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Abstract

We tackle catastrophic forgetting problem in the con-
text of class-incremental learning for video recognition,
which has not been explored actively despite the popular-
ity of continual learning. Our framework addresses this
challenging task by introducing time-channel importance
maps and exploiting the importance maps for learning the
representations of incoming examples via knowledge dis-
tillation. We also incorporate a regularization scheme in
our objective function, which encourages individual fea-
tures obtained from different time steps in a video to be un-
correlated and eventually improves accuracy by alleviating
catastrophic forgetting. We evaluate the proposed approach
on brand-new splits of class-incremental action recognition
benchmarks constructed upon the UCF101, HMDB51, and
Something-Something V2 datasets, and demonstrate the ef-
fectiveness of our algorithm in comparison to the existing
continual learning methods that are originally designed for
image data.

1. Introduction
Human activity recognition in a large-scale video dataset

is a crucial step for high-level video understanding, and
various approaches have been studied actively in the com-
puter vision community [2, 17, 21, 36, 40]. If the videos
containing unseen classes of actions are presented in a se-
quential manner, where the examples in the previously ob-
served classes are either inaccessible or accessible in lim-
ited amounts, one needs to adapt the current model to
the new data without forgetting critical knowledge of the
seen examples learned in the past. The machine learn-
ing paradigm to handle such challenges is called class-
incremental learning, and Figure 1 illustrates a training data
stream for the learning framework.

While researchers have been studying action recognition
problems using deep neural networks [2, 17, 21, 36, 40],
continual learning in videos has not been studied actively.
It is natural to claim that video-based recognition tasks are
also prone to suffer from catastrophic forgetting [23] for the
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⋯

Figure 1: Illustration of class-incremental learning scenario.
At each incremental step, the model learns the knowledge
of new classes that are disjoint from the classes it has seen
so far. Simultaneously, the model learns not to forget the
knowledge of old classes that are either completely inac-
cessible or accessible in limited amounts.

knowledge learned from training data provided in the past,
as in the image domain. Actually, the catastrophic forget-
ting problem is particularly problematic in video-learning
tasks because deep neural networks with shared parameters
are typically applied to multiple segments or frames, result-
ing in acceleration of the forgetting issue and it is difficult
to store many video exemplars in memory to preserve the
information about the previous tasks effectively.

Despite critical needs for class-incremental learning in
the video domain, existing approaches [3, 6, 15, 20, 30, 43]
have focused on static images only, which fails to model
temporal variations and dynamics across spatial features. A
single action instance is often composed of multiple sub-
actions and the feature dynamics aligned with the subac-
tions are indeed critical information for action recognition.
For example, Figure 2 demonstrates that both of Pole Vault
and Javelin Throw share a subaction of running with a long
stick at the beginning but become distinct by whether the
actor jumps or not at the end. This observation leads to a
fundamental question about how to maintain crucial spatio-
temporal information within individual videos using limited
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(a) An example of Pole Vault

ThrowingRunning with a javelin

Time

(b) An example of Javelin Throw

Figure 2: Subactions of action instances. Distinctive subac-
tions are key to distinguish one action from another. Our al-
gorithm estimates which channels are important along with
the temporal dimension for class-incremental learning.

memory for continual learning.
This paper presents a novel framework for class-

incremental learning for action recognition based on tem-
porally attentive knowledge distillation. Our claim is that
the representations for individual subactions should be dis-
tilled with different weights depending on their relevance
and uniqueness to target classes and maintained for better
utilization in the future stages. To realize this idea, we
draw our attention to a joint space defined by frames in a
video and channels in a feature map, and quantify impor-
tance over the space while minimizing feature redundancy
across frames. Specifically, we estimate the importance in
the joint space for a video by measuring how much the ac-
tivation in the space affects classification losses. The com-
puted importance provides the information about where to
attend for knowledge distillation in class-incremental learn-
ing scenarios. Also, to enforce the model to learn more dis-
tinctive features across frames, we penalize the redundancy
in the features extracted from the sampled frames.

The representations of video data require more computa-
tion resources for processing and storing, which makes con-
tinual learning in videos more challenging especially when
some exemplars for the tasks considered earlier need to be
stored in memory. So, the proposed class-incremental learn-
ing framework employs a frame-based video representation
method—Temporal Shift Module (TSM) [21], and reduces
computational cost for training significantly compared to
3D CNNs based on video volumes [2, 8, 9, 36, 37] and their
variations [40, 47].

