
Learning Generative Models of Textured 3D Meshes from Real-World Images

Dario Pavllo Jonas Kohler Thomas Hofmann Aurelien Lucchi

Department of Computer Science
ETH Zurich

Latent dimension for "light intensity"

Figure 1. Left: we focus on GANs, where our generator outputs a triangle mesh and a UV-mapped texture. Middle: our method learns
to synthesize textured 3D meshes given a real-world collection of 2D images. Top-right: we showcase a setting where we train a single
model to generate all classes. This model successfully disentangles some factors of the 3D environment (e.g. lighting/shadows) without
explicit supervision. Bottom-right: we also demonstrate a conditional model that generates meshes from 3D semantic layouts.

Abstract

Recent advances in differentiable rendering have
sparked an interest in learning generative models of tex-
tured 3D meshes from image collections. These models
natively disentangle pose and appearance, enable down-
stream applications in computer graphics, and improve the
ability of generative models to understand the concept of
image formation. Although there has been prior work on
learning such models from collections of 2D images, these
approaches require a delicate pose estimation step that ex-
ploits annotated keypoints, thereby restricting their appli-
cability to a few specific datasets. In this work, we propose
a GAN framework for generating textured triangle meshes
without relying on such annotations. We show that the per-
formance of our approach is on par with prior work that
relies on ground-truth keypoints, and more importantly, we
demonstrate the generality of our method by setting new
baselines on a larger set of categories from ImageNet –
for which keypoints are not available – without any class-
specific hyperparameter tuning. We release our code at
https://github.com/dariopavllo/textured-3d-gan

1. Introduction

Most of the recent literature in the field of generative
models focuses on 2D image generation [36, 54, 22, 3, 23],
which largely ignores the fact that real-world images depict
2D projections of 3D objects. Constructing 3D generative
models presents multiple advantages, including a fully dis-
entangled control over shape, appearance, pose, as well as
an explicit representation of spatial phenomena such as oc-
clusions. While the controllability aspect of 2D generative
models can be improved to some extent by disentangling
factors of variation during the generation process [53, 40,
21, 22], the assumptions made by these approaches have
been shown to be unrealistic without an inductive bias [33].
It is thus unclear whether 2D architectures can reach the
same degree of controllability as a native 3D representation.

As a result, a growing line of research investigates learn-
ing textured 3D mesh generators in both GAN [39, 4] and
variational settings [15]. These approaches are trained with
2D supervision from a collection of 2D images, but require
camera poses to be known in advance as learning a joint dis-
tribution over shapes, textures, and cameras is particularly
difficult. Usually, the required camera poses are estimated
from keypoint annotations using a factorization algorithm

ar
X

iv
:2

10
3.

15
62

7v
2

 [
cs

.C
V

]
 1

7
A

ug
 2

02
1

https://github.com/dariopavllo/textured-3d-gan

such as structure-from-motion (SfM) [35]. These keypoint
annotations are, however, very expensive to obtain and are
usually only available on a few datasets.

In this work, we propose a new approach for learning
generative models of textured triangle meshes with min-
imal data assumptions. Most notably, we do not require
keypoint annotations, which are often not available in real-
world datasets. Instead, we solely rely on: (i) a single mesh
template (optionally, a set of templates) for each image cat-
egory, which is used to bootstrap the pose estimation pro-
cess, and (ii) a pretrained semi-supervised object detector,
which we modify to infer semantic part segmentations on
2D images. These, in turn, are used to augment the initial
mesh templates with a 3D semantic layout that allows us to
refine pose estimates and resolve potential ambiguities.

First, we evaluate our approach on benchmark datasets
for this task (Pascal3D+ [31] and CUB [45]), for which key-
points are available, and show that our approach is quantita-
tively on par with the state-of-the-art [39] as demonstrated
by FID metrics [16], even though we do not use keypoints.
Secondly, we train a 3D generative model on a larger set
of categories from ImageNet [6], where we set new base-
lines without any class-specific hyperparameter tuning. To
our knowledge, no prior works have so far succeeded in
training textured mesh generators on real-world datasets,
as they focus either on synthetic data or on simple datasets
where poses/keypoints are available. We also show that we
can learn a single generator for all classes (as opposed to
different models for each class, as done in previous work
[39, 4, 15]) and notice the emergence of interesting disen-
tanglement properties (e.g. color, lighting, style), similar to
what is observed on large-scale 2D image generators [3].

Finally, we quantitatively evaluate the pose estimation
performance of our method under varying assumptions (one
or more mesh templates; with or without semantic informa-
tion), and showcase a proof-of-concept where 3D meshes
are generated from sketches of semantic maps (seman-
tic mesh generation), following the paradigm of image-to-
image translation. In summary, our main contributions are
as follows:

• We introduce a new approach to 3D mesh generation that
does not require keypoint annotations, enabling its use on
a wider range of datasets as well as new image categories.

• We showcase 3D generative models in novel settings, in-
cluding learning a single 3D generator for all categories,
and conditional generation from semantic mesh layouts.
In addition, we provide a preliminary analysis of the dis-
entanglement properties learned by these models.

• We propose a comprehensive 3D pose estimation frame-
work that combines the merits of template-based ap-
proaches and semantic-based approaches. We further ex-
tend this framework by explicitly resolving pose ambigu-
ities and by adding support to multiple templates.

2. Related work
Differentiable 3D representations. Recent work in 3D
deep learning has focused on a variety of 3D representa-
tions. Among reconstruction approaches, where the goal
is to reconstruct 3D meshes from various input representa-
tions, [37] predict signed distance fields from point clouds,
[5, 12, 51, 9, 56, 47, 42] predict 3D meshes from images us-
ing a voxel representation, and [7] predict point clouds from
images. These approaches require some form of 3D super-
vision, which is only achievable through synthetic datasets.
More recent efforts have therefore focused on reconstruct-
ing meshes using 2D supervision from multiple views, e.g.
[50, 11, 44, 46, 43, 52] in the voxel setting, and [19] using
point clouds. However, the multiple-viewpoint assumption
is unrealistic on real-world collections of natural images,
which has motivated a new class of methods that aim to
reconstruct 3D meshes from single-view images. Among
recent works, [24, 32, 20, 4, 10, 29] are all based on this
setting and adopt a triangle mesh representation. Our work
also focuses on triangle meshes due to their convenient
properties: (i) their widespread use in computer graphics,
movies, video games; (ii) their support for UV texture map-
ping, which decouples shape and color; (iii) the ability of
efficiently manipulating and transforming vertices via lin-
ear algebra. The use of triangle meshes in deep learning was
recently enabled by differentiable renderers [34, 24, 32, 4],
i.e. renderers that provide gradients w.r.t. scene parameters.
Motivated by its support for UV maps, we use DIB-R [4] as
our renderer of choice throughout this work.
Keypoint-free pose estimation. The use of keypoints for
pose estimation is limiting due to the lack of publicly avail-
able data and an expensive annotation process. Thus, a
growing line of research focuses on inferring poses via
semi-supervised objectives. To our knowledge, no approach
has so far focused on generation, but there have been some
successful attempts in the reconstruction literature. The ini-
tial pose estimation step of our framework is most closely
related to [10, 29], which both propose approaches for 3D
mesh reconstruction without keypoints. In terms of as-
sumptions, [10] require a canonical mesh template for each
category. Object poses are estimated by fitting the mesh
template to the silhouette of the object and by concurrently
optimizing multiple camera hypotheses (which helps to deal
with the large amount of bad local minima). [29] do not re-
quire a mesh template, but instead use object part segmen-
tations from a self-supervised model (SCOPS [18]) to infer
a 3D semantic template that is matched to the reference seg-
mented image. Based on early experiments, we were unable
to individually generalize these methods to generation (our
goal), which we found to have a lower tolerance to errors
due to the intrinsic difficulty in training GANs. Instead, we
here successfully combine both ideas (mesh templates and
semantics) and extend the overall framework with (i) the

2

optional support for multiple mesh templates, (ii) a princi-
pled ambiguity resolution step that leverages part semantics
to resolve conflicts among camera hypotheses with simi-
lar reprojection errors. We additionally adopt a more gen-
eral object-part segmentation framework. Namely, we use
a pre-trained semi-supervised object detector [17] modified
to produce fine-grained semantic templates (Fig. 2), as op-
posed to SCOPS (used in [29]), which we found to require
class-specific hyperparameter tuning.
Mesh generation. In the generation literature there has
been work on voxel representations [48, 9, 41, 49, 55, 2]
and point clouds [1, 8]. These approaches require 3D super-
vision from synthetic data and are thus subject to the same
limitations mentioned earlier. To our knowledge, the only
approaches that tackle this task on a triangle mesh setting
using exclusively 2D supervision are [15], which focuses
on a VAE setting using face colors (as opposed to full tex-
ture mapping) and is thus complementary to our work, and
[4, 39], which adopts a GAN setting. In particular, [4] repre-
sents the earliest attempt in generating textured 3D meshes
using GANs, but their approach cannot supervise textures
directly from image pixels. By contrast, the more recent
[39] proposes a more comprehensive framework that can
model both meshes and UV-mapped textures, which allows
for successful application to natural images (albeit with key-
point annotations). We build upon [39], from which we
borrow the GAN architecture but substantially rework the
supervision strategy to relax the keypoint requirement.

