cricket activity are detected accurately by our D2-Net.
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Washing Hands

Figure 13. The two adjacent ground-truth Washing Hands instances are jointly detected as a single instance by our D2-Net, since the
separating background is indiscriminable from the foreground activity. Sample background frames, shown inset, contain hands along with
soap lather and flowing water and are visually similar to the foreground activity.

Playing Harmonica

Figure 14. Both the long and short duration instances of Playing Harmonica are detected correctly by D2-Net. However, a false detection
arises due to the presence of the performer on stage (but not playing) in the corresponding image frames.

Windsurfing

Figure 15. The ground-truth annotation for the end of Windsurfing activity is inaccurate since background regions are also included as
foreground activity, as shown by the inset frames. Our D2-Net accurately detects the temporally long activity.
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