
Appendix: Rethinking the Truly Unsupervised Image-to-Image Translation

Kyungjune Baek*

Yonsei University
bkjbkj12@yonsei.ac.kr

Yunjey Choi
NAVER AI Lab

yunjey.choi@navercorp.com

Youngjung Uh
Yonsei University

yj.uh@yonsei.ac.kr

Jaejun Yoo
UNIST

jaejun.yoo@unist.ac.kr

Hyunjung Shim†

Yonsei University
kateshim@yonsei.ac.kr

Abstract

Every recent image-to-image translation model inher-
ently requires either image-level (i.e. input-output pairs) or
set-level (i.e. domain labels) supervision. However, even
set-level supervision can be a severe bottleneck for data col-
lection in practice. In this paper, we tackle image-to-image
translation in a fully unsupervised setting, i.e., neither
paired images nor domain labels. To this end, we propose a
truly unsupervised image-to-image translation model (TU-
NIT) that simultaneously learns to separate image domains
and translates input images into the estimated domains. Ex-
perimental results show that our model achieves compara-
ble or even better performance than the set-level supervised
model trained with full labels, generalizes well on various
datasets, and is robust against the choice of hyperparam-
eters (e.g. the preset number of pseudo domains). Fur-
thermore, TUNIT can be easily extended to semi-supervised
learning with a few labeled data.

1. Introduction

Given an image of one domain, image-to-image transla-
tion is a task to generate the plausible images of the other
domains. Based on the success of conditional generative
models [32, 40], many image translation methods have been
proposed either using image-level supervision (e.g. paired
data) [16, 14, 49, 43, 34] or using set-level supervision (e.g.
domain labels) [48, 21, 27, 15, 28, 24]. Though the latter
approach is generally called unsupervised as a counterpart
of the former, it actually assumes that the domain labels
are given a priori. This assumption can be a serious bot-
tleneck in practice as the number of domains and samples
increases. For example, labeling individual samples of a
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Figure 1: Levels of supervision. To perform image-to-image
translation, existing methods need either (a) a dataset with input-
output pairs or, (b) a dataset with domain information. Our method
is capable of learning mappings among multiple domains using (c)
a dataset without any supervision.

large dataset (e.g. FFHQ) is expensive, and the distinction
across domains can be vague.

We first clarify that unsupervised image-to-image trans-
lation should strictly denote the task without any supervi-
sion neither paired images nor domain labels. Under this
rigorous definition, our goal is to develop an unsupervised
translation model given a mixed set of images of many do-
mains (Figure 1). We argue that the unsupervised transla-
tion model is valuable in three aspects. First of all, it sig-
nificantly reduces the effort of data annotation for model
training. As a natural byproduct, the unsupervised model
can be robust against the noisy labels produced by the man-
ual labeling process. More importantly, it serves as a strong
baseline to develop the semi-supervised image translation
models. To tackle this problem, we design our model hav-
ing three sub-modules: 1) clustering the images by approx-
imating the set-level characteristics (i.e. domains), 2) en-
coding the individual content and style of an input image,
respectively, and 3) learning a mapping function among the
estimated domains.

To this end, we introduce a guiding network. The
guiding network consists of a shared encoder with two

ar
X

iv
:2

00
6.

06
50

0v
2 

 [
cs

.C
V

] 
 2

0 
A

ug
 2

02
1



branches, where one provides pseudo domain labels and the
other encodes images into feature vectors (style codes). We
employ a differentiable clustering method based on mutual
information maximization for estimating the domain labels
and contrastive loss for extracting the style codes. The clus-
tering helps the guiding network to group similar images
into the same category. Meanwhile, the contrastive loss
helps the model to understand the dissimilarity among im-
ages and learn better representations. We find that, by solv-
ing two tasks together within the same module, both benefit
from each other. Specifically, the clustering can exploit rich
representations learned by the contrastive loss and improve
the accuracy of estimated domain labels. By taking advan-
tage from the clustering module, the style code can also ac-
knowledge the similarity within the same domain, thereby
faithfully reflecting the domain-specific nature.

For both more efficient training and effective learning,
we jointly train the guiding network and GAN in an end-to-
end manner. This allows the guiding network to understand
the recipes of domain-separating attributes based on GAN’s
feedback, and the generator encourages the style code to
contain rich information so as to fool the domain-specific
discriminator. Thanks to these internal and external inter-
actions of the guiding network and GAN, our model suc-
cessfully separates domains and translates images; a truly
unsupervised image-to-image translation.

We quantitatively and qualitatively compare the pro-
posed model with the existing set-level supervised models
under unsupervised and semi-supervised settings. The ex-
periments on various datasets show that the proposed model
outperforms the baselines over all different levels of super-
vision. Our ablation study shows that the guiding network
helps the image translation model to largely improve the
performance. Our contributions are summarized as follows:

• We clarify the definition of unsupervised image-to-image
translation and to the best of our knowledge, our model is
the first to succeed in this task in an end-to-end manner.

• We propose the guiding network to handle the unsuper-
vised translation task and show that the interaction be-
tween translation and clustering is helpful for the task.

• The quantitative and qualitative comparisons for the un-
supervised translation task on four public datasets show
the effectiveness of TUNIT, which clearly outperforms
the previous arts.

• TUNIT is insensitive to the hyperparameter (i.e. the num-
ber of clusters) and serves as a strong baseline for the
semi-supervised setting– TUNIT outperforms the current
state-of-the-art semi-supervised image translation model.