3. Method
Data requirements. As usual in both the reconstruc-
tion [24, 20, 10, 29] and generation [14, 4, 39] literature,
we require a dataset of segmented images. Segmentation
masks (a.k.a. silhouettes) can easily be obtained through
an off-the-shelf model (we use PointRend [26] pretrained
on COCO [30]; details in Appendix A.1). Whereas prior
approaches require keypoint annotations for every image,
we only require an untextured mesh template for each im-
age category, which can be downloaded freely from the
web. Optionally, our framework supports multiple mesh
templates per category, a choice we explicitly evaluate in
sec. 4.2. We note that pose estimation from silhouettes
alone can in some cases be ambiguous, and therefore we
rely on object part semantics to resolve these ambiguities
wherever possible. To this end, we use the semi-supervised,
large-vocabulary object detector from [17, 38] to infer part
segmentations on all images. We adopt their pretrained
model as-is, without further training or fine-tuning, but
post-process its output as described in Appendix A.1.
Dataset preparation. Since our goal is to apply our method
to real-world data that has not been manually cleaned or
annotated – unlike the commonly-used datasets CUB [45]
and Pascal3D+ [31] – we attempt to automatically detect

Dataset image Segmented object Silhouette Part semantics
Wing

Headlight

Tail

Engine

Window

Nose

Door

Windshield

Wheel

Seat

Leg

Mane

Figure 2. The dataset is initially processed into a clean collection
of images with associated object masks and semantic part segmen-
tations. This is done via off-the-shelf models and does not involve
any additional data collection. Semantic classes have a precise
meaning and are shared between different categories (e.g. wheels
appear in both cars and motorbikes).

and remove images that do not satisfy some quality crite-
ria. In particular, objects should not be (i) too small, (ii)
truncated, or (iii) occluded by other objects (implementa-
tion details in Appendix A.1). This filtering step is tuned
for high precision and low recall, as we empirically found
that it is beneficial to give more importance to the former.
All our experiments and evaluations (sec. 4) are performed
on the dataset that results from this step. Finally, sample im-
ages and corresponding silhouettes/part segmentations can
be seen in Fig. 2, which also highlights how some semantic
parts are shared across image categories.

3.1. Pose estimation framework

Overview. Most reconstruction and generation approaches
require some form of pose estimation to initialize the learn-
ing process. Jointly learning a distribution over camera
poses and shapes/textures is extremely challenging and
might return a trivial solution that does not entail any 3D
reasoning. Therefore, our approach also requires a pose es-
timation step in order to allow the learning process to con-
verge to meaningful solutions. Our proposed pose estima-
tion pipeline is summarized in Fig. 3: starting from a set
of randomly-initialized camera hypotheses for each object
instance, we render the mesh template(s) using a differen-
tiable renderer and optimize the camera parameters so that
the rendered silhouette matches the target silhouette of the
object. At this point, no semantics, colors, or textures are
involved, so the approach can lead to naturally ambiguous
poses (see Fig. 3 right, for an example). We then introduce a
novel ambiguity detection step to select only images whose
inferred pose is unambiguous, and use the most confident
ones to infer a 3D semantic template, effectively augment-
ing the initial mesh templates with semantic information
(more examples of such templates can be seen in Fig. 5).
Afterwards, the process is repeated – this time leveraging
semantic information – to resolve ambiguities and possibly
reinstate images that were previously discarded. The final

3

Image collection

Silhouette
optimization

Initial camera hypotheses

Rendered
silhouettes

Loss

Target
silhouette

Ambiguity
detection

Semantic
template
inference

Optimized camera hypotheses

Ambiguity
resolution

Target
semantics

Segment parts
(pretrained model)

Segment masks
(pretrained model)

Semantic mesh
template(s)

Mesh template(s)

Image Target silhouette Target semantics

Predicted silhouette Predicted semantics

View 1

View 2
Mesh template

Figure 3. Left: schematic overview of the proposed pose estimation pipeline. The left side shows our data requirements (a collection
of 2D images and one or more untextured mesh templates). For clarity, we only show the optimization process for the circled airplane,
although the semantic template inference step involves multiple instances. Right: ambiguity arising from opposite poses. The two camera
hypotheses produce almost-identical silhouettes which closely approximate the target, but describe opposite viewpoints. This particular
example would initially be rejected by our ambiguity detection test, but it would then be resolved once semantics are available.

output is a camera pose for each object as well as a confi-
dence score that can be used to trade off recall (number of
available images) for precision (similarity to ground-truth
poses). In the following, we describe each step in detail.
Silhouette optimization. The first step is a fitting proce-
dure applied separately to each image. Following [10], who
observe that optimizing multiple camera hypotheses with
differing initializations is necessary to avoid local minima,
we initialize a set of Nc camera hypotheses for each im-
age as described in Appendix A.1. Our camera projection
model is the augmented weak-perspective model of [39],
which comprises a rotation q ∈ R4 (a unit quaternion), a
scale s ∈ R, a screen-space translation t ∈ R2, and a per-
spective correction term z0 ∈ R which is used to approxi-
mate perspective distortion for close objects. We minimize
the mean squared error (MSE) in pixel space between the
rendered silhouetteR(·) and the target silhouette x:

min
q,t,s,z0

‖R(Vtpl,Ftpl; q, t, s, z0)− x‖2 , (1)

where R is the differentiable rendering operation, Vtpl rep-
resents the (fixed) mesh template vertices, and Ftpl repre-
sents the mesh faces. Each camera hypothesis is optimized
using a variant of Adam [25] that implements full-matrix
preconditioning as opposed to a diagonal one. Given the
small number of learnable parameters (8 for each hypothe-
sis), the O(n3) cost of inverting the preconditioning matrix
is negligible compared to the convergence speed-up. We
provide hyperparameters and more details about this choice
in the Appendix A.1. In the settings where we use multiple
mesh templates Nt, we simply replicate each initial camera
hypothesis Nt times so that the total number of hypotheses
to optimize is Nc ·Nt. In this case, we compensate for the
increase in optimization time by periodically pruning the
worst camera hypotheses during optimization. Addition-
ally, in all settings, we start by rendering at a low image res-
olution and progressively increase the resolution over time,
which further speeds up the process. We describe how both
strategies are implemented in the Appendix A.1.
Scoring and ambiguity detection. All symmetric objects
(i.e. many natural and man-made objects) present ambigu-

ous poses: opposite viewpoints that produce the same sil-
houette after 2D projection (Fig. 3 right). Similar ambigui-
ties can also arise as a result of noisy segmentation masks,
inappropriate mesh templates, or camera hypotheses that
converge to bad local minima. Since wrong pose estimates
have a significant negative impact on the rest of the pipeline,
this motivates the design of an ambiguity detection step.
Ideally, we would like to accept pose estimates that are
both confident – using the intersection-over-union (IoU) be-
tween the rendered/target silhouettes as a proxy measure –
and unambiguous, i.e. no two camera hypotheses with high
IoU should describe significantly different poses. We for-
malize this as follows: we first score each hypothesis k as
(vconf)k = (softmax(vIoU / τ))k, where τ = 0.01 is a tem-
perature coefficient that gives similar weights to IoU values
that are close to the maximum, and low weights to IoU val-
ues that are significantly lower than the maximum. Next, we
require that highly-confident poses (as measured by vconf)
should describe similar rotations. We therefore construct a
pairwise distance matrix D of shape Nc × Nc, where each
entry dij describes the geodesic distance between the rota-
tion of the i-th hypothesis and the rotation of the j-th hy-
pothesis. Entries are then weighted by vconf across both
rows and columns, and are finally summed up, yielding a
scalar agreement score vagr for each image:
D = 1− (QTQ)◦2, vagr =

∥∥D� (vconf v
T
conf)

∥∥
1

(2)
where Q is a 4 × Nc matrix of unit quaternions (one per
hypothesis), M◦2 denotes the element-wise square, and �
denotes the element-wise product.