The contributions of this paper are summarized below:

• We introduce an efficient class-incremental learning
technique for action recognition in videos by adopting
a simple frame-based feature representation method to

store exemplars for the tasks learned in the past.

• Our algorithm estimates time-channel importances and
distills knowledge with the importance weight while
encouraging the diversity of the features in each frame
for regularization and enhance the performance of our
target model.

• The proposed approach presents remarkable accu-
racy gains on the multiple standard action recognition
benchmarks with brand-new splits compared to the ex-
isting methods designed in the image domain.

Our paper is organized as follows. We first discuss re-
lated works about continual learning in Section 2. Section 3
describes the proposed class-incremental learning approach
in the context of action recognition. We present experimen-
tal results on the standard action recognition datasets with
new splits for continual learning in Section 4, and make the
conclusion in Section 5.

2. Related Works
This section reviews existing algorithms related to class-

incremental learning. Most of the researches about contin-
ual learning deal with image classification problems only,
so we also discuss the approaches in other tasks.

2.1. Class-Incremental Learning

Existing class-incremental learning approaches alleviate
catastrophic forgetting via the following four techniques: 1)
parameter regularization, 2) knowledge distillation, 3) re-
hearsal, and 4) bias correction.

Parameter regularization The methods in this cate-
gory [1, 18, 45] estimate the importance of individual model
parameters and exploit the information for model adapta-
tion. Specifically, the learning algorithm attempts to pre-
serve parameters with high weights while allowing unim-
portant ones to be flexible for update. The criteria to de-
termine model elasticity on new tasks include Fisher in-
formation matrix [18], path integral along parameter tra-
jectory [45], and changes in the output vectors [1]. How-
ever, these approaches empirically present poor generaliza-
tion performance in class incremental learning scenarios as
reported in [16, 39].

Knowledge distillation The approaches based on knowl-
edge distillation [14, 31, 44] encourage a model to learn new
tasks while mimicking the representations of the old model
trained for the previous tasks without their training data. To
this end, new models attempt to preserve the representa-
tions of examples by matching the outputs from the sigmoid
functions [20, 30, 43], the softmax function with tempera-
ture scaling [3], and the `2-normalizations [15]. In addi-
tion, LwM [4] further minimizes the difference of the atten-
tion maps obtained from the gradients of the highest score



labels. PODNet [6] preserves the relaxed representations
obtained by applying the sum pooling along the width and
height dimensions to the original intermediate feature maps
and controlling the balance between the previous knowl-
edge and the new information.

Rehearsal Rehearsal-based methods store a limited num-
ber of representative examples or replay old ones using
generative models while training new tasks. Incremen-
tal Classifier Representation Learning (iCaRL) [30] keeps
a small number of samples per class to approximate the
class centroid and makes predictions based on the near-
est class mean classifiers. On the other hand, pseudo-
rehearsal techniques [28, 32] generate samples in the pre-
viously observed classes using generative adversarial net-
works (GANs) [11, 27]. However, generating videos is too
challenging to be used for class-incremental learning.

Bias correction The trained models by class-incremental
learning algorithms turn out to prefer new classes partly due
to the class imbalance problem, and some approaches [15,
43] aim to cope with this issue. Bias Correction (BiC) [43]
corrects bias using additional scale and shift parameters for
affine transformations of the logits for new classes. Zhao et
al. [46] rescale the weight vectors for the new classes by
matching the average norm of the old weight vectors.

2.2. Class-Incremental Learning in Other Domains

Although class-incremental learning has been studied for
image classification, the research is also active for other ap-
plications, including person re-identification [42], 3D ob-
ject classification [5], object detection [33], and semantic
segmentation [24]. Continual learning in the video domain
is rare [26, 41]. Despite remarkable technical advances in
action recognition, catastrophic forgetting problem has not
been explored actively yet. An existing approach [41] is
limited to applying the iCaRL [30] based on a two-stream
3D convolutional neural network in a straightforward man-
ner. On the other hand, our approach is based on knowl-
edge distillation similar to [4, 6] and exploits an attention
method over a time-channel space intuitively to facilitate
action recognition in a class-incremental learning scenario.