2. Related work
Image-to-image translation. Since the seminal work
of Pix2Pix [16], image-to-image translation models have

shown impressive results [48, 27, 21, 14, 23, 4, 15, 28,
46, 5, 44]. Exploiting the cycle consistency constraint or
shared latent space assumption, these methods were able
to train the model with a set-level supervision (domains)
solely. However, acquiring domain information can be a
huge burden in practical applications where a large amount
of data are gathered from several mixed domains, e.g., web
images [45]. Not only does this complicates the data collec-
tion, but it restricts the methods only applicable to the exist-
ing dataset and domains. S3GAN [30] and Self-conditioned
GAN [29] integrated a clustering method and GAN for
high-quality generation using the fewer number or none of
the labeled data, respectively. Inspired from few shot learn-
ing, Liu et al. [28] proposed FUNIT that works on previ-
ously unseen target classes. However, FUNIT still requires
the labels for training. Wang et al. [44] utilized the noise-
tolerant pseudo labeling scheme to reduce the label cost at
the training process. Recently, Bahng et al. [1] partially
addressed this by adopting the ImageNet pre-trained classi-
fier for extracting domain information. Unlike the previous
methods, we aim to design an image translation model that
can be applied without supervision such as a pre-trained net-
work or supervision on both the train and the test datasets.

Unsupervised representation learning and clustering.
Unsupervised representation learning aims to extract mean-
ingful features for downstream tasks without any human su-
pervision. To this end, many researchers have proposed to
utilize the information that can be acquired from the data
itself [7, 6, 13, 17, 37, 8, 2, 42]. Recently, by incorporat-
ing contrastive learning into a dictionary learning frame-
work, MoCo [8, 3] achieved outstanding performance in
various downstream tasks under reasonable mini-batch size.
On the other hand, IIC [17] utilized the mutual informa-
tion maximization in an unsupervised manner so that the
network clusters images while assigning the images evenly.
Though IIC provided a principled way to perform unsuper-
vised clustering, the method fails to scale up when com-
bined with a difficult downstream task such as image-to-
image translation. By taking the best of both worlds, we
aim to solve unsupervised image-to-image translation.

3. Truly Unsupervised Image-to-Image Trans-
lation (TUNIT)

We address the unsupervised image-to-image transla-
tion problem, where we have images χ from K domains
(K ≥ 2) without domain labels y. Here, K is an unknown
property of the dataset. Throughout the paper, we denote K
as the actual number of domains in a dataset and K̂ as the
arbitrarily chosen number of domains to train models.



Figure 2: Overview of our proposed method. The figure illus-
trates how our model changes the breed of a cat. (a) Our guiding
network E estimates the domain and use it to train the multi-task
discriminatorD. (b) Both the style code and the estimated domain
of a reference image is used for training the generator G.

3.1. Overview

In our framework, the guiding network (E in Figure 2)
plays a central role as an unsupervised domain classifier as
well as a style encoder. It guides the translation by feed-
ing the style code of a reference image to the generator and
its pseudo domain labels to the discriminator. Using the
feedback from the domain-specific discriminator, the gener-
ator synthesizes an image of the target domain (e.g. breeds)
while respecting the style (e.g. fur patterns) of the reference
image and the content (e.g. pose) of the source image.

3.2. Learning to produce domain labels and encode
style features

The guiding network E consists of two branches, EC

and ES , each of which learns to provide domain labels and
style codes, respectively. In experiments, we compare our
guiding network against straightforward approaches, i.e.,

K-means on image or feature space.
Unsupervised domain classification. The discriminator
requires a target domain label to provide useful gradients
to the generator for translating an image into the target
domain. Therefore, we adopt the differentiable clustering
technique [17] that maximizes the mutual information (MI)
between an image x and its randomly augmented version
x+. The optimum of the mutual information I(p,p+) is
reached when the entropy H(p) is maximum and the con-
ditional entropy H(p|p+) is minimum, where p = EC(x)
represents the softmax output from EC , indicating a prob-
ability vector of x over K̂ domains. Please refer to Sec-
tion 4.2 for more details about K̂. Maximizing MI encour-
ages EC to assign the same domain label to the pair (x and
x+) while evenly distributing entire samples to all domains.
Formally, EC maximizes the mutual information:

LMI = I(p,p+) = I(P) =

K̂∑
i=1

K̂∑
j=1

Pij ln
Pij

PiPj
,

s.t. P = Ex+∼f(x)|x∼pdata(x)
[EC(x) · EC(x

+)T ].

(1)

Here, f is a composition of random augmentations such as
random cropping and affine transformation. Pi = P(p =
i) denotes the K̂-dimensional marginal probability vector,
and Pij = P(p = argmax(i),p+ = argmax(j)) de-
notes the joint probability. To provide a deterministic one-
hot label to the discriminator, we use the argmax operation
(i.e. y = argmax(EC(x))). Note that the mutual informa-
tion is one way to implement TUNIT, and any differentiable
clustering methods can be adopted such as SCAN [42].
Style encoding and improved domain classification. To
perform a reference-guided image translation, the generator
needs to understand the style features of the given image.
In our framework, ES encodes an image into a style code s,
which is later used to guide the generator for image trans-
lation. Here, to learn the style representation, we use the
contrastive loss [8]:

LE
style = − log

exp(s · s+/τ)∑N
i=0 exp(s · s

−
i /τ)

, (2)

where x and x+ denote an image and randomly augmented
version of x, respectively, and s = ES(x). This (N + 1)-
way classification enables E to utilize not only the simi-
larity of the positive pair (s, s+) but also the dissimilarity
of the negative pairs (s, s−i ). We adopt a queue to store
the negative codes s−i of the previously sampled images as
MoCo [8]. By doing so, we can conduct the contrastive
learning efficiently without large batch sizes [37].

