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Figure 1. We propose a novel object-compositional neural radiance field that supports editable scene rendering on real-world datasets. To
obtain a view with object manipulation, we jointly render the transformed objects from the conditioned object branch and the surrounding
background from the scene branch.

Abstract

Implicit neural rendering techniques have shown
promising results for novel view synthesis. However, ex-
isting methods usually encode the entire scene as a whole,
which is generally not aware of the object identity and lim-
its the ability to the high-level editing tasks such as mov-
ing or adding furniture. In this paper, we present a novel
neural scene rendering system, which learns an object-
compositional neural radiance field and produces realistic
rendering with editing capability for a clustered and real-
world scene. Specifically, we design a novel two-pathway
architecture, in which the scene branch encodes the scene
geometry and appearance, and the object branch encodes
each standalone object conditioned on learnable object ac-
tivation codes. To survive the training in heavily cluttered
scenes, we propose a scene-guided training strategy to solve
the 3D space ambiguity in the occluded regions and learn
sharp boundaries for each object. Extensive experiments
demonstrate that our system not only achieves competitive
performance for static scene novel-view synthesis, but also
produces realistic rendering for object-level editing.

1. Introduction

Virtual tour in a real-world scene is one of the most de-
sired experiences for virtual and augmented reality. While
early works rely on laborious capturing and reconstruction
of the physical world, e.g., geometry, texture, material, etc.,
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the emerging neural rendering methods open great opportu-
nities to ease this task by learning directly from a collection
of posed images and achieve promising realistic images. A
common follow-up question to ask is: Can we modify the
scene, e.g., moving or adding furniture, while still maintain-
ing the realistic rendering capability.

Unfortunately, this is not well-supported by existing neu-
ral rendering methods. Early approaches tend to encode the
entire visible scene into a single neural network, such as
NeRF [17] and SRN [26]. While handling small objects
perfectly, these models are hard to scale up for large-scale
scenes due to the fixed network capacity. On the other hand,
a family of neural rendering approaches utilizes volumet-
ric representation [12] to densely encode local information
at specific locations, which migrates the scalability burden
from network parameters to the scene representation and
empirically produces better rendering quality. However, the
scene representation and rendering network are in general
agnostic to the object identity, which does not support high-
level editing tasks such as moving furniture.

In this paper, we propose a neural rendering system that
enables scene editing on real-world scenes. Taking a col-
lection of posed images captured from the real scene and
rough 2D instance masks, our model can render the whole
scene as it is in reality, as well as with objects manipulated,
such as moving, rotating, or duplicating. Most related to
us, OSF [7] enables editable scene rendering in a bottom-
up fashion by learning one model per-object and then per-
form joint rendering. However, their method does not learn
the object arrangements in the real world and requires train-
ing images captured for each individual object beforehand,
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which is infeasible to obtain on cluttered scene images and
thus only verified on synthetic data. In contrast, we aim to
design a top-down approach that directly learns a unified
neural rendering model for the whole scene which respects
the object placement as in the captured scene. To support
object manipulation, we design a novel conditional neural
rendering architecture that is able to render each object stan-
dalone with everything else removed, which can be further
rendered from a novel viewpoint, at a new location, or repli-
cated. Note that to ensure realistic scene editing, each ob-
ject has to be rendered with sharp boundaries without back-
ground bleeding, which is infeasible to achieve with only a
rough 3D rendering mask or a bounding box (see Fig. 6 for
an example).

Indeed, it is non-trivial to learn such an object-
compositional neural radiance field for a clustered and real-
world scene even with rough 2D instance masks, mainly
due to the 3D space ambiguity in the occluded region. In-
tuitively, the network could learn only from the rays casting
within the instance mask of a particular object when aim-
ing to render it. However, without known geometry, it is
impossible to identify if a 3D location belongs to the object
but occluded, which is common in a cluttered scene, or not
even a part of it, since both cases are not marked by the in-
stance mask. As a result, the network may overkill part of
the object and produce cloudy results. In order to solve this
challenge, we learn an extra compact scene branch, without
editable capability, to provide biased sampling distribution
along the ray and dense depth online during training, which
helps to identify the occluded region where the no gradient
is applied instead of being supervised as empty space. The
scene branch also renders the contents that are not labeled
by the instance segmentation to provide a seamless whole
scene rendering.