2.3. Action recognition

With the great success of deep learning, various ac-
tion recognition methods based on convolutional neural net-
works have been studied [2, 17, 21, 36, 40]. The ap-
proaches to handle this problem are grouped in two cate-
gories: 2D and 3D CNN-based methods. 2D CNN-based
techniques [17, 21, 40] utilize the standard CNN mod-
els [13, 34] on each frame, and the researchers have ex-
plored how to aggregate the information from each time
step [17]. For example, [10] studies how to fuse the in-
formation from two different modalities, RGB and motion,

using 2D CNNs. Wang et al. [40] propose a strategy to learn
with uniformly divided segments in multiple modalities, i.e.
RGB difference and warped optical flow. In [47], they learn
temporal dependencies across frames by exploring multiple
time scales. Recently, Temporal Shift Module (TSM) [21]
proposes a method to learn temporal information in an ef-
ficient way, where the feature representations of adjacent
segments interact with each other during forward pass.

On the other hand, some researchers pay attention to
3D CNN [2, 8, 9, 36, 37], which is a straightforward ex-
tension of 2D CNN methods, where 3D convolution fil-
ters learn spatio-temporal information jointly. However,
3D CNN-based models are computationally expensive since
they involve a large number of parameters to learn. Re-
cent approaches handle this issue in diverse ways, for exam-
ple, by applying group convolutions [37], learning 3D shift
operations [7], decomposing 3D convolution filters [38],
searching efficient architectures [8], etc. Despite remark-
able advances in action recognition, the catastrophic forget-
ting problem is not yet studied actively. This work sheds
light on this problem with a promising baseline.

3. Method
This section describes the overall framework of the pro-

posed class-incremental learning algorithm with videos.

3.1. Problem Formulation

The goal of class-incremental learning is to train a uni-
fied deep neural network parameterized by Θ given a se-
quence of tasks, {T1, T2, · · · , Tk, · · · }. We denote Tk as a
set of videos whose labels belong to the predefined classes
in Ck, where (C1∪· · ·∪Ck−1)∩Ck = ∅. We assume that we
can access a small exemplar set denoted by Ek such that it is
a subset of T1:k, where T1:k = T1 ∪ · · · ∪ Tk. At each incre-
mental step k, a modelΘk is trained with T ′k = Tk ∪ Ek−1.
Then, the performance of the trained model is evaluated on
the test examples defined by the union of all the encountered
tasks without task boundaries.

3.2. Overview

Given the problem formulation, we follow the standard
class-incremental learning protocol based on knowledge
distillation, which is similar to the previous works [6, 15,
20, 30]. At the kth incremental step, a set of model param-
eters, Θk, is learned to mimic the feature representations
given by the previous model withΘk−1 while learning new
classes. Our goal is to estimate desirable attention over a
combination of time and channel dimensions for knowledge
distillation.

Figure 3 illustrates the overall framework of our ap-
proach. Given an input video x ∈ T ′k , we first divide the
video into T segments, and then feed the segments to the
backbone network with L layers. We adopt TSM [21] as
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Figure 3: Illustration of the overall framework. At each incremental step k, the current modelΘk (bottom-center) mimics the
representation of the previous modelΘk−1 (top-center). The distillation process is enhanced by the time-channel importance
mask, which is estimated at step k − 1 via measuring how each feature affects the final loss. Distilling knowledge through
the estimated importance map makes the model preserve important representations from the previous step; the less important
representations are suppressed by the mask and updated flexibly for the new task.

our backbone model. Let F l
k ∈ RT×Cl×Hl×Wl be an inter-

mediate feature with respect to the input x in the lth layer
of the model Θk. The distillation between F l

k and F l
k−1 is

weighted by the importance mask M̂ l
k ∈ RT×Cl , which is

the key component of our framework. The importance mask
M̂ l

k represents the information about which feature maps
along time or channel dimensions are important to preserve
knowledge for the past tasks.

After each incremental step, we select a set of video in-
stances in Tk to update the exemplar memories from Ek−1
to Ek by the herding strategy [30]. Then, we fine-tune the
final classification layer while freezing other layers using
Ek, which has balanced data among the observed classes as
discussed in [6, 15].