Interestingly, we find that ES also helps the unsuper-
vised domain classification task—(−LMI +LE

style) signif-
icantly improves the quality of the clustering, compared to
using only −LMI , which is the original IIC [17]. Since ES

shares the embeddings with EC , imposing the contrastive
loss on the style codes improves the representation power



of the shared embeddings. This is especially helpful when
samples are complex and diverse, and IIC solely fails to
scale up (e.g., AnimalFaces [28]). To evaluate the effect of
Eq.(2), we measure the accuracy and the ratio of the inter-
variance over the intra-variance (IOI) in terms of the cosine
similarity of each clustering result. The clustering result
can be more discriminative when the intra-variance and the
inter-variance become low and high, respectively. There-
fore, the higher IOI indicates a more discriminative cluster-
ing result. The table below summarizes the accuracies and
IOI on AnimalFaces-10 and Food-10.

AnimalFaces-10 Food-10
IIC IIC + Eq.(2) IIC IIC + Eq.(2)

IOI 2.05 3.04 1.34 2.50
Accuracy 68.0% 85.0% 54.2% 86.0%

For both datasets, IIC with Eq.(2) shows a significantly
higher accuracy and a higher IOI value. Based on this anal-
ysis, we choose to use both −LMI and LE

style for training
the guiding network.

3.3. Learning to translate images

We describe how to perform the unsupervised image-to-
image translation under the guidance of our guiding net-
work. For successful translation, the model should provide
realistic images containing the visual feature of the target
domain. To this end, we adopt three losses for training the
generatorG: 1) adversarial loss to produce realistic images,
2) style contrastive loss that encourages the model not to
ignore the style codes, 3) image reconstruction loss for pre-
serving the domain-invariant features. We explain each loss
and the overall objective for each network.
Adversarial loss. For adversarial training, we adopt a vari-
ant of conditional discriminator, the multi-task discrimina-
tor [31]. It is designed to conduct discrimination for each
domain simultaneously. During training, its gradient is cal-
culated only with the loss for estimating the input domain.
For the domain label of the input, we utilize the pseudo la-
bel from the guiding network. Formally, given the pseudo
label ỹ for a reference image x̃, we train our generator G
and multi-task discriminator D via the adversarial loss:

Ladv = Ex̃∼pdata(x)[logDỹ(x̃)]

+ Ex,x̃∼pdata(x)[log(1−Dỹ(G(x, s̃)))],
(3)

where Dỹ(·) denotes the logit from the domain-specific (ỹ)
discriminator, and s̃ = ES(x̃) denotes a target style code of
the reference image x̃. The generator G learns to translate
x to the target domain ỹ while reflecting the style code s̃.
Style constrastive loss. In order to prevent a degenerate
case where the generator ignores the given style code s̃ and
synthesize a random image of the domain ỹ, we impose a
style contrastive loss:

LG
style = Ex,x̃∼pdata(x)

[
− log

exp(s′ · s̃)∑N
i=0 exp(s

′ · s−i /τ)

]
. (4)

Here, s′ = ES(G(x, s̃)) denotes the style code of the
translated image G(x, s̃) and s−i denotes the negative style
codes, which are from the same queue used in Eq. (2). Be-
sides, the same training scheme of MoCo [8] is applied for
the generator training as Eq. (2). This loss guides the gen-
erated image G(x, s̃) to have a style similar to the reference
image x̃ and dissimilar to negative (other) samples. By do-
ing so, we avoid the degenerated solution where the encoder
maps all the images to the same style code of the recon-
struction loss [5] based on L1 or L2 norm. Eqs. (2) and (4)
are based on contrastive loss, but they are used for different
purposes. Please refer to Appendix 12. for more discussion.
Image reconstruction loss. We impose that the generator
G can reconstruct the source image x when given with its
original style s = ES(x), namely an image reconstruction
loss:

Lrec = Ex∼pdata(x)[‖x−G(x, s)‖1]. (5)

This objective not only ensures the generator G to preserve
domain-invariant characteristics (e.g., pose) of its source
image x, but also helps to learn the style representation of
the guiding network E by extracting the original style s of
the source image x.
Overall objective. Finally, we train the three networks
jointly as follows:

LD = −Ladv,

LG = Ladv + λG
styleLG

style + λrecLrec,

LE = LG − λMILMI + λE
styleLE

style

(6)

where λ’s are hyperparameters. Note that our guiding net-
work E receives feedback from LG, which is essential for
our method. We discuss the effect of feedback to E on per-
formance in Section 4.1.

4. Experiments
We first investigate the effect of each component of TU-

NIT (Section 4.1). We quantitatively and qualitatively com-
pare the performance on labeled datasets. We show that
TUNIT is robust against the choice of hyperparameters (e.g.
the preset number of clusters, K̃) and extends well to the
semi-supervised scenario (Section 4.2). Lastly, we move on
to unlabeled datasets to validate our model in the unsuper-
vised scenario in the wild (Section 4.3).

Datasets. For the labeled datasets, we select ten classes
among 149 classes of AnimalFaces and 101 classes of
Food-101, which we call AnimalFaces-10 and Food-10, re-
spectively. Here, the labels are used only for the evalua-
tion purpose except for the semi-supervised setting. For
the unlabeled datasets, we use AFHQ, FFHQ, and LSUN
Car [5, 19, 47], which do not have any or are missing with
fine-grained labels. Specifically, AFHQ roughly has three
groups (i.e., dog, cat and wild), but each group contains



Configuration AnimalFaces-10 Food-10
mFID D & C Acc. mFID D & C Acc.