In summary, the contributions of this paper are as fol-
lows. Firstly, we propose the first editable neural scene
rendering system given a collection of posed images and
2D instance masks, which supports high-quality novel view
rendering as well as object manipulation. Secondly, we
design a novel two-pathway architecture to learn object-
compositional neural radiance field for a clustered and real-
world scene resolving occlusion ambiguity. Lastly, the ex-
periment and extensive ablation study demonstrate the ef-
fectiveness of our system and the design of each compo-
nent. Our system performs on-par or even better than the
SoTA methods in terms of standard novel-view synthesis
while maintaining the capability of editable scene render-
ing with high quality.

2. Related Work
Neural Rendering. In these works, deep neural networks
are employed to learn novel view synthesis from 2D im-
ages in various approaches, such as voxels [25, 15], point

clouds [1, 20], textured meshes [27, 13, 11], multi-plane im-
ages [27, 31, 6], and implicit functions [26, 14, 18]. As a pi-
oneer, SRN [26] represents a continuous scene as an opaque
surface by implicitly mapping space coordinates to a fea-
ture vector with MLPs, and uses a differentiable ray march-
ing algorithm to render 2D feature maps for image genera-
tion. NeRF [17] represent scenes with implicit fields of vol-
ume density and view-dependent color, and achieves photo-
realistic novel view synthesis results. To accelerate the ren-
dering speed and enlarge the network capacity, NSVF [12]
proposes a sparse voxel octree variant of NeRF, which im-
plicitly encodes the local properties of a visible scene in-
side the voxel-bounded representations. However, as these
methods tend to encode the entire scene, it is not trivial to
render an individual object once the model has been trained.
On the contrary, our proposed object-compositional neural
radiance field naturally supports the standalone object ren-
dering. On this basis, we realize the novel view synthesis
with user-defined object manipulation.
Object-Decomposite Rendering. Early approaches adopt
the traditional modeling [3, 2, 10, 23, 24, 21, 22] and render-
ing pipeline [8] to support editing and novel view synthesis.
For example, Karsch et al. [8] propose to realistically insert
synthetic objects into photographs by estimating environ-
ment light conditions. Cossairt et al. [4] composite real and
synthetic objects together with a light field interface, while
the object light field is captured with a specific hardware
system. Recently, some works adopt neural implicit repre-
sentations for object-decomposite rendering. Guo et al. [7]
propose a bottom-up method by learning one scattering field
per-object and enables rendering scenes with moving ob-
jects and lights, but it needs to train each separate model on
images that only contain a single specific object, which is
impractical for real-world scenarios. Ost et al. [19] propose
to use a neural scene graph to decompose dynamic objects
in a street view dataset, but their method relies on a dynamic
scene, which is not capable of indoor scene scans. Besides,
the latent class encoding restricts each model to represent
only one class of objects with similar shapes and canonical
coordinates, which limits the applications in general cases
where the objects vary and do not share the same shape
characteristics. In contrast, our method does not rely on
the canonical coordinates of objects and can also simulta-
neously learn a compact object-compositional model which
enables novel view synthesis with multi-objects manipula-
tion in real-world scene scans.

3. Method

3.1. Overview

Our framework consists of two pathways: the scene
branch and the object branch, as illustrated in Fig. 2. The
scene branch aims to encode the entire scene geometry and
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Figure 2. We design a two-pathway architecture for object-compositional neural radiance field. The scene branch takes the spatial
coordinate x, the interpolated scene voxel features fscn at x and the ray direction d as input, and output the color cscn and opacity σscn

of the scene. The object branch takes additional object voxel features fobj as well a a object activation code lobj to condition the output
only contains the color cobj and opacity σobj for a specific object at its original location with everything else removed.

appearance, which renders the surrounding background in
editable scene rendering and assists the object branch in
identifying the occlusion region. With 2D instance masks as
guidance, the object branch encodes each standalone object
conditioned on several learnable object activation codes. At
the rendering stage, when conditioning the scene branch
with the object activation code, we can freely render a sin-
gle object while removing everything else. It is noteworthy
that our framework simultaneously learns to encode multi-
ple objects by assigning a bunch of shuffled object activa-
tion codes to the training rays, without the need to train for
each object separately. Since the framework is built upon
NeRF, we refer to Mildenhall et al. [17] for the technical
background.