The agreement score vagr can be roughly interpreted as
follows: a score of 0 (best) implies that all confident camera
hypotheses describe the same rotation (they agree with each
other). A score of 0.5 describes two poses that are rotated by
180 degrees from one another1. Empirically, we established
that images with vagr > 0.3 should be rejected.
Semantic template inference. Simply discarding ambigu-
ous images might significantly reduce the size and diver-

1For example, consider a D matrix of size 2 × 2, where entries along
the main diagonal are 0, and 1 elsewhere.

4

sity of the training set. Instead, we propose to resolve the
ambiguous cases. While this is hardly possible when we
only have access to silhouettes, it becomes almost trivial
once semantics are available (Fig. 3 right). A similar idea
was proposed in [29], who infer a 3D semantic template by
averaging instances that are close to a predetermined ex-
emplar (usually an object observed from the left or right
side). Yet, our formulation does not require an exemplar
but directly leverages samples that have passed the ambigu-
ity detection test. Since our data requirements assume that
mesh templates are untextured, our first step in this regard
aims at augmenting each mesh template with part seman-
tics. Among images that have passed the ambiguity test
(vagr < 0.3), we select the camera hypothesis with the high-
est IoU. For each mesh template, the semantic template is
computed using the top Ntop = 100 images assigned to that
template, as measured by the IoU. Then, we frame this step
as an optimization problem where the goal is to learn vertex
colors while keeping the camera poses fixed, minimizing
the MSE between the rendered (colored) mesh template and
the 2D image semantics, averaged among the top samples:

min
Ctpl

1

Ntop

∑
i

‖R(Vtpl,Ftpl,Ctpl; qi, ti, si, z0i)−Ci‖2 , (3)

where Ctpl represents the vertex colors of the template and
Ci denotes the 2D semantic image. For convenience, we
represent Ctpl as a K×Nv matrix, where Nv is the number
of vertices and K is the number of semantic classes (color
channels, not necessarily limited to 3), and Ci is aK×Npix

matrix, where Npix is the number of image pixels. In the
Appendix A.1, we derive an efficient closed-form solution
that requires only a single pass through the dataset. Exam-
ples of the resulting semantic templates are shown in Fig. 5.

Ambiguity resolution. In the last step of our pose esti-
mation pipeline, we repeat the scoring process described
in “Scoring and ambiguity detection” with the purpose of
resolving ambiguities. Instead of evaluating the scores
on the IoU, however, we use the mean intersection-over-
union (mIoU) averaged across semantic classes. Since our
inferred semantic templates are continuous, we adopt a
smooth generalization of the mIoU (weighted Jaccard simi-
larity) in place of the discrete version:

mIoU =
1

K

∑
k

‖min(Ĉk,Ck)‖1
‖max(Ĉk,Ck)‖1

(4)

where Ĉk is the rendered semantic class k and min,max
(performed element-wise) represent the weighted inter-
section and union, respectively. We then recompute the
confidence scores and agreement scores as before (using
the mIoU as a target metric), discard the worst 10% images
in terms of mIoU as well as those whose vagr > 0.3, and
select the best hypothesis for each image as measured by
the mIoU. We found no practical advantage in repeating
the semantic template inference another time, nor in re-

Recon.
Network Renderer

Loss

Loss

Loss

Inverse
Renderer Train 2D GAN

Input
image

UV Map Camera

Displacement
Map

Figure 4. Generation framework using the convolutional mesh rep-
resentation. Images are fed into a network trained to reconstruct
meshes (parameterized as 2D displacement maps), given camera
poses. The meshes are then used to project natural images onto
the UV map. Finally, the resulting partial textures, displacement
maps, and (optionally) predicted semantics are used to train a 2D
convolutional GAN in UV space.

optimizing/fine-tuning the camera poses using semantics.
We show this quantitatively in sec. 4.2 and discuss further
details on various exploratory attempts in Appendix A.4.

3.2. Generation framework

The camera poses obtained using the approach described
in sec. 3.1 can be used to train a generative model as shown
in Fig. 4. For this component, we build upon [39], from
which we borrow the convolutional mesh representation and
the GAN architecture. Our generation approach mainly
consists of three steps. (i) Given a collection of images, seg-
mentation masks, and their poses2, we train a reconstruc-
tion model to predict mesh, texture, and semantics given
only the 2D image as input. Although predicted textures are
not used in subsequent steps (the GAN learns directly from
image pixels), [39] observe that predicting textures during
training has a beneficial regularizing effect on the mesh, and
therefore we also keep this reconstruction term. Unlike [39]
(where semantics were not available), however, we also pre-
dict a 3D semantic part segmentation in UV space, which
provides further regularization and enables interesting con-
ditional generation settings (we showcase this in sec. 4.2).
As in [39], we parameterize the mesh as a 2D displacement
map that deforms a sphere template in its tangent space. (ii)
Through an inverse rendering approach, image pixels are
projected onto the UV map of the mesh, yielding partially-
occluded textures. Occlusions are represented as a binary
mask in UV space. (iii) Finally, displacement maps and
textures are modeled in UV space using a standard 2D con-
volutional GAN, whose training strategy compensates for
occlusions by masking inputs to the discriminator.
Architecture. Our experiments (sec. 4) analyze two differ-
ent settings: A where we train a separate model for each
category, and B where we train a single model for all cat-

2In [39], poses are estimated via structure-from-motion on ground-truth
keypoints. In this work, we use our proposed approach (sec. 3.1).

5

Motorbike Bus Truck Car Airplane Bird Sheep Elephant Zebra Horse Cow Bear Giraffe

Wing

Engine

Fender

Seat

Handlebar

Door

Bumper

Grill

License plate

Wheel Window Windshield

MirrorLight

Headlight

Landing gear

Feather

Tail Leg

FootHoof

Neck

Mane Head

Face

MouthNoseCockpit

Trunk

Horn

Ear

Eye

Beak

Figure 5. Learned 3D semantic templates. We show one template per category from two views (front/back). Colors are exaggerated for
presentation purposes, but in practice the probability maps are smoother. We also highlight how semantic parts are shared among categories.

egories. In setting A, we reuse similar reconstruction and
GAN architectures to [39] in order to establish a fair com-
parison with their approach. We only modify the output
head of the reconstruction model, where we add K extra
output channels for the semantic class prediction (K de-
pends on the category). In setting B, we condition the model
on the object category by modifying all BatchNorm layers
and learning different gain and bias parameters for each cat-
egory. Additionally, in the output head we share semantic
classes among categories (for instance there is a unique out-
put channel for wheel that is shared for buses, trucks, etc.;
see Fig. 5). We do not make any other change that would af-
fect the model’s capacity. As for the GAN, in both A and B,
we use the same architecture as [39]. Further details regard-
ing hyperparameters, implementation and optimizations to
improve rendering speed can be found in Appendix A.1.
Loss. The reconstruction model is trained to jointly mini-
mize the MSE between (i) rendered and target silhouettes,
(ii) predicted RGB texture and target 2D image, (iii) pre-
dicted semantic texture (withK channels) and target 2D se-
mantic image. As in [39], we add a smoothness loss to en-
courage neighboring faces to have similar normals. Finally,
the availability of mesh templates allows us to incorporate a
strong shape prior into the model via a loss term that can
be regarded as an extreme form of semi-supervision: on
images with very confident poses (high IoU), we provide
supervision directly on the predicted 3D vertices by adding
a MSE loss between the latter and the vertices of the mesh
template (i.e. our surrogate ground-truth), only on the top
10% of images as measured by the IoU. This speeds up con-
vergence and helps with modeling fine details such as wings
of airplanes, where silhouettes alone provide a weak learn-
ing signal from certain views. This step requires remeshing
the templates to align them to a common topology, which
we describe in Appendix A.1.

4. Experiments
We quantitatively evaluate the aspects that are most cen-

tral to our approach: pose estimation and generation quality.
Pose estimation. On datasets where annotated keypoints
are available, we compare the poses estimated by our

approach to poses estimated from structure-from-motion
(SfM) on ground-truth keypoints. Since the robustness of
SfM depends on the number of visible keypoints, we never
refer to SfM poses as “ground-truth poses”, as these are not
available in the real-world datasets we use. Nonetheless,
we believe that SfM poses serve as a good approximation
of ground-truth poses on most images. Our evaluation met-
rics comprise (i) the geodesic distance (GD) between the
rotation q predicted by our approach and the SfM rotation
p, defined as GD = 1 − (p · q)2 for quaternions, where
GD ∈ [0, 1] 3; and (ii) the recall, which measures the frac-
tion of usable images that have passed the ambiguity detec-
tion test. We evaluate pose estimation at different stages:
after silhouette optimization (where no semantics are in-
volved), and after the semantic template inference. Addi-
tionally, we compare settings where only one mesh template
per category is available, and where multiple mesh tem-
plates are employed (we use 2–4 templates per category).
Generative modeling. Following prior work on textured
3D mesh generation with GANs [39], we evaluate the
Fréchet Inception Distance (FID) [16] on meshes rendered
from random viewpoints. For consistency, our implemen-
tation of this metric follows that of [39]. Since our pose
estimation framework discards ambiguous images and the
FID is sensitive to the number of evaluated images, we al-
ways use the full dataset for computing reference statistics.
As such, there is an incentive for optimizing both GD and
recall metrics as opposed to trading one off for the other.
Finally, consistently with [39], we generate displacement
maps at 32×32 resolution, textures at 512×512, and sample
from the generator using a truncated Gaussian at σ = 1.0.