3.3. Time-Channel Importance

We focus on designing the importance mask so that it
provides each feature map of a frame with the information
about which channels should be preserved against the catas-
trophic forgetting problem. Specifically, we aim to keep the
important feature maps whose update is prone to increase
the final loss, and make the unimportant ones flexible for
future tasks. To this end, we compute the importance of
channel c at time step t for incremental step k in the lth

layer, which is denoted byM l
k,t,c, as

M l
k,t,c = E(x,y)∼T1:k−1

‖∇F l
k−1,t,c

Lk−1
cls (x, y)‖2F , (1)

where ‖·‖F and Lk−1
cls (x, y) denote the Frobenius norm and

the classification error of the trained model parametrized by
Θk−1 for the input video x and its label y. Since the per-
turbation in the feature map with the higher Frobenius norm

of the gradient may result in larger increase of the final loss
when feature maps are equally important, the importance
mask M l

k,t,c can be regarded as the sensitivity to the final
loss. Thus, at the end of each incremental step, i.e., Tk−1,
we sequentially update the important maskM l

k for training
the new modelΘk.

However, due to the restriction of the class-incremental
learning, we can access limited samples for T1:k−2 using
the exemplar sets Ek−2, which makes it difficult to compute
M l

k,t,c. Hence, we approximateM l
k,t,c to M̃ l

k,t,c by taking
the expectation of the Frobenius norm over the accessible
samples within Ek−2 and Tk−1. Furthermore, we normalize
M̃ l

k,t,c to make the importance across layers have a similar
scale as follows:

M̂ l
k,t,c =

M̃ l
k,t,c

1
TCl

∑T
t=1

∑Cl

c=1 M̃
l
k,t,c

. (2)

Finally, we define the proposed distillation loss for the inter-
mediate features in the new model based on the importance
map as

Lk
dist =

L∑
l=1

T∑
t=1

Cl∑
c=1

M̂ l
k,t,c‖F l

k,t,c − F l
k−1,t,c‖2F . (3)

The proposed distillation loss constrains the model diver-
gence of the sensitive feature maps not to forget the pre-
viously learned knowledge and makes the uncritical ones
flexible to learn new classes.

3.4. Orthogonality between Frames

To further improve the effectiveness of the proposed
knowledge distillation strategy, we adopt an additional reg-
ularization term inspired by [22], which enforces individual



features extracted from different time steps in a video to be
mutually independent. The corresponding loss constrains
the features at individual time steps to be orthogonal, which
also makes the estimation of the importance map more dis-
tinctive. The orthogonality loss is defined by

Lk
ortho =

L∑
l=1

Cl∑
c=1

‖IT − F ′
l
k,:,c(F

′l
k,:,c)

>‖2F , (4)

where IT ∈ RT×T is an identity matrix and F ′lk,:,c is given
by concatenating a reshaped tensor of `2-normalized F l

k,t,c

along time axis t and constructing a T ×HlWl matrix.
The orthogonality constraint is useful in continual learn-

ing scenarios since we often need to update model param-
eters based on limited observations of old data but a large
number of examples in new tasks. Since such a challenging
situation leads to unwanted representation changes of the
exemplars representing previous tasks, the minimization of
correlation between the representations of individual frames
would help alleviate the feature drift issue.

3.5. Training Objective

The formal definition of the final objective function Lk
final

at incremental step k is given by

Lk
final = Lk

cls + αLk
dist + βLk

ortho, (5)

where α and β are the weights for the balance between
the terms. For the classification loss Lk

cls, we adopt NCA
loss [25] computed from the Local Similarity Classifier
(LSC) following [6].

3.6. Exemplar Selection

After each incremental step k, we sample the most rep-
resentative instances from Tk to construct Ek, for future use.
We follow the herding strategy proposed by [30], for which
the feature representations for all video samples are ex-
tracted from Tk and the class-wise mean features are com-
puted. Then we iteratively select the instances for each of
the classes until the number of selected exemplars reaches a
predefined memory budget. At each iteration, we choose
the exemplar that makes the mean of exemplars become
closest to the real class-mean representation.

When we store videos as exemplars, we can further re-
duce the memory requirement by sampling frames within
the video since a single video contains many repetitive and
redundant frames. For each video, we have three options:
storing an entire video, sampling frames randomly, or se-
lecting frames with a uniform time interval. Among the
three strategies, we choose the last one, storing the uni-
formly sampled T frames per video, which meets the input
specification of our backbone model, TSM [21]. We further
discuss this sampling strategy in Section 4.5.

4. Experiments

This section presents the experimental results of our
algorithm on class-incremental action recognition bench-
marks. We also demonstrate the effectiveness of our frame-
work via several ablation studies.