3.2. Framework of Object-Compositional NeRF

As shown in Fig. 2, our framework adopts two separate
branches for scene rendering and object rendering. We take
the advantages both from the voxelized representation [12]
and the coordinate-based positional encoding [17], and pro-
pose a hybrid space embedding as network input. Practi-
cally, for each point x sampled along the camera ray, we
apply positional encoding γ(·) [17] on both of the scene
voxel feature fscn interpolated from 8 nearest vertices and
space coordinate x to get the hybrid space embedding. This
hybrid space embedding, along with the embedded direc-
tions γ(d), will be fed into the scene branch and the object
branch. By now, the scene branch function Fscn can output
the opacity σscn and color cscn of the scene at x. For the
object branch function Fobj , we additionally add embedded
object voxel feature γ(fobj) and object activation code lobj
to the input, where fobj helps to broaden the ability of learn-
ing decomposition and is shared by all the objects, and lobj
identifies feature space for different objects and is possessed
by each individual. Take the object activation code lobj as
a condition, the object branch precisely outputs color cobj
and opacity σobj for the desired object while everything else
remains empty.

3.3. Object-Compositional Learning

Object supervision. Ideally, an object radiance field should
only be opaque at the area occupied by the object and trans-
parent elsewhere (i.e., zero opacity). To achieve this goal,
we leverage 2D instance segmentation as supervision sig-
nals for the object branch. For brevity, we assume a training
process with K annotated objects in a scene, along with a
learnable object code library L = {lkobj}. For each ray r
in the batched training set Nr, we select one object k as a
training target and assign the object activation code lkobj to
the object branch input. Then we forward the network and
acquire the rendered color Ĉ(r)kobj , as well as the rendered
2D object opacity Ô(r)kobj by summing up the product of
transmittance T k

i and alpha value αk
i of N sampled points

along the ray, which follows [16, 17] and is defined as 1:

Ĉ(r)obj =

N∑
i=1

Tiαicobji, Ô(r)obj =

N∑
i=1

Tiαi,

Ti = exp

−
i−1∑
j=1

σobjjδj

,

(1)

where αi = 1 − exp (−σobjiδi), and δi is the sampling
distance between adjacent points along the ray. To encour-
age the rendered 2D object opacity Ô(r)kobj to satisfy the
2D instance mask, we minimize the squared distance to the
corresponding instance mask M(r)k. We also minimize the
squared distance between the rendered object color Ĉ(r)kobj
and the ground-truth color C(r) with M(r)k masked. The
loss of object supervision is defined as:

Lobj =
∑
r∈Nr

∑
k∈J1..KK

λ1M(r)k||Ĉ(r)kobj − C(r)||22

+λ2w(r)
k||Ô(r)kobj −M(r)k||22,

(2)

where the instance mask M(r)k is constructed by setting
1 or 0 w.r.t. the instance label at the corresponding pixel

1For brevity, we omit k in Ĉ(r)kobj , Ô(r)kobj , T
k
i , αk

i , c
k
obji

, σk
obji

.
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Figure 3. 3D guard mask identifies the occluded region for the
object branch. We render the scene depth dscn (gray lines in the
left), and push forward it along the camera direction with ϵ. Then,
we subtract the visible instance frustum (yellow area in the left)
from the 3D space farther than dscn + ϵ to construct the 3D guard
mask (gray area).

belongs to the object k or not, and w(r)k is the balanced
weight between 0 and 1 signals of the instance mask.
Occlusion issue. The above object supervision is com-
monly sufficient for learning object radiance field from sim-
ple object-centric data (i.e., 360◦ capturing towards a sin-
gle object without any occlusion). However, in real-world
scene scans, target objects are often occluded by other fore-
grounds, which yields incomplete instance masks. There-
fore, for the pixel labels with “empty” (or 0) signal at the
mask, it is ambiguous whether the ray does not hit the ob-
ject or is blocked by other foregrounds, and directly using
these incomplete masks as supervision may overkill part of
the objects and learn a shattered radiance field (see Fig. 9
(c)). And it’s also worth noting that we cannot simply ne-
glect the supervision of the empty areas, or the model would
render unexpected floats at the unsupervised area.
Scene-guided occlusion identification. We exploit the ge-
ometric cues online from the scene branch to identify oc-
clusion regions. First, we utilize the transmittance from
the scene branch to guide the biased sampling of the ob-
ject branch, which we name scene guidance. The scene
guidance significantly reduces the point sampling inside the
occluded region and mitigates the erroneous supervision to
the object branch. However, when the target object is fre-
quently occluded by other instances, the learned object ra-
diance field is still affected (see Fig. 9 (d)). Thus, we pro-
pose a 3D guard mask to stop the gradient applied to the
occluded region, as illustrated in Fig. 3. In practice, we
render the scene depth dscn online by the scene branch and
slightly push forward it along the camera direction with a
small distance ϵ. We then utilize a 3D guard mask to pro-
tect the occluded part, which is constructed by subtracting
the visible instance space from the 3D space farther than
the pushed scene depth dscn + ϵ. During the training pro-
cess of the object branch, we explicitly prune the ray sam-
ples inside the 3D guard mask. Intuitively, we assume that
the distance between two annotated objects is usually larger
than ϵ. Thus, if the target object can be viewed without
any occlusion, our 3D guard mask would permit sufficient