4.1. Datasets

We evaluate our approach on three datasets: CUB-200-
2011 (CUB) [45], Pascal3D+ (P3D) [31], and a variety of
classes from ImageNet [6]. The first two provide keypoint
annotations and serve as a comparison to previous work,
whereas on the latter we set new baselines. Combining all

3More commonly known as cosine distance when quaternions are used
to describe orientations, as in our case.

6

Motorbike Bus Truck Car Airplane Bird Giraffe

Cow Horse Bear Elephant Zebra Sheep

Figure 6. Qualitative results for all 13 classes used in our work. For each class, we show one wireframe mesh on the left, the corresponding
textured mesh on the right, and two additional textured meshes on the second row. Meshes are rendered from random viewpoints.

Bird Car Airplane
Setting Step GD(1) GD (Recall) GD(1) GD (Recall) GD(1) GD (Recall)

Single
template

Silhouette 0.47 0.35 (52%) 0.12 0.05 (75%) 0.31 0.28 (85%)
Semantics 0.29 0.24 (74%) 0.11 0.06 (84%) 0.25 0.18 (78%)
Repeat x2 0.29 0.24 (76%) 0.15 0.11 (85%) 0.24 0.17 (75%)

Multiple
templates

Silhouette 0.47 0.33 (44%) 0.10 0.05 (78%) 0.28 0.22 (81%)
Semantics 0.32 0.27 (76%) 0.06 0.04 (88%) 0.22 0.15 (79%)
Repeat x2 0.32 0.27 (78%) 0.07 0.05 (89%) 0.21 0.16 (80%)

Table 1. Pose estimation results under different settings. Best in
bold; second best underlined. We report geodesic distance (GD;
lower = better) after each step and associated recall (higher = bet-
ter) arising from ambiguity detection. For comparison, we also re-
port GD w/o ambiguity detection, GD(1), assuming 100% recall.

datasets, we evaluate our approach on 13 categories.
CUB (Birds). For consistency with prior work, we adopt
the split of [39, 20] (≈6k training images). As we work in
the unconditional setting, we do not use class labels.
Pascal3D+ (P3D). Again, we adopt the split of [39, 20], and
test our approach on both car and airplane categories. Since
[39] has only tested on cars, we train the model of [39] on
airplanes and provide a comparison here. P3D comprises a
subset of images from ImageNet and [39] evaluates only on
this subset; for consistency, we adopt the same strategy.
ImageNet. Our final selection of classes comprises the ve-
hicles and animals that can be seen in Fig. 5/6. The list
of synsets used in each class as well as summary statis-
tics are provided in the Appendix A.3. The set of Ima-
geNet classes includes car and airplane, which partially
overlap with P3D. Therefore, when we mention these two
classes, we always specify the subset we refer to (ImageNet
or P3D). We also note that the dataset is heavily imbalanced,
ranging from ≈300 usable images for giraffe to thousands
of images for car. For this reason, in setting B we take mea-
sures to balance the dataset during training (Appendix A.1).

4.2. Results

Pose estimation. We evaluate our pose estimation frame-
work on bird, car, and airplane, for which we have key-
point annotations. Reference poses are obtained using the
SfM implementation of [20]. For birds (CUB), the scores
are computed on all images, whereas for cars/airplanes they
are computed on the overlapping images between P3D and

our ImageNet subset. Results are summarized in Table 1.
Interestingly, using multiple mesh templates does not seem
to yield substantially different results, suggesting that our
approach can work effectively with as little as one template
per class. Moreover, incorporating semantic information
improves both GD and recall. Finally, we repeat the ambi-
guity detection and semantic template inference steps a sec-
ond time, but observe no improvement. Therefore, in our
following experiments we only perform these steps once.
We further discuss these results in Appendix A.2, where we
aim to understand the most common failure modes by ana-
lyzing the full distribution of rotation errors. Qualitatively,
the inferred 3D semantic templates can be found in Fig. 5.

Generative model. We report the FID on ImageNet in Ta-
ble 2, left (bird refers to CUB), where we set new baselines.
As before, we compare settings where we adopt a single
mesh template vs multiple templates. We also showcase a
conditional model that learns to synthesize all categories us-
ing a single generator (setting B). Although this model has
the same capacity as the individual models (but was trained
to generate all classes at once), we note that its scores are
in line with those of setting A, and in some classes (e.g.

Skin color (white - brown) Specular reflections (matte - shiny)

Motorbike Bus Airplane Bird

Elephant Bear Horse Zebra

Figure 7. Disentanglement and interpolation in the model trained
to generate all classes (setting B). Top: directions in latent space
that correlate with certain style factors, such as skin color and
lighting. The effect is consistent across different classes. Bottom:
interpolation between different classes with a fixed latent code.

7

Setting MBike Bus Truck Car Airplane Bird Sheep Elephant Zebra Horse Cow Bear Giraffe All
Single TPL (A) 107.4 219.3 164.1 30.73 77.84 55.75 173.7 114.5 28.19 113.3 137.0 187.1 157.7 –
Multi TPL (A) 107.0 160.7 206.1 32.19 102.2 56.54 155.1 135.9 22.10 107.1 133.0 195.5 126.0 –
Single TPL (B) 94.74 204.98 179.3 39.68 46.46 88.47 169.9 127.6 24.47 106.9 139.4 156.4 176.8 60.82
Multi TPL (B) 94.03 187.75 204.7 46.11 77.27 77.23 163.8 146.2 31.70 113.4 117.5 189.9 158.0 63.00

Method Bird (CUB) Car (P3D) Airplane (P3D)
Keypoints+SfM [39] 41.56 43.09 147.8*
Silhouette (single TPL) 73.67 38.16 100.5
Silhouette (multi TPL) 88.39 36.17 96.28
Semantics (single TPL) 55.75 36.52 81.28
Semantics (multi TPL) 56.54 37.56 88.85

Table 2. Left: FID of our approach on ImageNet (except bird, which refers to CUB). We report results for models trained separately on
different classes (setting A) and a single model that generates all classes (setting B). Right: comparison of our FID w.r.t. prior work, using
either silhouettes alone or our full pipeline. * = trained by us; TPL = mesh template(s); lower = better, best in bold, second best underlined.

airplane) they are significantly better, most likely due to
a beneficial regularizing effect. However, we also note that
there is no clear winner on all categories. To our knowledge,
no prior work has trained a single 3D generator on multiple
categories without some form of supervision from synthetic
data. Therefore, in one of the following paragraphs we an-
alyze this model from a disentanglement perspective. Next,
in Table 2 (right), we compare our results to the state-of-
the-art [39] on the bird, car, and airplane categories from
CUB/P3D. We find that our approach outperforms [39] on
car and airplane (P3D) – even though we do not exploit
ground-truth keypoints – and performs slightly worse on
bird (CUB). We speculate this is mainly due to the fact that,
on CUB, all keypoints are annotated (including occluded
ones), whereas P3D only comprises annotations for visible
keypoints, potentially reducing the effectiveness of SfM as a
pose estimation method. Finally, we point out that although
there is a large variability among the scores across classes,
comparing FIDs only makes sense within the same class,
since the metric is affected by the number of images.
Qualitative results. In addition to those presented in Fig. 1,
we show further qualitative results in Fig. 6. For animals,
we observe that generated textures are generally accurate
(e.g. the high-frequency details of zebra stripes are modeled
correctly), with occasional failures to model facial details.
With regards to shape, legs are sporadically merged but also
appear correct on many examples. We believe these issues
are mostly due to a pose misalignment, as animals are de-
formable but our mesh templates are rigid. As part of future
work, we would like to add support for articulated mesh
templates [28] to our method. As for vehicles, the gener-
ated shapes are overall faithful to what one would expect,
especially on airplanes where modeling wings is very chal-
lenging. We also note, however, that the textures of rare
classes (truck above all) present some incoherent details.
Since we generally observe that the categories with more
data are also those with the best results, these issues could
in principle be mitigated by adding more images. Finally,
we show additional qualitative results in the Appendix A.2.
Disentanglement and interpolation. We attempt to inter-
pret the latent space of the model trained to synthesize all
classes (setting B), following [13]. We identify some direc-
tions in the latent space that correlate with characteristics
of the 3D scene, including light intensity (Fig. 1, top-right),
specular reflections and color (Fig. 7). Importantly, these
factors seem to be shared across different classes and are

1. 2.

