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Abstract

Motion is an important cue for video prediction and of-
ten utilized by separating video content into static and dy-
namic components. Most of the previous work utilizing mo-
tion is deterministic but there are stochastic methods that
can model the inherent uncertainty of the future. Existing
stochastic models either do not reason about motion explic-
itly or make limiting assumptions about the static part. In
this paper, we reason about appearance and motion in the
video stochastically by predicting the future based on the
motion history. Explicit reasoning about motion without his-
tory already reaches the performance of current stochastic
models. The motion history further improves the results by
allowing to predict consistent dynamics several frames into
the future. Our model performs comparably to the state-
of-the-art models on the generic video prediction datasets,
however, significantly outperforms them on two challeng-
ing real-world autonomous driving datasets with complex
motion and dynamic background.

1. Introduction
Videos contain visual information enriched by motion.

Motion is a useful cue for reasoning about human activities
or interactions between objects in a video. Given a few
initial frames of a video, our goal is to predict several frames
into the future, as realistically as possible. By looking at
a few frames, humans can predict what will happen next.
Surprisingly, they can even attribute semantic meanings to
random dots and recognize motion patterns [17]. This shows
the importance of motion to infer the dynamics of the video
and to predict the future frames.

Motion cues have been heavily utilized for future frame
prediction in computer vision. A common approach is to
factorize the video into static and dynamic components
[35, 23, 25, 7, 10, 24, 16, 33]. First, most of the previous
methods are deterministic and fail to model the uncertainty
of the future. Second, motion is typically interpreted as local

Figure 1: Comparison of the first prediction frames (11th)
SLAMP (left) vs. state-of-the-art method, SRVP [9] (right)
on KITTI [11] (top) and Cityscapes [4] (bottom) datasets.
Our method can predict both foreground and background
objects better than SRVP. Full sequence predictions can be
seen in Fig. 32 and 33.

changes from one frame to the next. However, changes in
motion follow certain patterns when observed over some
time interval. Consider scenarios where objects move with
near-constant velocity, or humans repeating atomic actions
in videos. Regularities in motion can be very informative
for future frame prediction. In this work, we propose to
explicitly model the change in motion, or the motion history,
for predicting future frames.

Stochastic methods have been proposed to model the in-
herent uncertainty of the future in videos. Earlier methods
encode the dynamics of the video in stochastic latent vari-
ables which are decoded to future frames in a deterministic
way [5]. We first assume that both appearance and motion
are encoded in the stochastic latent variables and decode
them separately into appearance and motion predictions in
a deterministic way. Inspired by the previous deterministic
methods [8, 23, 10], we also estimate a mask relating the
two. Both appearance and motion decoders are expected to
predict the full frame but they might fail due to occlusions
around motion boundaries. Intuitively, we predict a proba-
bilistic mask from the results of the appearance and motion
decoders to combine them into a more accurate final predic-
tion. Our model learns to use motion cues in the dynamic
parts and relies on appearance in the occluded regions.
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Figure 2: Generative Model of SLAMP. The graphical
model shows the generation process of SLAMP with motion
history. There are two separate latent variables for appear-
ance zpt and motion zft generating frames xp

t and xf
t (black).

Information is propagated between time-steps through the
recurrence between frame predictions (blue), corresponding
latent variables (green), and from frame predictions to latent
variables (red). The final prediction x̂t is a weighted combi-
nation of the xp

t and xf
t according to the mask m(xp

t ,x
f
t ).

Note that predictions at a time-step depend on all of the
previous time-steps recurrently, but only the connections
between consecutive ones are shown for clarity.

The proposed stochastic model with deterministic de-
coders cannot fully utilize the motion history, even when
motion is explicitly decoded. In this work, we propose a
model to recognize regularities in motion and remember
them in the motion history to improve future frame predic-
tions. We factorize stochastic latent variables as static and
dynamic components to model the motion history in addition
to the appearance history. We learn two separate distribu-
tions representing appearance and motion and then decode
static and dynamic parts from the respective ones.

Our model outperforms all the previous work and per-
forms comparably to the state-of-the-art method, SRVP, [9]
without any limiting assumptions on the changes in the static
component on the generic video prediction datasets, MNIST,
KTH and BAIR. However, our model outperforms all the pre-
vious work, including SRVP, on two challenging real-world
autonomous driving datasets with dynamic background and
complex object motion.

2. Related Work
Appearance-Motion Decomposition: The previous work
explored motion cues for video generation either explicitly
with optical flow [35, 34, 22, 23, 25, 7, 10] or implicitly
with temporal differences [24] or pixel-level transformations
[16, 33]. There are some common factors among these
methods such as using recurrent models [29, 24, 7], specific
processing of dynamic parts [16, 22, 7, 10], utilizing a mask
[8, 23, 10], and adversarial training [33, 25]. We also use
recurrent models, predict a mask, and separately process
motion, but in a stochastic way.