A Baseline FUNIT (supervised) 74.0 0.749 / 0.671 1.000 68.4 0.989 / 0.782 1.000
B (A) + Improved G & D (supervised) 46.2 0.896 / 0.732 1.000 57.6 1.284 / 0.857 1.000

C (B) + K-means on image space 110.7 0.822 / 0.615 0.215 90.7 0.849 / 0.648 0.201
D (B) + K-means on feature space 76.2 0.770 / 0.597 0.428 64.6 0.968 / 0.808 0.331
E (B) + Differentiable clustering 73.5 0.940 / 0.588 0.680 64.2 1.038 / 0.819 0.542
F TUNIT w/ sequential training 46.0 1.060 / 0.789 0.850 61.1 0.908 / 0.777 0.860
G TUNIT w/ joint training 47.7 1.039 / 0.805 0.841 52.2 1.079 / 0.875 0.848

Table 1: Comparison results. mFID, Density / Coverage (D&C), and classification accuracy (Acc) of each training configuration. Note
that the configurations (A) - (B) use ground-truth class labels, while (C) - (G) use pseudo-labels. We bold the best results separately for
supervised and unsupervised settings. For D& C, we boldify the one which has the best coverage that has a clear maximum.

Source Reference A B C D E F G

Figure 3: Qualitative comparison of translation results using each configuration in Table 1. Here, B reflects the style feature (e.g. species
or type of food) of the reference images while A does not. The model C performs much worse than A and B in that it overly adopts the
source image, not adequately merging styles and contents from both sides. The model D generates more plausible images than C but fails
to reflect the characteristics of the reference images. For example, D on fifth row does not look like several pieces of dumpling due to its
shape and dish color, meaning that the reference styles are not properly reflected. Similarly, E also fails to generate the dumpling in the
fifth row. TUNIT with sequential training F reflects the visual features of each reference on both datasets. However, in terms of visual
fidelity, we observe that G consistently outperforms F. Akin to the quantitative results, TUNIT achieves equivalent or even better visual
quality than the set-level supervised model A and B.

diverse species and these species labels are not provided.
FFHQ and LSUN Car contain various human faces and cars
without any labels, respectively.

Evaluation metrics. We report two scores to assess the
generated images. First, to provide a general sense of im-
age quality, we use the mean of class-wise Frénchet Incep-
tion Distance (mFID) [11]. It can avoid the degenerate case
of the original FID, which assigns a good score when the
model conveying the source image as is. Additionally, to
provide a finer assessment of the generated images, we re-

port Density and Coverage (D&C) [33]. D&C separately
evaluates the fidelity and the diversity of the model outputs,
which is also known to be robust against outliers and model
hyperparameters (e.g. the number of samples used for eval-
uation). A lower mFID score means better image quality,
and D&C scores that are bigger or closer to 1.0 indicate
better fidelity and diversity, respectively. Please refer to Ap-
pendix 3. for the detailed information.



(a) t-SNE of K̂=10 (b) t-SNE of K̂=20

K̂
AnimalFaces-10 Food-10

mFID D & C mFID D & C

1 129.6 0.561 / 0.512 95.1 1.113 / 0.771
4 77.7 0.879 / 0.738 67.4 0.851 / 0.785
7 62.7 1.016 / 0.729 52.7 1.024 / 0.846
10 47.7 1.039 / 0.805 52.2 1.079 / 0.875
13 56.8 0.993 / 0.720 54.8 0.970 / 0.845
16 54.1 1.093 / 0.782 54.8 1.029 / 0.857
20 55.4 1.019 / 0.778 57.7 0.937 / 0.846
50 63.8 0.858 / 0.701 60.8 1.067 / 0.837
500 67.2 0.921 / 0.694 63.2 0.986 / 0.826
1000 66.9 0.908 / 0.707 60.7 0.945 / 0.845

Table 2: t-SNE visualization of the model with (a) K̂=10 and (b)
K̂=20 trained on AnimalFaces-10 and quantitative evaluation of
our method by varying the number of pseudo domains K̂. Each
point is colored with the ground-truth labels. As shown in t-SNE
visualizations, even if K̂ is set to overly larger than the actual num-
ber of domains, the guiding network clusters the domains reason-
ably well. For D& C, we bold the one which has the best coverage
that has a clear maximum.

4.1. Comparative Evaluation on Labeled Datasets

Table 1 summarizes the effect of each component of TU-
NIT and rigorous comparisons with the state-of-the-art su-
pervised method, FUNIT. First, we report the set-level su-
pervised performance of FUNIT and its variant (Table 1).
Here, A is the original FUNIT and B denotes the modified
FUNIT using our architecture (e.g. we do not use Patch-
GAN discriminator), which brings a large improvement
over every score on both datasets. One simple way to ex-
tend B to the unsupervised scenario is to add an off-the-shelf
clustering method and use its estimated labels instead of the
ground truth. We employ K-means clustering on the image
space for C, and the pretrained feature space for D. Here,
we use ResNet-50 [10] features trained with MoCo v2 [3]
on ImageNet. Not surprisingly, because the estimated labels
are inaccurate, the overall performance significantly drops.
Although using the pretrained features helps a little, not
only is it far from the set-level supervised performance but
it requires three steps to train the entire model, which com-
plicates the application. This can be partially addressed by
employing the differentiable clustering method [17], which
trains VGG-11BN [38] with mutual information maximiza-
tion from scratch that makes E. This reduces the number
of training steps from three to two and provides better label

Figure 4: Cross-domain attribute translation using 0.1% of la-
beled samples. As a practical application, we also apply TUNIT
to FFHQ with few labels as a form of cross-domain translation.
For each attribute, we train TUNIT separately (there are four mod-
els.). To this end, we manually label 35 images for each domain
– one contains the attribute and another does not contain it. Then,
we train TUNIT with 70 labeled samples (0.1% of the dataset) and
remaining unlabeled samples. To add or remove the attribute, we
use the average style vector of each domain. This result shows that
TUNIT can greatly reduce the labeling cost.

estimation, which enables the model to approach the perfor-
mance of original FUNIT A. However, as seen in the cover-
age score, the sample diversity is unsatisfactory.