3. 4. Bumper

Wheel

Window

Windshield

Light

Headlight

Figure 8. Conditional mesh generation from semantic layouts. In
this demo, we progressively build a car by sketching its parts,
proposing an interesting way of controlling the generation process.

learned without explicit supervision. Although our analysis
is preliminary, our findings suggest that 3D GANs disen-
tangle high-level features in an interpretable fashion, simi-
lar to what is observed in 2D GANs to some extent (e.g. on
pose and style). However, since 3D representations already
disentangle appearance and pose, the focus of the disentan-
gled features is on other aspects such as texture and light-
ing. Fig. 7 (bottom) illustrates interpolation between dif-
ferent classes while keeping the latent code fixed. Style is
preserved and there are no observable artifacts, suggesting
that the latent space is structured.
Semantic mesh generation. Since our framework predicts
a 3D semantic layout for each image, we can condition the
generator on such a representation. In Fig. 8, we propose a
proof-of-concept where we train a conditional model on the
car class that takes as input a semantic layout in UV space
and produces a textured mesh. Such a setting can be used
to manipulate fine details (e.g. the shape of the headlights)
or the placement of semantic parts.

5. Conclusion
We proposed a framework for learning generative mod-

els of textured 3D meshes. In contrast to prior work, our
approach does not require keypoint annotations, enabling
its use on real-world datasets. We demonstrated that our
method matches the results of prior works that use ground-
truth keypoints, without having to rely on such information.
Furthermore, we set new baselines on a subset of categories
from ImageNet [6], where keypoints are not available. We
believe there are still many directions of interest to pursue
as future work. In addition to further analyzing disentan-
glement and exploring more intuitive semantic generation
techniques, it would be interesting to experiment with artic-
ulated meshes and work with more data.
Acknowledgments. This work was partly supported by the
Swiss National Science Foundation (SNF), grant #176004.

8

References
[1] Panos Achlioptas, Olga Diamanti, Ioannis Mitliagkas, and

Leonidas Guibas. Learning representations and generative
models for 3d point clouds. In International Conference on
Machine Learning, pages 40–49, 2018. 3

[2] Elena Balashova, Vivek Singh, Jiangping Wang, Brian Teix-
eira, Terrence Chen, and Thomas Funkhouser. Structure-
aware shape synthesis. In 2018 International Conference on
3D Vision (3DV), pages 140–149. IEEE, 2018. 3

[3] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large
scale GAN training for high fidelity natural image synthe-
sis. In International Conference on Learning Representa-
tions (ICLR), 2019. 1, 2

[4] Wenzheng Chen, Huan Ling, Jun Gao, Edward Smith,
Jaakko Lehtinen, Alec Jacobson, and Sanja Fidler. Learn-
ing to predict 3d objects with an interpolation-based differ-
entiable renderer. In Neural Information Processing Systems,
pages 9605–9616, 2019. 1, 2, 3, 16

[5] Christopher B Choy, Danfei Xu, JunYoung Gwak, Kevin
Chen, and Silvio Savarese. 3d-r2n2: A unified approach for
single and multi-view 3d object reconstruction. In European
conference on computer vision, pages 628–644. Springer,
2016. 2

[6] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 248–255. IEEE, 2009. 2, 6,
8

[7] Haoqiang Fan, Hao Su, and Leonidas J Guibas. A point set
generation network for 3d object reconstruction from a single
image. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 605–613, 2017. 2

[8] Matheus Gadelha, Rui Wang, and Subhransu Maji. Multires-
olution tree networks for 3d point cloud processing. In Pro-
ceedings of the European Conference on Computer Vision
(ECCV), pages 103–118, 2018. 3

[9] Rohit Girdhar, David F Fouhey, Mikel Rodriguez, and Ab-
hinav Gupta. Learning a predictable and generative vector
representation for objects. In European Conference on Com-
puter Vision, pages 484–499. Springer, 2016. 2, 3

[10] Shubham Goel, Angjoo Kanazawa, and Jitendra Malik.
Shape and viewpoint without keypoints. In European Con-
ference on Computer Vision, pages 88–104. Springer, 2020.
2, 3, 4, 14

[11] JunYoung Gwak, Christopher B Choy, Manmohan Chan-
draker, Animesh Garg, and Silvio Savarese. Weakly super-
vised 3d reconstruction with adversarial constraint. In 2017
International Conference on 3D Vision (3DV), pages 263–
272. IEEE, 2017. 2

[12] Christian Häne, Shubham Tulsiani, and Jitendra Malik. Hi-
erarchical surface prediction for 3d object reconstruction. In
2017 International Conference on 3D Vision (3DV), pages
412–420. IEEE, 2017. 2

[13] Erik Härkönen, Aaron Hertzmann, Jaakko Lehtinen, and
Sylvain Paris. Ganspace: Discovering interpretable gan con-
trols. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Bal-

can, and H. Lin, editors, Advances in Neural Information
Processing Systems, volume 33, pages 9841–9850, 2020. 8

[14] Paul Henderson and Vittorio Ferrari. Learning single-image
3d reconstruction by generative modelling of shape, pose and
shading. International Journal of Computer Vision, pages 1–
20, 2019. 3

[15] Paul Henderson, Vagia Tsiminaki, and Christoph H Lam-
pert. Leveraging 2d data to learn textured 3d mesh gener-
ation. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2020. 1, 2, 3

[16] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, and Sepp Hochreiter. GANs trained by
a two time-scale update rule converge to a local Nash equi-
librium. In Neural Information Processing Systems, pages
6626–6637, 2017. 2, 6

[17] Ronghang Hu, Piotr Dollár, Kaiming He, Trevor Darrell,
and Ross Girshick. Learning to segment every thing. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 4233–4241, 2018. 3, 12

[18] Wei-Chih Hung, Varun Jampani, Sifei Liu, Pavlo
Molchanov, Ming-Hsuan Yang, and Jan Kautz. Scops:
Self-supervised co-part segmentation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 869–878, 2019. 2, 12

[19] Eldar Insafutdinov and Alexey Dosovitskiy. Unsupervised
learning of shape and pose with differentiable point clouds.
In Advances in Neural Information Processing Systems,
pages 2802–2812, 2018. 2

[20] Angjoo Kanazawa, Shubham Tulsiani, Alexei A. Efros, and
Jitendra Malik. Learning category-specific mesh reconstruc-
tion from image collections. In European Conference on
Computer Vision (ECCV), 2018. 2, 3, 7, 14

[21] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen.
Progressive growing of GANs for improved quality, stabil-
ity, and variation. In International Conference on Learning
Representations (ICLR), 2018. 1

[22] Tero Karras, Samuli Laine, and Timo Aila. A style-based
generator architecture for generative adversarial networks. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 4401–4410, 2019. 1

[23] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten,
Jaakko Lehtinen, and Timo Aila. Analyzing and improv-
ing the image quality of stylegan. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 8110–8119, 2020. 1

[24] Hiroharu Kato, Yoshitaka Ushiku, and Tatsuya Harada. Neu-
ral 3D mesh renderer. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 3907–3916,
2018. 2, 3

[25] Diederik P. Kingma and Jimmy Ba. Adam: A method
for stochastic optimization. In International Conference on
Learning Representions (ICLR), 2014. 4, 13, 14

[26] Alexander Kirillov, Yuxin Wu, Kaiming He, and Ross Gir-
shick. Pointrend: Image segmentation as rendering. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 9799–9808, 2020.
3, 12

9

[27] Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson,
Kenji Hata, Joshua Kravitz, Stephanie Chen, Yannis Kalan-
tidis, Li-Jia Li, David A. Shamma, Michael S. Bernstein, and
Li Fei-Fei. Visual genome: Connecting language and vision
using crowdsourced dense image annotations. International
Journal of Computer Vision (IJCV), 123(1):32–73, 2017. 12

[28] Nilesh Kulkarni, Abhinav Gupta, David F Fouhey, and Shub-
ham Tulsiani. Articulation-aware canonical surface map-
ping. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 452–461, 2020.
8, 12

[29] Xueting Li, Sifei Liu, Kihwan Kim, Shalini De Mello, Varun
Jampani, Ming-Hsuan Yang, and Jan Kautz. Self-supervised
single-view 3d reconstruction via semantic consistency. In
European Conference on Computer Vision, pages 677–693.
Springer, 2020. 2, 3, 5, 14

[30] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft COCO: common objects in context. In
European Conference on Computer Vision (ECCV), pages
740–755. Springer, 2014. 3, 12