4.1. Datasets

We evaluate the proposed framework on UCF101 [35],
HMDB51 [19] and Something-Something V2 [12], which
are the standard datasets for action recognition tasks. The
UCF101 dataset consists of 13.3K videos from 101 classes.
The organizers of UCF101 provide three splits of training
and test datasets. The HMDB51 dataset consists of 6.8K ex-
amples from 51 action classes, and also provides three splits
for training and test datasets. We adopt split 1 for both of the
datasets to evaluate our approach. Something-Something
V2 dataset is a large-scale motion-sensitive dataset, which
contains 169K training and 25K test videos from 174 ac-
tion classes. This dataset requires better temporal reasoning
than UCF101 and HMDB51.

4.2. Evaluation Protocol

Since the aforementioned datasets are utilized for the
class-incremental learning for the first time, we newly de-
sign the experimental protocol for the datasets. We first
shuffle the classes randomly to create a sequence of classes.
Following [6, 15], we assume that we initially have a trained
model with half of the total classes, where the rest of the
classes are provided sequentially in each incremental step.
For UCF101, we trained 51 classes in the initial stage, and
divided the remaining classes into groups of 10, 5, and 2
classes for class-incremental learning. For HMDB51, we
learned the initial model using 26 classes and the remain-
ing classes are equally split into 5 and 25 groups. After
obtaining the initial model with 84 classes for Something-
Something V2, we generate groups of 10 and 5 classes.

At each incremental step, we evaluate the model with
the test data of all the seen classes until then. Following
the previous works, we employ two methods for inference,
CNN and NME, respectively. CNN is a standard classi-
fication protocol, where the model classifies the data us-
ing the trained fully-connected layer. NME, which is pro-
posed by iCaRL [30], compares the feature representation
of test data with the mean-of-exemplars. We report the av-
erage of the accuracies aggregated from all of the incre-
mental steps, which is also known as average incremental
accuracy [6, 15, 30]. Since the order of classes may af-
fect the performance, we ran our experiments using three
random class orders1 and report the average performance.
We set the memory budget for each class to 5 for UCF101

1Random Seeds : 1000, 1993, 2021



Table 1: Class-incremental action recognition performance on UCF101 and HMDB51 of the tested algorithms. The proposed
method, TCD, achieves the best performance in all the experimental settings. NME scores for the methods without exemplars
cannot be reported while iCaRL reports NME scores only since iCaRL employs NME for classification. The bold-faced
numbers indicate the best performance.

UCF101 HMDB51
Num. of classes 10 × 5 stages 5 × 10 stages 2 × 25 stages 5 × 5 stages 1 × 25 stages
Classifier CNN NME CNN NME CNN NME CNN NME CNN NME
Fine-tuning 24.97 — 13.45 — 5.78 — 16.82 — 4.83 —
LwFMC [20, 30] 42.14 — 25.59 — 11.68 — 26.82 — 16.49 —
LwM [4] 43.39 — 26.07 — 12.08 — 26.97 — 16.50 —
iCaRL [30] — 65.34 — 64.51 — 58.73 — 40.09 — 33.77
UCIR [15] 74.31 74.09 70.42 70.50 63.22 64.00 44.90 46.53 37.04 37.15
PODNet [6] 73.26 74.37 71.58 73.75 70.28 71.87 44.32 48.78 38.76 46.62
TCD (Ours) 74.89 77.16 73.43 75.35 72.19 74.01 45.34 50.36 40.07 46.66
Oracle (Upper Bound) 84.15 83.37 83.96 83.20 83.82 83.16 55.03 55.98 54.89 55.32

Table 2: Class-incremental action recognition performance
on Something-Something V2. The bold-faced numbers in-
dicate the best performance.

Num. of classes 10 × 9 stages 5 × 18 stages
Classifier CNN NME CNN NME
UCIR [15] 26.84 17.98 20.69 12.57
PODNet [6] 34.94 27.33 26.95 17.49
TCD (Ours) 35.78 28.88 29.60 21.63

and HMDB51, and 20 for Something-Something V2 unless
specified otherwise.

4.3. Implementation Details

We construct our framework based on the official im-
plementation of TSM2 using the PyTorch library [29]. We
follow data pre-processing protocol of TSM. For UCF101,
we train a ResNet-34 TSM for 50 epochs with a batch size
of 32. For HMDB51 and Something-Something V2, we
adopt ResNet-50 models and train for 50 epochs with a
batch size of 64. For all datasets, we use the ImageNet-
pretrained weights for initialization. Note that we do not
use the weights pretrained with the Kinetics dataset [2],
which is common in the action recognition field. It is in-
appropriate to evaluate class-incremental learning with the
weights pretrained with Kinetics since it shares the class
information with UCF101 and HMDB51. Thus the pre-
trained weights already contain the class information of tar-
get datasets. Please refer to the supplementary materials for
more implementation details.