Finally, we build TUNIT by introducing the guiding net-
work and the new objective functions described in Sec-
tion 3. The changes significantly improve the accuracy on
both datasets, particularly achieving similar mFID of the
improved set-level supervised model B. Our final model, G
matches or outperforms mFID and D&C of B. This is im-
pressive because B utilizes oracles for training while G has
no labels. Notably, TUNIT can improve the coverage by
0.073 (7%p) on AnimalFaces-10 than B. We conjecture that
TUNIT benefits from the guiding network, which jointly
learns the style encoding and clustering with the shared en-
coder. Because their clustering modules are as powerful as
TUNIT, the performance drawback of C, D and E supports
that the feedback from style encoding is a key success fac-
tor of TUNIT. By comparing F and G, we confirm that they
are comparable in terms of clustering and G is more sta-
ble in terms of inter-dataset performance. Therefore, we
adopt the joint training of style encoder and clustering as
our final model (G). In addition, we investigate the effect
of joint training between GAN and the guiding network by
removing the adversarial loss for training the guiding net-
work. It directly degrades the performance; mFID changes
from 47.7 to 63.0 on AnimalFaces-10. It indicates that our
training scheme takes an important portion of performance
gains. Qualitative results also show the superiority of TU-



Model AnimalFaces-10 Food-10
1% 2% 4% 8% 20% 40% 60% 80% 1% 2% 4% 8% 20% 40% 60% 80%

FUNIT [28] 179.8 174.3 154.3 144.0 124.4 106.4 96.0 79.6 195.7 159.2 141.2 135.2 111.4 85.8 74.8 70.3
SEMIT [44] 68.9 63.0 63.5 60.3 57.3 64.3 66.1 62.8 70.7 66.7 65.3 65.1 65.2 62.8 61.6 64.1
TUNIT (ours) 42.0 42.6 43.9 46.2 42.0 42.6 43.9 46.2 53.6 56.2 52.8 53.4 53.6 56.2 52.8 53.4

Model AnimalFaces-149 Food-101
1% 2% 4% 8% 20% 40% 60% 80% 1% 2% 4% 8% 20% 40% 60% 80%

FUNIT [28] 147.3 133.6 116.9 101.7 102.7 112.4 102.9 100.3 136.8 94.9 80.9 72.6 67.6 66.5 66.4 67.4
SEMIT [44] 137.9 123.1 134.0 120.3 113.5 114.5 116.9 116.6 74.7 81.7 71.2 72.5 68.4 68.7 69.8 69.5
TUNIT (ours) 104.9 99.9 96.8 87.5 84.0 79.9 80.1 78.4 75.0 74.4 74.9 75.2 64.7 64.0 68.2 66.8

Table 3: Quantitative evaluation (mFID) when few labels are available during training. We note that TUNIT is the same as G in Table 1

Source Reference FUNIT TUNIT Source Reference FUNIT TUNIT
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Figure 5: Reference-guided image translation results on unlabeled datasets.

NIT over competitors (Figure 3).

4.2. Analysis on Generalizability

Robustness to various K̂’s. When TUNIT conducts clus-
tering for estimating domain labels, the number of clusters
K̂ can affect the performances. Here, we study the effects
on different K̂ on the labeled datasets and report them in
Table 2. For the qualitative comparison, please refer to Ap-
pendix 1. As expected, the model performs best in terms of
mFID when K̂ equals to the ground truth K (i.e. K̂=10).

One thing to note here is that TUNIT performs reason-
ably well for a sufficiently large K̂ (≥ 7). More interest-
ingly, even with 100 times larger K̂ than the actual number
of the domains, TUNIT still works well on both datasets.
This trend is also seen in the t-SNE visualization( Table 2).

From this study, we conclude that TUNIT is relatively ro-
bust against K̂ as long as it is sufficiently large. Thus, in
practice, we suggest to use a sufficiently large K̂ or to study
different K̂’s in log scale for finding the optimal model.

With Few labels. We also investigate whether or not
TUNIT is effective for a more practical scenario, semi-
supervised image translation. To utilize the labels, An-
imalFaces and Food datasets are chosen for this experi-
ment. Specifically, AnimalFaces-10 and Food-10 are used
for evaluating the models on the small datasets while
AnimalFaces-149 and Food-101 are used for assessing the
models on the large datasets. We partition the dataset D
into the labeled set Dsup and the unlabeled set Dun with
varying ratio γ = |Dsup|/|D|. For the semi-supervising
setting, we train EC of TUNIT by an additional cross-



(a) t-SNE of FUNIT (L) / TUNIT (R) (b) Example images

Figure 6: t-SNE visualization of style space trained on
AFHQ Wild. Since AFHQ Wild does not have ground-truth
labels, each point is colored with the guiding network’s pre-
diction. Although we set the number of domains to be larger
(K̂ = 10) than it seems to have, the network practically cre-
ates six clusters by closely locating clusters of one species.

entropy loss between the ground truth domain labels and
the predicted domain labels on Dsup. Besides, the true do-
main labels for Dsup are utilized for training the domain-
specific discriminator. As a counterpart in this scenario,
FUNIT [28] and SEMIT [44] are selected because both
models can be applied to the semi-supervised image trans-
lation (SEMIT achieves the current state-of-the-art perfor-
mance in the semi-supervised setting). We train the two
competitors and TUNIT by changing γ from 0.01 to 0.8 and
report the results in Table 3. For the small datasets, the per-
formance of FUNIT significantly degrades as γ decreases.
Meanwhile, TUNIT and SEMIT produce relatively simi-
lar mFID scores despite γ decreases. Even when SEMIT
maintains mFID, TUNIT significantly outperforms SEMIT
by 20% of mFID on small datasets. For the large datasets,
TUNIT either outperforms or is comparable to the competi-
tors. Especially, on AnimalFaces-149, TUNIT clearly out-
performs both competitors. By the experiments on the semi-
supervised setting, we conclude that TUNIT can be easily
adapted to the semi-supervised image translation with the
simple modification (i.e. adding the supervised training on
the labeled samples), and serve as a strong baseline model.
As a result, TUNIT for the semi-supervised setting achieves
impressive performance, which is comparable to the state-
of-the-art semi-supervised translation method. We provide
the qualitative comparison in the appendix.