[31] Hsueh-Ti Derek Liu, Michael Tao, Chun-Liang Li, Derek
Nowrouzezahrai, and Alec Jacobson. Beyond pixel norm-
balls: Parametric adversaries using an analytically differen-
tiable renderer. International Conference on Learning Rep-
resentations, 2019. 2, 3, 6

[32] Shichen Liu, Tianye Li, Weikai Chen, and Hao Li. Soft ras-
terizer: A differentiable renderer for image-based 3d reason-
ing. In IEEE International Conference on Computer Vision
(ICCV), pages 7708–7717, 2019. 2, 16

[33] Francesco Locatello, Stefan Bauer, Mario Lucic, Sylvain
Gelly, Bernhard Schölkopf, and Olivier Bachem. Challeng-
ing common assumptions in the unsupervised learning of
disentangled representations. In International Conference on
Machine Learning (ICML), 2019. 1

[34] Matthew M Loper and Michael J Black. Opendr: An approx-
imate differentiable renderer. In European Conference on
Computer Vision (ECCV), pages 154–169. Springer, 2014. 2

[35] Manuel Marques and João Costeira. Estimating 3d shape
from degenerate sequences with missing data. Computer Vi-
sion and Image Understanding, 113(2):261–272, 2009. 2

[36] Takeru Miyato and Masanori Koyama. cGANs with projec-
tion discriminator. In International Conference on Learning
Representations (ICLR), 2018. 1

[37] Jeong Joon Park, Peter Florence, Julian Straub, Richard
Newcombe, and Steven Lovegrove. DeepSDF: Learning
continuous signed distance functions for shape representa-
tion. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 165–174, 2019. 2

[38] Dario Pavllo, Aurelien Lucchi, and Thomas Hofmann. Con-
trolling style and semantics in weakly-supervised image
generation. In European Conference on Computer Vision
(ECCV), 2020. 3, 12

[39] Dario Pavllo, Graham Spinks, Thomas Hofmann, Marie-
Francine Moens, and Aurélien Lucchi. Convolutional gen-
eration of textured 3d meshes. In Advances in Neural Infor-
mation Processing Systems (NeurIPS), 2020. 1, 2, 3, 4, 5, 6,
7, 8, 14

[40] Krishna Kumar Singh, Utkarsh Ojha, and Yong Jae Lee.
FineGAN: Unsupervised hierarchical disentanglement for
fine-grained object generation and discovery. In IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), 2019. 1

[41] Edward J Smith and David Meger. Improved adversarial sys-
tems for 3d object generation and reconstruction. In Confer-
ence on Robot Learning, pages 87–96, 2017. 3

[42] Maxim Tatarchenko, Alexey Dosovitskiy, and Thomas Brox.
Octree generating networks: Efficient convolutional archi-
tectures for high-resolution 3d outputs. In Proceedings of the
IEEE International Conference on Computer Vision, pages
2088–2096, 2017. 2

[43] Shubham Tulsiani, Alexei A Efros, and Jitendra Malik.
Multi-view consistency as supervisory signal for learning
shape and pose prediction. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
2897–2905, 2018. 2

[44] Shubham Tulsiani, Tinghui Zhou, Alexei A Efros, and Ji-
tendra Malik. Multi-view supervision for single-view re-
construction via differentiable ray consistency. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 2626–2634, 2017. 2

[45] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie.
The Caltech-UCSD Birds-200-2011 dataset. Technical Re-
port CNS-TR-2011-001, California Institute of Technology,
2011. 2, 3, 6

[46] Olivia Wiles and Andrew Zisserman. Silnet : Single- and
multi-view reconstruction by learning from silhouettes. In
Gabriel Brostow Tae-Kyun Kim, Stefanos Zafeiriou and
Krystian Mikolajczyk, editors, Proceedings of the British
Machine Vision Conference (BMVC), pages 99.1–99.13.
BMVA Press, September 2017. 2

[47] Jiajun Wu, Yifan Wang, Tianfan Xue, Xingyuan Sun, Bill
Freeman, and Josh Tenenbaum. Marrnet: 3d shape recon-
struction via 2.5d sketches. In Neural Information Process-
ing Systems, pages 540–550, 2017. 2

[48] Jiajun Wu, Chengkai Zhang, Tianfan Xue, Bill Freeman, and
Josh Tenenbaum. Learning a probabilistic latent space of
object shapes via 3d generative-adversarial modeling. In Ad-
vances in Neural Information Processing Systems, pages 82–
90, 2016. 3

[49] Jianwen Xie, Zilong Zheng, Ruiqi Gao, Wenguan Wang,
Song-Chun Zhu, and Ying Nian Wu. Learning descriptor
networks for 3d shape synthesis and analysis. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 8629–8638, 2018. 3

[50] Xinchen Yan, Jimei Yang, Ersin Yumer, Yijie Guo, and
Honglak Lee. Perspective transformer nets: Learning single-
view 3d object reconstruction without 3d supervision. In
Advances in Neural Information Processing Systems, pages
1696–1704, 2016. 2

[51] Bo Yang, Hongkai Wen, Sen Wang, Ronald Clark, Andrew
Markham, and Niki Trigoni. 3d object reconstruction from a
single depth view with adversarial learning. In Proceedings
of the IEEE International Conference on Computer Vision
Workshops, pages 679–688, 2017. 2

10

[52] Guandao Yang, Yin Cui, Serge Belongie, and Bharath Hari-
haran. Learning single-view 3d reconstruction with limited
pose supervision. In Proceedings of the European Confer-
ence on Computer Vision (ECCV), pages 86–101, 2018. 2

[53] Jianwei Yang, Anitha Kannan, Dhruv Batra, and Devi
Parikh. LR-GAN: layered recursive generative adversarial
networks for image generation. In International Conference
on Learning Representations (ICLR), 2017. 1

[54] Han Zhang, Ian Goodfellow, Dimitris Metaxas, and Augus-
tus Odena. Self-attention generative adversarial networks.
In International Conference on Machine Learning (ICML),
2019. 1

[55] Jun-Yan Zhu, Zhoutong Zhang, Chengkai Zhang, Jiajun Wu,
Antonio Torralba, Josh Tenenbaum, and Bill Freeman. Vi-
sual object networks: Image generation with disentangled 3d
representations. In Neural Information Processing Systems,
pages 118–129, 2018. 3

[56] Rui Zhu, Hamed Kiani Galoogahi, Chaoyang Wang, and Si-
mon Lucey. Rethinking reprojection: Closing the loop for
pose-aware shape reconstruction from a single image. In
Proceedings of the IEEE International Conference on Com-
puter Vision, pages 57–65, 2017. 2

11

A. Supplementary material

A.1. Implementation details

Dataset preparation. We infer object silhouettes using
PointRend [26] with an X101-FPN backbone, using their
pretrained model on COCO [30]. We set the object detec-
tion threshold to 0.9 to select only confident objects. As
mentioned in sec. 3, we discard object instances that are ei-
ther (i) too small (mask area < 962 pixels), (ii) touch the
borders of the image (indicator of possible truncation), or
(iii) collide with other detected objects (indicator of poten-
tial occlusion). For the object part segmentations, we use
the semi-supervised object detector from [17], which can
segment all 3000 classes available in Visual Genome (VG)
[27] while being supervised only on mask annotations from
COCO. Although this model was not conceived for object
part segmentation, we find that it can be used as a cost-
effective way of obtaining meaningful part segmentations
without collecting extra data or using co-part segmentation
models that require class-specific hyperparameter tuning,
such as SCOPS [18]. Specifically, since VG presents a
long tail of rare classes, as in [38] we found it beneficial
to first pre-select a small number of representative classes
that are widespread across categories (e.g. all land vehicles
have wheels, all animals have legs). We set the detection
threshold of this model to 0.2 and, for each image category,
we only keep semantic classes that appear in at least 25% of
the images, which helps eliminate spurious detections. On
our data, this leads to a number of semantic classes K ≈ 10
per image category (33 across all categories). The full list
of semantic classes can be seen in Fig. 5. To deal with po-
tentially overlapping part detections (e.g. the segmentation
mask of the door of a car might overlap with a window),
the output semantic maps represent probability distributions
over classes, where we weight each semantic class propor-
tionally to the object detection score. Additionally, we add
an extra class for “no class” (depicted in gray in our figures).
Mesh templates and remeshing. We borrow a selection
of mesh templates from [28] as well as meshes freely avail-
able on the web. In the experiments where we adopt multi-
ple mesh templates, we only use 2–4 meshes per category.
An important preliminary step of our approach, which is
performed even before the pose estimation step, consists in
remeshing these templates to align them to a common topol-
ogy. This has the goal of reducing their complexity (which
translates into a speed-up during optimization), removing
potential invisible interiors, and enabling efficient batching
by making sure that every mesh has the same number of ver-
tices/faces. Additionally, as mentioned in sec. 3.2, remesh-
ing is required for the semi-supervision loss term in the re-
construction model. We frame this task as an optimization
problem where we deform a 32 × 32 UV sphere to match
the mesh template. More specifically, we render each tem-

plate from 64 random viewpoints at 256 × 256 resolution,
and minimize the MSE loss between the rendered deformed
sphere and the target template in pixel space (LMSE). More-
over, we regularize the mesh by adding (i) a smoothness
loss Lflat, which encourages neighboring faces to have sim-
ilar normals, (ii) a Laplacian smoothing loss Llap with quad
connectivity (i.e. using the topology of the UV map as op-
posed to that of the triangle mesh), and (iii) an edge length
loss Llen with quad connectivity, which encourages edges to
have similar lengths. Lflat and Llen are defined as follows:

Lflat =
1

|E|
∑
i,j∈E

(1− cos θij)
2 (5)

Llen =
1

|UV |
∑
i∈U

∑
j∈V

‖vi+1,j − vi,j‖1 + ‖vi,j+1 − vi,j‖1
6

(6)

where E is the set of edges, cos θij is the cosine similarity
between the normals of faces i and j, and vi,j represents
the 3D vertex at the coordinates i, j of the UV map.
Finally, we weight each term as follows:

L = LMSE + 0.00001Lflat + 0.003Llap + 0.01Llen (7)

Additionally, in the experiments with multiple mesh tem-
plates, we add a pairwise similarity loss Lalign which penal-
izes large variations of the vertex positions between differ-
ent mesh templates (only within the same category):

Lalign =
1

N2
t

Nt∑
i=1

Nt∑
j=1

‖Vi −Vj‖2 (8)

where Vi is a matrix that contains the vertex positions of the
i-th mesh template (of shape 3 × Nv), and Nt is the num-
ber of mesh templates. This loss term is added to the total
loss with weight 0.001. Note that we use a non-squared L2
penalty for this term, which encourages a sparse set of ver-
tices to change between mesh templates.
We optimize the final loss using SGD with momentum (ini-
tial learning rate α = 0.0001 and momentum β = 0.9). We
linearly increase α to 0.0005 over the course of 500 itera-
tions (warm-up) and then exponentially decay α with rate
0.9999. We stop when the learning rate falls below 0.0001.
Additionally, we normalize the gradient before each update.
Fig. 9 shows two qualitative examples of remeshing.

Figure 9. Remeshing of the mesh templates. In this figure we show
two demos (one template for car and one for airplane).

Pose estimation. For the silhouette optimization step, we
initialize Nc = 40 camera hypotheses per image by uni-
formly quantizing azimuth and elevation (8 quantization

12

levels along azimuth and 5 levels along elevation). We
optimize each camera hypothesis using Adam [25] with
full-matrix preconditioning, where we set β1 = 0.9 and
β2 = 0.95. The implementation of our variant of Adam
as well its theoretical justification are described in the next
paragraph. We optimize each hypothesis for 100 iterations,
with an initial learning rate α = 0.1 which is decayed to
0.01 after the 80th iteration. After each iteration, we re-
project quaternions onto the unit ball. As a performance
optimization, silhouettes are initially rendered at 128×128
resolution, which is increased to 192×192 after the 30th
iteration and 256×256 after the 60th iteration. Finally, in
the settings where we prune camera hypotheses, we discard
the worst 50% hypotheses as measured by the intersection-
over-union (IoU) between projected and target silhouettes.
This is performed twice: after the 30th and 60th iteration.

Algorithm 1 Adam with full-matrix preconditioning.
Changes w.r.t. the original algorithm are highlighted .

1: require α (step size), β1, β2, ε
2: initialize time step t← 0
3: initialize parameters θ0 (d-dimensional col. vector)
4: initialize first moment m0 ← 0 (d-dimensional col. vector)
5: initialize second moment V0 ← 0 (d× d matrix)
6: repeat
7: t← t+ 1
8: gt ← ∇θft(θt−1) . gradient
9: mt ← β1mt−1 + (1− β1)gt . first moment

10: Vt ← β2Vt−1 + (1− β2) gtg
T
t . second moment

11: m̂t ← mt/(1− βt
1) . bias correction

12: V̂t ← Vt/(1− βt
2) . bias correction

13: θt ← θt−1 − α (V̂t + εId)
− 1

2 m̂t . update
14: until stopping criterion
15: return θt

Full-matrix preconditioning. Adam [25] is an established
optimizer for training neural networks. Its use of diago-
nal preconditioning is an effective trick to avoid storing an
O(d2) matrix for the second moments (where d is the num-
ber of learnable parameters), for which a matrix square root
and inverse need to be subsequently computed (an extra
O(d3) cost for each of the two operations). However, since
our goal is to optimize camera parameters, we observe that:

1. Optimizers with diagonal preconditioning are not rota-
tion invariant, i.e. they have some preferential directions
that might bias the pose estimation result.

2. Since each camera hypothesis comprises only 8 parame-
ters, inverting an 8× 8 matrix has a negligible cost.

Using a rotation invariant optimizer such as SGD (with or
without momentum) is a more principled choice as it ad-
dresses the first observation. However, based on our second
observation, we take the best of both worlds and modify

Adam to implement full-matrix preconditioning. This only
requires a trivial modification to the original implementa-
tion, which we show in alg. 1 (changes w.r.t. the original
algorithm are highlighted in green).
Semantic template inference. As mentioned in sec. 3.1,
the goal of this step is to infer a 3D semantic template for
each mesh template, given an initial (untextured) mesh tem-
plate, the output of the silhouette optimization step, and
a collection of 2D semantic maps. Recapitulating from
sec. 3.1, we solve the following optimization problem:

Li = ‖R(Vtpl,Ftpl,Ctpl; qi, ti, si, z0i)−Ci‖2 (9)

C∗tpl = min
Ctpl

1

Ntop

∑
i

Li (10)

Conceptually, our goal is to learn a shared semantic tem-
plate (parameterized using vertex colors) that averages all
2D semantic maps in vertex space. We propose the fol-
lowing closed-form solution which uses the gradients from
the differentiable renderer and requires only a single pass
through the dataset:

A =
∑
i

∇Ctpl(Li) (11)

(C∗tpl)k =
ε+ ak

Kε+
∑

j aj
(12)

where A is an accumulator matrix that has the same shape
as the Ctpl (the vertex colors), and ε is a small additive
smoothing constant that leads to a uniform distribution on
vertices that are never rendered (and thus have no gradient).
This operation can be regarded as projecting the 2D object-
part semantics onto the mesh vertices and computing a color
histogram on each vertex. We show a sample illustration in
Fig. 10.

Project Project
Initial 3D semantic

template

2D part
segmentation

Final template
(After 100 steps)

Figure 10. Semantic template inference, starting from an untex-
tured 3D mesh template (left-to-right progression). In this figure
we show a demo with two sample images, and the final result using
the top 100 images as measured by the IoU.

In section sec. 3.1 we explained that we compute the se-
mantic template using the top Ntop = 100 images as mea-

13

sured by the IoU, among those that passed the ambiguity
detection test (vagr < 0.3). To further improve the qual-
ity of the inferred semantic templates, we found it benefi-
cial to add an additional filter where we only select poses
whose cosine distance is within 0.5 (i.e. 45 degrees) of the
left/right side. Objects observed from the left/right side are
intrinsically unambiguous, since there is no complementary
pose that results in the same silhouette. Therefore, we fa-
vor views that are close to the left/right as opposed to the
front/back or top/bottom, which are the most ambiguous
views. Note that this filter is only used for the semantic
template inference step.
Generative model. We train the single-category recon-
struction networks (setting A) for 130k iterations, with a
batch size of 32, and on a single GPU. The multi-category
model (setting B) is trained for 1000 epochs, with a total
batch size of 128 across 4 GPUs, using synchronized batch
normalization. In both settings, we use Adam [25] (the orig-
inal one, not our variant with full-matrix preconditioning)
with an initial learning rate of 0.0001 which is halved at 1/4,
1/2, 3/4 of the training schedule. For the GAN, we use the
same hyperparameters as [39], except in the multi-category
model (setting B), which is trained with a batch size of 64
instead of the default 32. Furthermore, in setting B, and for
both models (reconstruction and GAN), we equalize classes
during mini-batch sampling. This is motivated by the large
variability in the amount of training images, as explained in
sec. 4.1, and as can also be seen in Table 3. Finally, as in
[39, 20, 10, 29], we force generated meshes to be left/right
symmetric.
Semantic mesh generation. In the setting where we gen-
erate a 3D mesh from a semantic layout in UV space, we
modify the generator architecture of [39]. Specifically, we
replace the input linear layer (the one that projects the la-
tent code z onto the first 8 × 8 convolutional feature map)
with four convolutional layers. These progressively down-
sample the semantic layout from 128 × 128 down to 8 × 8
(i.e. each layer has stride 2). The first layer takes as input
a one-hot semantic map (with K semantic channels) and
yields 64 output channels (128, 256, 512 in the following
layers). In these 4 layers, we use Leaky ReLU activations
(slope 0.2), spectral normalization, but no batch normaliza-
tion. We leave the rest of the network unchanged. In this
model, we also found it necessary to fine-tune the batch
normalization statistics prior to evaluation, which we do by
running a forward pass over the entire dataset on the run-
ning average model. As for the discriminator, we simply
resize the semantic map as required and concatenate it to
the input.