point samples for objects and the surrounding space, so the
instance supervision signal will guide the object branch to
encode the target object and eliminate everything else. Oth-
erwise, if the target object is occluded, the gradient of the
“empty’ signal at the occluded region will be blocked, while
the visible region can still be supervised properly.

3.4. Joint Optimization

We jointly optimize the scene branch and object branch
at the training stage. For the scene branch, we follow [17]
and minimize the squared error between predicted color
Ĉ(r)scn and true pixel color C(r), as:

Lscn =
∑
r∈Nr

||Ĉ(r)scn − C(r)||22, (3)

For the object branch, we use the loss introduced in Eq. (2).
The total loss of the model is defined as:

L = Lobj + Lscn. (4)

3.5. Editable Scene Rendering

Thanks to the object-compositional NeRF, we can read-
ily obtain radiance fields for each annotated object by sim-
ply switching the applied optimized object activation code,
making it easy to realize the editable scene rendering. As
illustrated in Fig. 1, we divide the total editable scene ren-
dering pipeline into the background stage and the object
stage. At the background stage, we obtain the scene color
and opacity {cscni, σscni}Ni=1 from the scene branch while
pruning the point sampling at the target region, so as to
remove the original objects from the scene. At the object
stage, we shoot rays on the K target objects, and follow the
user-defined manipulation to transform the object-specific
color and opacity {ckobji, σ

k
obji

}N K
i=1 k=1 to the desired loca-

tion. Finally, we aggregate all the opacity and colors by or-
dering the distance along the ray directions and render pixel
colors with the quadrature rules [16]:

Ĉ(r) =

N×(K+1)∑
i=1

Tiαici, (5)

where Ti and αi are transmittance and alpha value as de-
fined in Sec. 3.3.

4. Experiments
We evaluate our method in two real-world datasets.

First, we quantitatively and qualitatively compare our scene
branch with SoTA methods on standard scene rendering.
Then, we show the visualization of different ways to ren-
der the individual object and compare our editable scene
rendering with point cloud based rendering method [6]. Fi-
nally, we perform ablation studies to inspect the design of
our framework.



4.1. Dataset

ToyDesk. We created a dataset with instance annotations to
evaluate our framework, which contains two sets of posed
images with 2D instance segmentation for target objects.
Specifically, we prepare two scenes of a desk by placing
several toys with two different layouts, and 360◦ capture
images by looking at the the desk center, where the toys are
frequently occluded by each others from the image view.
We use the SfM [21], multi-view stereo [28] and mesh gen-
eration technique [9] to recover camera poses and meshes,
and also manually label the target object on the meshes. The
2D instance segmentation is obtained by directly projecting
the annotated instance labels from the 3D meshes.
ScanNet. ScanNet [5] dataset contains RGB-D indoor
scene scans as well as 3D instance annotation and 2D in-
stance segmentation by projection. To better evaluate the
performance both of the scene branch and the object branch,
we select frames with a viewing angle less than 40◦ of a
preset central object and distance within 3 meters from the
central object, and randomly sample 80% for training and
other frames for testing. For the object opacity supervision,
we directly use the instance segmentation provided in the
ScanNet dataset, which is fairly rough (see Fig. 10) but can
be fully leveraged by our method.

Please refer to the supplementary material for more de-
tails of the datasets.