4.3. Validation on Unlabeled Dataset

Finally, we evaluate TUNIT on the unlabeled datasets
(AFHQ, FFHQ and LSUN-Car), having no clear separa-
tions of the domains. For AFHQ, we train three individual
models for dog, cat and wild. For all experiments, we use
FUNIT as a baseline, where all the labels for training are
regarded the same as one. We set the number of clusters
K̂=10 for all the TUNIT models.

Figure 5 demonstrates the results. We observe that the
results of TUNIT adequately reflect the style feature of the
references such as the textures of cats or cars and the species

of the wilds. Although FFHQ has no clear domain distinc-
tions, TUNIT captures the existence of glasses or smile as
domains, and then add or remove glasses or smile. How-
ever, FUNIT performs much worse than TUNIT in this truly
unsupervised scenario. For example, FUNIT outputs the
inputs as is (cats and wilds) or insufficiently reflects the
species (third row of AFHQ Wild). For FFHQ, despite
that FUNIT makes some changes, the changes are not inter-
preted as meaningful domain translations. For LSUN Car,
FUNIT fails to keep the fidelity.

We also visualize the style space of both models to qual-
itatively assess the quality of the representation. Figure 6
shows the t-SNE maps trained on AFHQ Wild and the ex-
amples of each cluster; the sample color corresponds to
the box color of representative images. Surprisingly, TU-
NIT organizes the samples according to the species where it
roughly separates the images into six species. Although we
set K̂ to be overly large, the model represents one species
into two domains where those two domains position much
closely (e.g. tiger). From these results, we confirm that the
highly disentangled, meaningful style features can be an im-
portant factor in the success of our model. On the other
hand, the style features of FUNIT hardly learn meaningful
domains so that the model cannot conduct the translation
properly as shown in Figure 5. Because of the page limit,
we include more results including qualitative comparison
and the t-SNE visualization in Appendix 8,9,10 and 11.

5. Conclusion
We argue that an unsupervised image translation should

denote a task that does not utilize any kinds of supervision,
neither image-level (i.e. paired) nor set-level (i.e. unpaired).
In this regime, most of the previous studies fall into the
set-level supervised framework, using the domain informa-
tion at a minimum. In this paper, we proposed TUNIT, a
truly unsupervised image translation method. By exploit-
ing synergies between clustering and representation learn-
ing, TUNIT finds pseudo labels and style codes so that it
can translate images without using any external informa-
tion. The experimental results show that TUNIT can suc-
cessfully perform an unsupervised image translation while
being robust against hyperparameter changes (e.g., the pre-
set number of clusters, K̂). Our model is easily extended to
the semi-supervised setting, providing comparable results
to the state-of-the-art semi-supervised method. These high-
light TUNIT has great potential in practical applications.
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Figure 7: Qualitative comparison on the number of pseudo domains K̂. The performance varies along with K̂. When we set K̂ large
enough, the results are reasonable.

A. Qualitative comparison on the number of
pseudo domains K̂

Please refer to Figure 1. in Appendix.

B. Training details
We train the guiding network for the first 65K iterations

while freezing the update from both the generator and the
discriminator. Then, we train the whole framework 100K
more iterations for training all the networks. The batch size
is set to 32 and 16 for 128×128 and 256×256 images, re-
spectively. Training takes about 36 hours on a single Tesla
V100 GPU with our implementation using PyTorch[36].
We use Adam [22] optimizer with β1 = 0.9, β2 = 0.99
for the guiding network, and RMSprop [12] optimizer with
α = 0.99 for the generator and the discriminator. All learn-
ing rates are set to 0.0001 with a weight decay 0.0001. We
adopt hinge version adversarial loss [25, 41] with R1 reg-
ularization [31] using γ = 10 (Eq. 5). We set λrec =
0.1, λGstyle = 0.01, λEstyle = 1, and λMI = 5 in equa-
tion. 6 for all experiments. When the guiding network
is simultaneously trained with the generator, we decrease
λEstyle and λMI to 0.1 and 0.5, respectively. For evaluation,
we use the exponential moving average over the parame-
ters [18] of the guiding network and the generator. We
initialize the weights of convolution layers with He initial-
ization [9], all biases to zero, and weights of linear lay-
ers from N(0, 0.01) with zero biases. The source code
will be available publicly. The source code is available at
https://github.com/clovaai/tunit.

C. Evaluation protocol
For evaluation, we use class-wise Fréchet Inception Dis-

tance (FID) [11], which is often called mFID in literatures
and D&C [33]. FID measures Fréchet distance between

real and fake samples embedded by the last average pool-
ing layer of Inception-V3 pre-trained on ImageNet. Class-
wise FID is obtained by averaging the FIDs of individual
classes. In the experiments with fewer labels, we report the
mean value of best five mFID’s over 100K iterations. For
example, we use entire real images of each class and gen-
erate 810 fake images where 18 × (K − 1) source images
(K = 10 for AnimalFaces-10) and five reference images
of AnimalFaces-10 are used to produce those fake images.
We choose the source images from all classes except for the
target class. For each source image, the five references are
selected arbitrarily. For D&C, we generate fake images the
similar number of training images with randomly selected
source and reference images. Then, we use Inception-V3
pre-trained on ImageNet for extracting feature vectors and
measure D&C by using the feature vectors.