A.2. Additional results

Pose estimation. In Fig. 11, we provide more insight into
the geodesic distance metric, which measures the cosine

0.0 0.2 0.4 0.6 0.8 1.0
Geodesic distance

im

ag
es

Distribution of GD on "car" (multiple templates)
Step 1 (silhouette)
Step 2 (semantics)

0.0 0.2 0.4 0.6 0.8 1.0
Geodesic distance

im

ag
es

Distribution of GD on "car" (single template)
Step 1 (silhouette)
Step 2 (semantics)

0.0 0.2 0.4 0.6 0.8 1.0
Geodesic distance

im

ag
es

Distribution of GD on "airplane" (multiple templates)
Step 1 (silhouette)
Step 2 (semantics)

0.0 0.2 0.4 0.6 0.8 1.0
Geodesic distance

im

ag
es

Distribution of GD on "airplane" (single template)
Step 1 (silhouette)
Step 2 (semantics)

0.0 0.2 0.4 0.6 0.8 1.0
Geodesic distance

im

ag
es

Distribution of GD on "bird" (multiple templates)
Step 1 (silhouette)
Step 2 (semantics)

0.0 0.2 0.4 0.6 0.8 1.0
Geodesic distance

im

ag
es

Distribution of GD on "bird" (single template)
Step 1 (silhouette)
Step 2 (semantics)

Figure 11. Distribution of pose estimation errors on car, airplane,
and bird. We compare settings where we use multiple mesh tem-
plates (left) and a single template (right).

distance between the rotations predicted by our approach
(sec. 3.1) and SfM rotations. In particular, as opposed to
the results presented in Table 1 (which shows only the aver-
age), here we show the full distribution of errors. A distance
of 0 means that the two rotations match exactly, whereas a
distance of 1 (maximum value) means that the rotations are
rotated by 180 degrees from one another. On the analyzed
classes (car, airplane, and bird, for which we have SfM
poses), we can generally observe a bimodal distribution: a
majority of images where pose estimation is correct, i.e. the
GD is close to zero, and a small cluster of images where
the GD is close to one. This is often the case for ambigui-
ties: for instance, in cars we sometimes observe a front/back
confusion. As expected, exploiting semantics (step 2) mit-
igates this issue and increases the amount of available im-
ages (this is particularly visible on bird). We also note that,
for rigid objects such as car and airplane, the distribution
is more peaky, whereas for bird the tail of errors is longer,
most likely because pose estimation is more ill-defined for
articulated objects.
Qualitative results. We show extra qualitative results in
Fig. 14. In particular, we render each generated mesh from
two random viewpoints and showcase the associated tex-
ture and wireframe mesh. Additionally, in Fig. 12 we show
the most common failure cases across categories. We can

14

Figure 12. Failure cases for a variety of categories.

identify some general patterns: for instance, in vehicles we
sometimes observe incoherent textures (this is particularly
visible in truck due to the small size of this dataset). On
animals, as mentioned, we observe occasional failures to
model facial details, merged/distorted legs, and more rarely,
mesh distortions. To some extent, these issues can be miti-
gated by sampling from the generator using a lower trunca-
tion threshold (we use σ = 1.0 in our experiments), at the
expense of sample diversity.

Semantic templates. Fig. 13 shows the full set of learned
semantic templates for every category. Most results are co-
herent, although we observe a small number of failure cases,
e.g. in truck one or two templates are mostly empty and
are thus ineffective for properly resolving ambiguities. This
generally happens when the templates have too few images
assigned to them and explains why the multi-template set-
ting does not consistently outperform the single-template
setting.

Demo video. The supplementary material includes a video
where we show additional qualitative results. First, we
showcase samples generated by our models in setting A
and explore the latent space of the generator. Second, we
analyze the latent space of the model trained to generate
multiple classes (setting B), and discover interpretable di-
rections in the latent space, which can be used to control
shared aspects between classes (e.g. lighting, shadows). We
also interpolate between different classes while keeping the
latent space fixed, and highlight that style is preserved dur-
ing interpolation. Finally, we showcase a setting where we
generate a mesh from a hand-drawn semantic layout in UV
space, similar to Fig. 8.

Class Synsets Raw images Valid instances
Motorbike n03790512, n03791053, n04466871 4037 1351
Bus n04146614, n02924116 2641 1190
Truck n03345487, n03417042, n03796401 3187 1245

Car
n02814533, n02958343, n03498781,
n03770085, n03770679, n03930630,
n04037443, n04166281, n04285965

12819 4992

Airplane
n02690373, n02691156, n03335030,
n04012084 5208 2540

Sheep
n10588074, n02411705, n02413050,
n02412210 4682 864

Elephant n02504013, n02504458 3927 1434

Zebra
n02391049, n02391234, n02391373,
n02391508 5536 1753

Horse n02381460, n02374451 2589 664
Cow n01887787, n02402425 2949 861

Bear
n02132136, n02133161, n02131653,
n02134084 6745 2688

Giraffe n02439033 1256 349

Table 3. Synsets and summary statistics for our ImageNet data. For
each category, we report the number of raw images in the dataset,
and the number of extracted object instances that have passed our
quality checks (size, truncation, occlusion).

A.3. Dataset information

For our experiments on ImageNet, we adopt the synsets
specified in Table 3. Since some of our required synsets are
not available in the more popular ImageNet1k, we draw all
of our data from the larger ImageNet22k set.

A.4. Negative results

To guide potential future work in this area, we provide a
list of ideas that we explored but did not work out.
Silhouette optimization. For the silhouette optimization
step with multiple templates, before reaching our current
formulation, we explored a range of alternatives. In par-
ticular, we tried to smoothly interpolate between multiple
meshes by optimizing a set of interpolation weights along
with the camera parameters. This yielded inconsistent re-
sults across categories, which convinced us to work with a
“discrete” approach as opposed to a smooth one. We then
tried a reinforcement learning approach inspired by multi-
armed bandits: we initialized each camera hypothesis with a
random mesh template, and used a UCB (upper confidence
bound) selection algorithm to select the optimal mesh tem-
plate during optimization. This led to slightly worse results
than interpolation. Finally, we reached our current formula-
tion, where we simply replicate each camera hypothesis and
optimize the different mesh templates separately. We adopt
pruning to make up for the increase in computation time.
Re-optimizing poses multiple times. In our current for-
mulation, after the semantic template inference step, we use
the semantic templates to resolve ambiguities, but there is
no further optimization involved. Naturally, we explored
the idea of repeating the silhouette optimization step using
semantic information. However, we were unable to get this
step to work reliably, even after attempting with multiple

15

Motorbike Bus Truck Car Airplane

Bird Sheep Elephant Zebra Horse Cow Bear Giraffe

Wing

Engine

Fender

Seat

Handlebar

Door

Bumper

Grill

License plate

Wheel Window Windshield

MirrorLight

Headlight

Landing gear

Feather

Tail Leg

FootHoof

Neck

Mane Head

Face

MouthNoseCockpit

Trunk

Horn

Ear

Eye

Beak

Figure 13. Visualization of all the learned 3D semantic templates (2–4 per category). While most results are as expected, the figure
highlights some failure cases, e.g. in truck some templates have very few images assigned to them, which leads to incoherent semantics.

renderers (we tried both with DIB-R [4] and SoftRas [32]).
We generally observed that the color gradients are too unin-
formative for optimizing camera poses, even after trying to
balance the different components of the gradient (silhouette
and color). We believe this is a fundamental issue related to
the non-convexity of the loss landspace, which future work
needs to address. We also tried to smooth out the rendered
images prior to computing the MSE loss, without success.
Remeshing. Since target 3D vertices are known in this step,
we initially tried to use a 3D chamfer loss to match the mesh
template. This, however, led to artifacts and merged legs in
animals, and was too sensitive to initialization. We found it
more reliable to use a differentiable render with silhouette-
based optimization.

16

Figure 14. Additional qualitative results. We show three examples per category. Each example is rendered from two random views, and
the corresponding texture/wireframe mesh is also shown.

17