4.2. Data Preparation and Experiment Details

Our method does not require sensor depth for training as
well as NeRF [17] and NSVF [12] 2, while NPCR [6] re-
lies on the depth frames to generate voxel aggregation (ac-
cording to the author’s codebase) and dense point clouds to
storage point descriptors. So for a fair comparison, we fol-
low the training setup in NSVF by adding a depth loss to the
training for all the other competitors (i.e., NeRF, NSVF, and
our method) on the ScanNet dataset. However, as the depth
loss is totally optional, we will show more results with-
out depth supervision on the ScanNet dataset in the supple-
mentary material. Besides, as NSVF also utilizes the point
clouds for voxel initialization in their ScanNet experiment,
we thus use the same point clouds as NPCR to initialize
voxels for NSVF and our method. For the experiments on
the ToyDesk dataset, we exclude the NPCR due to the lack
of sensor depth and use the SfM point clouds for voxel ini-
tialization.

4.3. Comparison of Scene Rendering

To evaluate the rendering quality of the scene branch,
we first compare with neural point cloud based render-
ing (NPCR) [6], the state-of-the-art implicit representa-
tion method NeRF [17] and the voxel-bounded extension

2NSVF actually uses depth for the ScanNet dataset.

Methods ToyDesk ScanNet

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
NPCR [6] / / / 25.177 0.754 0.225
NeRF [17] 15.453 0.586 0.537 28.927 0.815 0.249
Sparse Voxel* [12] 14.480 0.532 0.572 24.143 0.735 0.312
Our Method 15.607 0.585 0.522 29.005 0.815 0.243

Table 1. To evaluate the full scene rendering quality, we quantita-
tively compare our scene branch with the SoTA neural rendering
methods on ToyDesk dataset and ScanNet dataset.
NSVF [12]. Since NSVF does not release the training codes
for the ScanNet dataset, and we also fail to train the Scan-
Net data on the official codebase due to the GPU OOM er-
ror, we decide to use our implementation of voxel repre-
sentations along with self-pruning and progressive training
mechanism, which will be denoted as Sparse Voxel.

We follow the standard metric in [12, 17, 6] by using
PSNR, SSIM and LPIPS to measure the rendering qual-
ity. As shown in Table 1, our method is comparable or
even better than the SoTA methods on the evaluated met-
rics. Note that the ToyDesk dataset contains a much larger
portion of relatively far background (compared to Scan-
Net), which degenerates the positional encoding when the
query point is far from the origin [29]. Therefore all NeRF-
based approaches perform worse on ToyDesk. Meanwhile,
we shows rendered examples for ToyDesk dataset in Fig. 4
and ScanNet dataset in Fig. 5. For the results of ToyDesk,
we find that NeRF’s outputs look relatively complete, but
the details are erased (e.g., the edges of the magic cube),
and Sparse Voxel tends to encode more details but fails to
produce reasonable texture for far-away backgrounds where
the SfM point clouds are incomplete. Thanks to our hy-
brid space embedding which automatically adapts to vary-
ing sampling locations, we consistently show fine details of
central objects and the surrounding environment textures.
For the results of ScanNet in Fig. 5, it is noticeable that
NPCR and Sparse Voxel both fail to produce the correct
color at the first row, and NPCR even omitted the chair
handle and the legs as shown in the second and the third
row in Fig. 5. We consider it is mainly due to the incom-
plete point cloud, which makes it impossible for NPCR and
Sparse Voxel to store descriptors in these areas without sup-
porting geometry. On the contrary, our method both shows
finer granularity where there are voxels and also correctly
renders textures where voxel is missing.

4.4. Comparison of Individual Object Rendering

We argue that it is unnatural to render the individual ob-
ject once the entire scene has been encoded to the model,
even though the reconstructed 3D mesh or bounding box
is available and can be acted as a 3D rendering mask. To
prove this, we compare different approaches to render the
individual object in Fig. 6, where (b) and (c) are rendered
with points sampled close to the mesh surface, with radius
0.05m and 0.1m, respectively, and (e) is rendered with rays
clipped by the bounding box, and (f) is the result from the



(a) NeRF (b) Sparse Voxel (c) Our Method (d) Ground truth

Figure 4. We compare scene rendering quality with NeRF [17] and Sparse Voxel [12] on the ToyDesk dataset. Our method consistently
renders fine details of central objects as well as the surrounding environment textures.