D. Difference between the sequential and joint
training in Section 4.1

To investigate the effect of the adversarial loss to the
guiding network, we trained TUNIT under two settings; 1)
joint training and 2) sequential training. The former is to
train all the networks in an end-to-end manner as described
in Section 3, and the latter is to first train the guiding net-
work with LE for 100k iterations and then train the gener-
ator and the discriminator using the outputs of the frozen
guiding network as their inputs. Note that for the sepa-
rate training, the guiding network does not receive feedback
from the translation loss LG in Eq. (6).

E. Architecture details

For the guiding network, we use VGG11 before the lin-
ear layers followed by the average pooling operation as the
shared part and append two branches Eclass and Estyle. The

https://github.com/clovaai/tunit


branches are one linear layer with K̂ and 128 dimensional
outputs, respectively. The detailed information of the gen-
erator, the guiding network and the discriminator architec-
tures are provided in Table 4, Table 5 and Table 6.

LAYER RESAMPLE NORM OUTPUT SHAPE

Image x - - 128× 128× 3

Conv7×7 - IN 128× 128× ch
Conv4×4 Stride 2 IN 64× 64× 2ch
Conv4×4 Stride 2 IN 32× 32× 4ch
Conv4×4 Stride 2 IN 16× 16× 8ch

ResBlk - IN 16× 16× 8ch
ResBlk - IN 16× 16× 8ch
ResBlk - AdaIN 16× 16× 8ch
ResBlk - AdaIN 16× 16× 8ch

Conv5×5 Upsample AdaIN 32× 32× 4ch
Conv5×5 Upsample AdaIN 64× 64× 2ch
Conv5×5 Upsample AdaIN 128× 128× ch
Conv7×7 - - 128× 128× 3

Table 4: Generator architecture. “ch” represents the channel
multiplier that is set to 64. IN and AdaIN indicate instance
normalization and adaptive instance normalization, respec-
tively.

LAYER RESAMPLE NORM OUTPUT SHAPE

Image x - - 128× 128× 3

Conv3×3 MaxPool BN 64× 64× ch
Conv3×3 MaxPool BN 32× 32× 2ch
Conv3×3 - BN 32× 32× 4ch
Conv3×3 MaxPool BN 16× 16× 4ch
Conv3×3 - BN 16× 16× 8ch
Conv3×3 MaxPool BN 8× 8× 8ch
Conv3×3 - BN 8× 8× 8ch
Conv3×3 MaxPool BN 4× 4× 8ch

GAP - - 1× 1× 8ch
FC - - 128
FC - - K̂

Table 5: Guiding network architecture. “ch” represents
the channel multiplier that is set to 64. The architecture is
based on VGG11-BN. GAP and FC denote global average
polling [26] and fully connected layer, respectively.

LAYER RESAMPLE NORM OUTPUT SHAPE

Image x - - 128× 128× 3

Conv3×3 - - 128× 128× ch
ResBlk - FRN 128× 128× ch
ResBlk AvgPool FRN 64× 64× 2ch
ResBlk - FRN 64× 64× 2ch
ResBlk AvgPool FRN 32× 32× 4ch
ResBlk - FRN 32× 32× 4ch
ResBlk AvgPool FRN 16× 16× 8ch
ResBlk - FRN 16× 16× 8ch
ResBlk AvgPool FRN 8× 8× 16ch
ResBlk - FRN 8× 8× 16ch
ResBlk AvgPool FRN 4× 4× 16ch

LReLU - - 4× 4× 16ch
Conv4×4 - - 1× 1× 16ch
LReLU - - 1× 1× 16ch

Conv1×1 - - K̂

Table 6: Discriminator architecture. “ch” and K̂ represent
the channel multiplier that is set to 64 and the number of
clusters, respectively. FRN indicates filter response normal-
ization [39].

F. Comparison with Swapping autoencoder

Figure 8: Comparison with SwAE. SwAE sometimes fails to cap-
ture the domain features. We recommend to zoom in.

Swapping autoencoder (SwAE) [35] can conduct the im-
age translation without the domain labels by using the fea-
ture vector of the reference images. Therefore, it can be
compared with TUNIT. Figure 8 shows the qualitative com-
parison between TUNIT and SwAE. Since SwAE does not
define domains, it occasionally fails to capture the exact do-
main properties (col. 1,3,4 and 6). Meanwhile, TUNIT cap-
tures various aspects of domains; it changes species along



with styles. It shows that TUNIT better handles translation
across domains. Originally, we did not compare SwAE be-
cause their practical usefulness and the possible tasks differ
from ours. Notably, similar to many unsupervised learners,
TUNIT can serve as a strong baseline for semi-supervised
models. Table 3 and Fig. 4 show that TUNIT is successful
in a semi-supervised setting. This is clearly not possible by
SwAE due to their design choice. Besides, TUNIT further
translates domains specified by cluster ids via their average
styles (Appendix Fig. 10). It is especially useful when a
user wants to explore various domains without references.
In contrast, SwAE always requires a reference.

G. Comparison with StarGANv2
We additionally compare TUNIT with StarGANv2 on

AnimalFaces-10 and Food-10. We employ StarGANv2
with supervision as the reference for the upper-bound. The
table below shows the quantitative result.

AnimalFaces-10 Food-10
mFID D&C mFID D&C

StarGANv2 (Supervised) 33.67 1.54/0.91 65.03 1.09/0.76
TUNIT (Unsupervised) 47.70 1.04/0.81 52.20 1.08/0.87

StarGANv2 outperformed unsupervised TUNIT on
AnimalFaces-10, but TUNIT outperformed StarGANv2
on Food-10. Considering that TUNIT uses no labels and
StarGANv2 uses set-level labels, we emphasize that our
achievement is impressive.