4.4. Main Results

We compare the proposed method, referred to as Time-
Channel Distillation (TCD), with existing class-incremental

2https://github.com/mit-han-lab/temporal-shift-module

learning baselines, which are originally designed for the
class-incremental image classification task. Especially, we
choose the algorithms utilizing knowledge distillation as
ours, including LwFMC [20, 30], LwM [4], iCaRL [30],
UCIR [15], PODNet [6]. We do not report the NME results
from LwFMC [20, 30] and LwM [4] since they do not use
exemplars. To provide an upper-bound performance of our
task, we introduce an oracle model, which is incrementally
trained the model while preserving all the training data in
the previous steps. We reimplement the baseline algorithms
and train their models using our datasets for fair compar-
isons. The implementation details for the baselines are pre-
sented in the supplementary material.

Table 1 presents the overall results of the proposed al-
gorithm and other baselines on UCF101 and HMDB51
datasets, where our approach outperforms all competing
methods in all the experimental settings. As mentioned ear-
lier, NME scores for the methods without exemplars are
not reported while iCaRL has the results only because the
method is originally designed for the classifier. As can be
easily expected, the approaches do not exploit exemplars
demonstrate poor performance.

Table 2 presents the overall results of the proposed algo-
rithm and recent methods [6, 15] on Something-Something
V2. TCD is also more effective than other methods on the
large-scale motion-sensitive dataset. It is noticeable that, for
Something-Something V2, the performance for NME falls
behind CNN. Since Something-Something V2 needs more
temporal reasoning, the strategies relying on naı̈ve averag-
ing of the features from all frames may not be suitable.

Figure 4 presents the average accuracy over seen classes
at each incremental step. In most of the incremental steps,
TCD achieves higher accuracy, which implies its great ca-
pacity to preserve the learned knowledge in the past. Note
that even though the average incremental accuracy gain on
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Figure 4: Plots for accuracy on UCF101, HMDB51 and Something-Something V2 along with the incremental steps.

HMDB51 with 25 stages is small, the accuracy at the last
incremental step is better than that of PODNet.

4.5. Ablation Study and Analysis

We perform several ablation studies on UCF101 with 10
steps to analyze the effectiveness of our approach.

Effect of each component To show the effectiveness of
the time-channel importance map and the frame-wise or-
thogonality, we conduct the experiment for variant types of
our objective function, Lk

final. To this end, we first define the
distillation loss without importance maps, which is given by

L′kdist =

L∑
l=1

T∑
t=1

Cl∑
c=1

‖F l
k,t,c − F l

k−1,t,c‖2F . (6)

Table 3 presents the results from several different combina-
tions of loss terms. The results show that all of the intro-
duced components contribute to the performance and their
combination leads to the best performance. One notice-
able thing is that applying Lk

ortho without M̂ l
k,t,c also im-

proves the performance, where the loss alleviates the cor-
relation between the representations across frames and help
the model to address feature drift issue.

Effect of memory size To demonstrate the robustness of
TCD with respect to the memory budget, we evaluate the

Table 3: Ablations study results about the objective func-
tion. We demonstrate the effectiveness of the time-channel
channel importance M̂ l

k,t,c and the orthogonality among
frames Lk

ortho. Note that L′kdist denotes Lk
dist without impor-

tance map weights, M̂ l
k,t,c.

Objective function CNN NME

Lk
cls + L′kdist 71.21 73.24
Lk

cls + L′kdist + Lk
ortho 72.31 74.42

Lk
cls + Lk

dist 72.61 74.81

Lk
cls + Lk

dist + Lk
ortho (Ours) 73.43 75.35

performance of the compared methods by varying the mem-
ory budgets. Table 4 shows that TCD outperforms other
baselines regardless of the memory budget.

Sampling strategy As discussed in Section 3.6, the mem-
ory requirement for video exemplars is further reduced by
storing a subset of frames in a video instead of the whole
video. We conduct the experiment to show the performance
variation of class-incremental learning depending on the ex-
emplar selection strategy. We test the following three op-
tions: storing a whole video, sampling frames randomly,
and selecting frames with a uniform time interval. In the
setting that the whole video is stored, TSM selects a pre-



Table 4: Analysis about the memory budget for each class on UCF101 with 10 steps. The results show the robustness of our
algorithm to varying memory budgets.