(a) NPCR (b) NeRF (c) Sparse Voxel (d) Our Method (e) Ground truth

Figure 5. We show scene rendering examples of NPCR [6], NeRF [17], Sparse Voxel [12] and our method on the ScanNet dataset. Please
zoom in for more details.

object branch. Since the reconstructed mesh is usually in-
complete and inaccurate as shown in Fig. 6 (a), directly ap-
plying a strict 3D rendering mask (i.e. within a radius of
0.05m) would produce a mottled rendering result as Fig. 6
(b) due to the lack of precise point sampling on the main
color components of the radiance field. When relaxing the
radius to 0.1m, though the rendered object becomes more
vivid and realistic, the background texture is incidentally
included as shown in Fig. 6 (c). Besides, restricting ray
samples inside the bounding box would even include more
background textures, as shown in Fig. 6 (e). In contrast, our
object branch can render a clean object without background
included, as shown in Fig. 6 (f).

4.5. Comparison of Scene Editing

We first show our object rendering and scene editing re-
sults on the ToyDesk dataset in Fig. 7. As shown in Fig. 7
(c), the rendered objects from the object branch vividly ex-
hibit the objects with sharp boundaries, which demonstrates
the effectiveness of our object-compositional design. We

perform scene editing by rotating, moving, and duplicating
objects following the proposed editable rendering pipeline.
From Fig. 7 (b), we can see that the manipulated objects
are seamlessly integrated into the scene while ensuring the
correct spatial relationship.

We then compare our editable scene rendering with neu-
ral point cloud based rendering method NPCR [6] on the
ScanNet dataset. The NPCR takes the input of raw point
clouds of a scene and outputs images of novel views. Dur-
ing training, NPCR also optimizes feature vectors for each
3D point which encodes scene appearance. Therefore, we
perform scene editing by manually moving point clouds and
the feature vectors inside the bounding box of the target
objects. As shown in Fig. 8, we find that the manipula-
tion of point clouds inside the bounding box also brings the
movement of background texture (e.g., the pattern of the
windows and the carpet under the chair have been moved
in ‘0024 Translation’ and ‘0113 Rotation’), which may be
due to NPCR incidentally stores part of the background ap-
pearance feature to the points inside the bounding box. In



(d) Image view

(a) Reconstructed
mesh

(b) Masked by mesh
Radius 0.05m

(c) Masked by mesh
Radius 0.1m
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Figure 6. We compare different methods to render the individual
object on the ScanNet dataset.

(b) Scene Editing(a) Image View

(c) Rendered Objects

Figure 7. We show the original image view (a), scene editing
result (b) by duplicating and moving toys on the ToyDesk dataset,
and the decomposite objects (b) rendered by the object branch.

contrast, our method moves the objects while keeping the
textures of the background nearly unchanged, which pro-
duces more realistic editing results. Besides, NPCR also
renders the images with severe artifacts in some cases (e.g.,
false occlusion relationship in ‘0038 Rotation’, unexpected
holes of chairs in ‘0192 Translation’, and cloudy textures in
‘0113 Duplication’). We guess that it somehow encodes the
visibility of 3D points with an implicitly fixed order rather
than inferencing from the 3D space, and the aggregation
from the mixture of object points and invisible noisy points
also confuses the neural renderer. By the way, we also test
scene editing with Sparse Voxel, but find the issue similar
to the bounding box based approaches (Fig. 6). However, as
we output the radiance field of each target objects indepen-
dently and the rendering pipeline also takes the advantages
of volumetric rendering, we consistently produce realistic
editing results with correct space relationship and intact tex-
tures. Please refer to the supplementary material for more
evaluation of our editing results.

Config. ScanNet 0033 ScanNet 0038

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
w/o SG, 3DGM 19.785 0.750 0.111 27.100 0.808 0.112
w/o 3DGM 20.450 0.754 0.117 33.914 0.884 0.056
w/o fobj 22.219 0.817 0.057 33.861 0.892 0.058
Complete 22.600 0.822 0.049 34.435 0.897 0.056

Table 2. Ablation for the effectiveness of our proposed scene guid-
ance, 3D guard mask and object voxel feature on learning object
radiance field.

Config. ScanNet 0033 ScanNet 0038

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
ϵ = 0.025 22.364 0.819 0.051 34.047 0.895 0.057
ϵ = 0.05 22.600 0.822 0.049 34.435 0.897 0.056
ϵ = 0.1 22.172 0.818 0.053 34.299 0.896 0.056

Table 3. Quantitative evaluation w.r.t forward distance ϵ of 3D
guard mask on learning object radiance field.