H. Perceptual study on disentanglement
We conducted the user study (selecting the best in style

and content) on two datasets and compared models (from
Table 1) as follows. The result shows that the proposed
(F,G) largely outperforms the others.

A B C D E F G

Preference(%)↑ 3.0 6.2 3.2 10.8 12.3 19.2 45.3



I. t-SNE visualization & cluster example im-
ages

Figure 9: t-SNE visualization and representative images
of each domain for AFHQ Cat.

Figure 10: t-SNE visualization and representative im-
ages of each domain for AFHQ Dog.



Figure 11: t-SNE visualization and representative im-
ages of each domain for FFHQ.

Figure 12: t-SNE visualization and representative im-
ages of each domain for LSUN Car.



J. Additional Comparison with FUNIT:
AFHQ, LSUN Car and FFHQ

Figure 13: AFHQ Cat, unsupervised reference-guided
image-to-image translation results of FUNIT and TUNIT.
The content and the style are from the source and the ref-
erence, respectively. While FUNIT usually fails to reflect
the style of the reference image, TUNIT generates the fake
images with the style – color, fur texture.

Figure 14: AFHQ Wild, unsupervised reference-guided
image-to-image translation results of FUNIT and TUNIT.
FUNIT rarely reflects the correct style of the reference im-
age – the species, on the other hand, TUNIT translates the
source image to the correct species.

Figure 15: LSUN Car, unsupervised reference-guided
image-to-image translation results of FUNIT and TUNIT.
While TUNIT generates plausible and changes the color of
the source image to that of the reference image, FUNIT not
also generates unrealistic image but also fails to changes the
color.

Figure 16: FFHQ, unsupervised reference-guided image-to-
image translation results of FUNIT and TUNIT. Our model,
TUNIT can remove or add the glasses to the source while
preserving the identity better than FUNIT. In addition, TU-
NIT can change the hair color (last column) and the hair
style – especially, bang (fifth column). It is hard to spec-
ify the definition of domains in the results of FUNIT while
domains of TUNIT are more interpretable.



K. Additional Results of TUNIT including
semi-supervised setting

K.1. AnimalFaces-10

(a) Results guided by average style vectors

(b) Results guided by reference images
Figure 17: AnimalFaces-10, unsupervised image-to-image translation results.



K.2. AFHQ Cat

(a) Results guided by the average style code of each domain

(b) Results guided by reference images
Figure 18: AFHQ Cat, unsupervised image-to-image translation results.



K.3. AFHQ Dog

(a) Results guided by the average style code of each domain

(b) Results guided by reference images
Figure 19: AFHQ Dogs, unsupervised image-to-image translation results.



K.4. AFHQ Wild

(a) Results guided by the average style code of each domain

(b) Results guided by reference images
Figure 20: AFHQ Wild, unsupervised image-to-image translation results.



K.5. FFHQ

(a) Results guided by the average style code of each domain

(b) Results guided by reference images
Figure 21: FFHQ, unsupervised image-to-image translation results.



K.6. LSUN Car

(a) Results guided by the average style code of each domain

(b) Results guided by reference images
Figure 22: LSUN Car, unsupervised image-to-image translation results.



K.7. Summer2Winter (S2W)

(a) Results guided by the average style code of each domain

(b) Results guided by reference images
Figure 23: Summer2Winter (S2W), unsupervised image-to-image translation results.



K.8. Photo2Ukiyoe

Results guided by reference images
Figure 24: Photo2Ukiyoe, unsupervised image-to-image translation results.



K.9. AnimalFaces-149, comparing with SEMIT

Figure 25: Qualitative comparison with SEMIT and FUNIT, semi-supervised translation results on AnimalFaces-149 (1% of
labeled samples are used).



L. Difference between equation (2) and equa-
tion (4)

Equation (2) and (4) have similar forms – contrastive
loss, but they are used for different purposes. We use equa-
tion (2) to improve the representation power of the guiding
network, which affects the performance of the generator and
the discriminator. On the other hand, equation (4) is used to
enforce the generator to reflect the style of a reference im-
age when translating a source image. To examine the effect
of each loss, we train models without either equation (2)
or (4) on AnimalFaces-10. The mFID score without equa-
tion (2) or (4) is 86.8 and 93.3, respectively. Both models
are significantly worse than the original setting (47.7). It
means that both equation (2) and (4) should be considered
during training. In addition to the purpose, they are differ-
ent in terms of the way to choose positive pairs. We use a
real image and its randomly augmented version as a positive
pair in equation (2) while we use the translated image and
reference image as a positive pair. In summary, the role of
equation (2) is to enhance the representation power of the
guiding network and lead the guiding network to learn how
to encode the style vector in terms of a style encoder while
the role of equation (4) is to guide the generator to learn
how to interpret the provided style vector as a form of the
output image.

M. FID and LPIPS on unlabeled dataset
We also utilize LPIPS to evaluate the models in addition

to FID and D&C. However, LPIPS is not proper to evaluate
the loyalty for reflecting the reference image and the fidelity
of images, we use LPIPS with FID. Figure 26 shows the re-
sult. It is clear that a model with high FID and LPIPS gen-
erates a noise-like image. Even if FID is low, a model with
high LPIPS also fails to conduct the reference-guided im-
age translation, because it does not preserve the structure of
the source image. The model with low LPIPS and high FID
might be an adversarial example of LPIPS. We generate the
image via optimization on LPIPS. If a model exhibits low
FID and LPIPS, it might not reflect the visual feature of the
reference image enough. The simple combination of LPIPS
and FID can detect several failed models but can not evalu-
ate the loyalty for the reference image. We suggest that the
rigorous way to combine several metrics for the quantita-
tive evaluation of the reference-guided translation might be
a interesting future work.
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Figure 26: LPIPS and FID of models and their status.