Memory per class 1 2 5 10
CNN NME CNN NME CNN NME CNN NME

iCaRL [30] — 58.05 — 60.50 — 64.51 — 66.94
UCIR [15] 61.92 65.52 66.43 67.58 70.42 70.50 72.47 71.69
PODNet [6] 63.18 70.96 65.93 72.78 71.58 73.75 75.44 76.39
TCD (Ours) 64.52 71.96 68.40 73.30 73.43 75.35 76.66 77.09

Table 5: Analysis about the sampling strategies for storing videos in exemplar set.“All” denotes the strategy to store the entire
video in the exemplar memory and sample examples randomly for training. “Random” and “Uniform” mean the strategies
that sample frames randomly and with a equal time interval, respectively. The results show that storing all frames in a video
does not necessarily delivers performance improvement.

Sampling strategy All Random Uniform
CNN NME CNN NME CNN NME

iCaRL [30] — 64.33 — 64.68 — 64.51
UCIR [15] 70.22 70.41 70.38 70.12 70.42 70.50
PODNet [6] 71.76 73.50 72.37 73.87 71.58 73.75

TCD (Ours) 73.89 75.51 73.17 75.30 73.43 75.35

Ti
m
e

Channel

Figure 5: Visualization of the importance map obtained
from the 4th ResBlock in the model trained on UCF101 with
10 stages. The colorbar indicates the magnitude of the esti-
mated importance.

defined number of frames randomly from each exemplar at
each iteration. For the random and uniform sampling strate-
gies, we store T frames, where T is given by the hyperpa-
rameter of TSM network [21].

Table 5 demonstrates that the simple sampling strategies
are as good as the methods with the whole videos in all the
tested algorithms. This result implies that the diversity of
sampled frames affects the overall performance marginally.
In the context of class-incremental learning, a small sub-
set of frames in exemplar videos are sufficient to maintain
the knowledge about the corresponding video, which is a
desirable property to continual learning. However, this ex-
periment is limited in another aspect because our backbone
model, TSM, relies only on a small number of frames.

Visualization of importance map Figure 5 illustrates an
example of generated importance map after the last stage
training of UCF101. The importance map for the first 32

channels of the 4th ResBlock for TSM is depicted, where the
bright pixels indicate higher importance. From the figure,
one can notice that the importance of each channel varies
over time. The estimated mask makes the model leave criti-
cal features unaffected by knowledge distillation while pro-
viding the model with the flexibility to update unimportant
features.

5. Conclusion
We presented a novel framework for class-incremental

learning in the context of video action recognition, which
has not been actively investigated yet. Specifically, we in-
troduced a new knowledge distillation loss based on time-
channel importance masks, which aims to preserve cru-
cial feature maps for preventing the catastrophic forget-
ting problem and make trivial ones flexible for absorb-
ing new knowledge. To effectively exploit the proposed
distillation loss, we add a regularization term, which en-
courages individual feature maps along the time axis to
be orthogonal to each other. Our algorithm achieves out-
standing performance compared to existing image-specific
class-incremental learning approaches on multiple stan-
dard datasets, which are newly introduced to fit class-
incremental learning for videos.
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S1. Relation about Parameter Regularization Methods
Our approach has something common with some parameter regularization techniques—Elastic Weight Consolidation

(EWC) [18] and Synaptic Intelligence (SI) [45]—in the sense that they propose weighting schemes in continual learning
scenarios. Both EWC and SI attempt to regularize model parameters using the weights given by either first-order information
or cumulative trajectories in the parameter space, respectively; they desire to learn proper representations by backpropaga-
tion. On the other hand, our algorithm is based on knowledge distillation, where the learned representations are regularized
using the weights given by the impact of individual activation changes with respect to the final loss, and expects the model
parameters to be learned for generating the desirable features. Contrary to EWC and SI, which attempt to preserve the repre-
sentations of old tasks indirectly via parameter regularization, our method optimizes the representation directly, which would
be more effective for class-incremental continual learning.