4.6. Ablation Study

Scene guidance and 3D guard mask. We analyze the ef-
fectiveness of scene guidance and 3D guard mask for learn-
ing object-compositional rendering when the target objects
are frequently viewed with partial occlusion. Specifically,
we choose two scenes (ScanNet 0033 and 0038) where the
target objects are frequently occluded by foreground furni-
ture. We first randomly select ten testing views for each
scene and quantitatively inspect these strategies on the ren-
dered objects in Table 2, where SG denotes the scene guid-
ance (biased sampling distribution) provided by the scene
branch, and 3DGM denotes the 3D guard mask. Practi-
cally, to block the influence of the background color during
the evaluation, we use the instance segmentation to mask
out the background and crop the ground truth and the ren-
dered images to tightly fit the object area. The results in
Table 2 show that our scene guidance and 3D guard mask
significantly improve the rendering quality of the target ob-
jects. Besides, we also show a visual comparison in Fig. 9.
Thanks to these strategies, we can learn an intact object ra-
diance field even the target object is rarely observed com-
pletely. More qualitative and quantitative results can be
found in the supplementary material.
Choice of different ϵ in 3D guard mask. To study the
impact of different ϵ in 3D guard mask, we vary the ϵ and
report the metric evaluation of the object area as introduced
above. From Table 3, we find that ϵ = 0.05 achieves better
rendering quality. As the other choices also produce very
close results, we believe our proposed 3D guard mask is not
sensitive to the choice of ϵ.
Object voxel feature. To inspect the effectiveness of ob-
ject voxel feature fobj illustrated in Fig. 2, we ablate it
by removing the embedded fobj at the input of the object
branch and quantitatively evaluate the object area as we in-
troduced above. As shown in Table 2, the design of fobj

further boosts the rendering quality of the objects, which
indicates adding learnable parameters in 3D space can also
broaden the network ability for compositional rendering.
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Figure 8. We compare our method and NPCR [6] for scene editing by rotating, translating, and duplicating objects on the ScanNet dataset.

(a) Image View (b) Rendering in 
bounding box

(d) Without 3D 
guard mask

(e) Complete model(c) Without scene 
guidance and 3D 

guard mask

Figure 9. We visualize the effectiveness of scene guidance and
3D guard mask by ablating them on the training process of the
ScanNet dataset. Note that (b) is produced by the scene branch
with sampling rays clipped inside the bounding box and can be
considered as a reference complete view of the target object. Our
scene guidance and 3D guard mask effectively prevent the overkill
of the occluded region and ensure a complete object rendering.

(a) Image View (b) Input 
Segmentation

(c) Rendered
Segmentation

(d) Rendered
Object

Figure 10. We show the image view (a), input segmentation for
supervision (b), our rendered segmentation (c), and the rendered
object (d). Please zoom in for more details.

4.7. Visualization of Rendered Segmentation

Since our method only relies on the 2D segmentation to
learn the decomposition of the target objects, we visualize
the input segmentation used for supervision and our ren-
dered segmentation (2D object opacity) as well as the ren-

dered objects in Fig. 10. To our surprise, even though the
input segmentation is fairly rough with jittery edges, our
method can produce a smooth and accurate segmentation
once the training converges while preserving high-fidelity
details of the object (e.g., chair handle at the first row). We
believe the multi-view supervision helps resist mask noise
from a single view, and the converged 3D structure learned
from images provides geometry cues for object decompo-
sition, which is also observed in a parallel work by Zhi
et al. [30]. This shed light on distilling fined-grained 3D
segmentation only from the knowledge of 2D segmentation
networks by the proposed learning pipeline.

5. Conclusion and Future Works
We present the first neural scene rendering framework

which provides high-fidelity novel-view synthesis while
supporting editable scene rendering on real-world scenes.
By training with the posed images and rough 2D instance
masks, we can freely utilize the model to render novel views
with multiple objects manipulated (e.g. moving, rotating, or
duplicating). Currently, due to the lack of observations, our
method relies on the network spatial smoothness to render
unseen textures under objects, which can be further opti-
mized by adopting scene completion methods. To mitigate
the influence of the pose noise and rolling shutter on the
real-world data, we can further optimize camera poses and
ray directions so as to render a clearer background. Besides,
to achieve more realistic scene editing, it is also promising
to integrate the scene lighting model into the framework in
the future work.
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