S2. Comparison with Parameter Regularization Method
To demonstrate the performance of our approach compared to parameter regularization methods, which we discuss in

Section 3.6 of the main paper, we present the results from Elastic Weight Consolidation (EWC) [18] and naı̈ve fine-tuning
(FT) under the same memory constraint with ours in Table 6. Although both EWC and our approach attempt to maintain
important information in the previous tasks, the proposed method optimizes the objective function directly via knowledge
distillation and achieves superior performance. Note that a similar discussion has been made in [16, 39] as well.

Table 6: Class-incremental action recognition performance evaluation on UCF101 and HMDB51 between fine-tuning (FT),
EWC and the proposed method. Note that “E” indicates the existence of exemplars. The bold-faced number means the best
performance. EWC slightly outperforms the fine-tuning, while our approach surpasses both methods by large margins.

UCF101 HMDB51
Num. of classes 10 × 5 stages 5 × 10 stages 2 × 25 stages 5 × 5 stages 1 × 25 stages
FT + E 67.65 66.67 65.36 38.58 34.83
EWC [18] + E 69.70 68.12 67.00 39.98 35.94
TCD (Ours) w/o Lortho 73.09 72.61 71.33 45.14 46.11
TCD (Ours) 74.89 73.43 72.19 45.34 46.66

S3. Compatibility with Bias Correction Method
In order to show the compatibility of our distillation objective to other kinds of algorithms, we combine the proposed

method with an existing bias correction method, Bias Correction (BiC) [43]. For a fair comparison, we replace the classifier
of our model with a linear classifier. We set the ratio between training/validation split on the exemplars to 4 : 1 to perform
BiC method, as we use 5 exemplars per class. Table 7 illustrates the results on UCF101. The performance gap between BiC
combined with ours and BiC become larger when the number of incremental steps increase, which implies the robustness of
the proposed approach.

Table 7: Compatibility of our distillation loss with the bias correction (BiC) method on UCF101. The bold-faced number
indicates the best performance.

Num. of classes 10 × 5 stages 5 × 10 stages 2 × 25 stages
BiC 77.00 74.94 68.85
BiC + TCD (Ours) 77.22 75.63 72.00

S4. Effect of Number of Input Frames
We set 8 frames as the input size following the convention of action recognition models [21, 37]. However, our algorithm

also works well with different input sizes, which incur a trade-off between accuracy and cost. Table 8 demonstrates the results



by varying the number of frames on UCF101 with the same backbone model, TSM. It shows that our algorithm consistently
outperforms PODNet regardless of the number of input frames.

Table 8: Effect of input size on UCF101 with 10 stages.

# of frames 16 8 4 1
Classifier CNN NME CNN NME CNN NME CNN NME
PODNet 73.36 74.80 71.58 73.75 70.93 73.47 68.89 71.98
TCD (Ours) 75.17 76.13 73.43 75.35 71.17 74.18 69.14 72.93

S5. Implementation Details
For all experiment, we set the initial learning rate as 0.001 and adopt the SGD optimizer with weight decay of 0.0005. The

learning rate is divided by 10 after 20 and 30 epochs. We construct our Local Similarity Classifier (LSC) by using 3 proxies
and allow η to be trained throughout the training procedure. For UCF101, we set α = 1.0 for the intermediate features and
0.01 for the logit, and set β = 0.1 for Lortho. For HMDB51, we set α = 3.0 for the intermediate features and 0.1 for the logit,
and set β = 0.3. For Something-Something V2, we set α = 0.5 for the intermediate features and 10.0 for the logit, and set

β = 10−3. Following PODNet [6] and UCIR [15], we further multiply an adaptive scaling factor λ =
√
|C1:k|
|Ck| to α at each

incremental step k, where C1:k = C1 ∪ · · · ∪ Ck denotes the number of class observed until the incremental step k.
To compare our method to the existing continual learning methods, we reimplement each algorithm and search the hy-

perparameters using a grid search. For UCIR [15] and PODNet [6], we explore the hyperparameters for the distillation
losses, a · 10b, with a ∈ {1, 3, 5} and b ∈ {−2, · · · , 2}. As a result, we set the weight for UCIR as 5 and set the rest of
the hyperparameters as same as the original paper. PODNet has two distillation terms, the distillation term for intermediate
features and the logit. We set the weight of each loss term to (0.5, 3.0), (0.1, 1.0), and (1.0, 5.0) for UCF101, HMDB51, and
Something-Something V2 respectively. The margin for the LSC is set to 0.6 for both PODNet and ours.
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