The previous work which explored motion for video gen-

eration are mostly deterministic, therefore failing to capture
uncertainty of the future. There are a couple of attempts to
learn multiple future trajectories from a single image with a
conditional variational autoencoder [34] or to capture motion
uncertainty with a probabilistic motion encoder [22]. The
latter work uses separate decoders for flow and frame similar
to our approach, however, predicts them only from the latent
vector. We incorporate information from previous frames
with additional modelling of the motion history.

Stochastic Video Generation: SV2P [1] and SVG [5] are
the first to model the stochasticity in video sequences using
latent variables. The input from past frames are encoded
in a posterior distribution to generate the future frames. In
a stochastic framework, learning is performed by maximiz-
ing the likelihood of the observed data and minimizing the
distance of the posterior distribution to a prior distribution,
either fixed [1] or learned from previous frames [5]. Since
time-variance in the model is proven crucial by the previous
work, we sample a latent variable at every time step [5]. Sam-
pled random variables are fed to a frame predictor, modelled
recurrently using an LSTM. We model appearance and mo-
tion distributions separately and train two frame predictors
for static and dynamic parts.

Typically, each distribution, including the prior and the
posterior, is modeled with a recurrent model such as an
LSTM. Villegas et al. [32] replace the linear LSTMs with
convolutional ones at the cost of increasing the number of
parameters. Castrejon et al. [3] introduce a hierarchical
representation to model latent variables at different scales,
by introducing additional complexity. Lee et al. [20] in-
corporate an adversarial loss into the stochastic framework
to generate sharper images, at the cost of less diverse re-
sults. Our model with linear LSTMs can generate diverse
and sharp-looking results without any adversarial losses,
by incorporating motion information successfully into the
stochastic framework. Recent methods model dynamics of
the keypoints to avoid errors in pixel space and achieve stable
learning [26]. This offers an interesting solution for videos
with static background and moving foreground objects that
can be represented with keypoints. Our model can gener-
alize to videos with changing background without needing
keypoints to represent objects.

Optical flow has been used before in future predic-
tion [21, 25]. Li et al. [21] generate future frames from
a still image by using optical flow generated by an off-the-
shelf model, whereas we compute flow as part of prediction.
Lu et al. [25] use optical flow for video extrapolation and
interpolation without modeling stochasticity. Long-term
video extrapolation results show the limitation of this work
in terms of predicting future due to relatively small motion
magnitudes considered in extrapolation. Differently from
flow, Xue et al. [36] model the motion as image differences
using cross convolutions.
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State-Space Models: Stochastic models are typically auto-
regressive, i.e. the next frame is predicted based on the
frames generated by the model. As opposed to interleav-
ing process of auto-regressive models, state-space models
separate the frame generation from the modelling of dy-
namics [13]. State-of-the-art method SRVP [9] proposes a
state-space model for video generation with deterministic
state transitions representing residual change between the
frames. This way, dynamics are modelled with latent state
variables which are independent of previously generated
frames. Although independent latent states are computa-
tionally appealing, they cannot model the motion history of
the video. In addition, content variable designed to model
static background cannot handle changes in the background.
We can generate long sequences with complex motion pat-
terns by explicitly modelling the motion history without any
limiting assumptions about the dynamics of the background.

3. Methodology

3.1. Stochastic Video Prediction

Given the previous frames x1:t−1 until time t, our goal is
to predict the target frame xt. For that purpose, we assume
that we have access to the target frame xt during training and
use it to capture the dynamics of the video in stochastic latent
variables zt. By learning to approximate the distribution
over zt, we can decode the future frame xt from zt and the
previous frames x1:t−1 at test time.

Using all the frames including the target frame, we com-
pute a posterior distribution qφ(zt|x1:t) and sample a latent
variable zt from this distribution at each time step. The
stochastic process of the video is captured by the latent vari-
able zt. In other words, it should contain information accu-
mulated over the previous frames rather than only condens-
ing the information on the current frame. This is achieved by
encouraging qφ(zt|x1:t) to be close to a prior distribution
p(z) in terms of KL-divergence. The prior can be sampled
from a fixed Gaussian

at each time step or can be learned from previous frames
up to the target frame pψ(zt|x1:t−1). We prefer the latter
one as it is shown to work better by learning a prior that
varies across time [5].

The target frame xt is predicted based on the previous
frames x1:t−1 and the latent vectors z1:t.

In practice, we only use the latest frame xt−1 and the
latent vector zt as input and dependencies from further pre-
vious frames are propagated with a recurrent model. The
output of the frame predictor gt

contains the information required to decode xt.
Typically, gt is decoded to a fixed-variance Gaussian

distribution whose mean is the predicted target frame x̂t [5].

3.2. SLAMP

We call the predicted target frame, appearance prediction
xp
t in the pixel space. In addition to xp

t , we also estimate
optical flow ft−1:t from the previous frame t − 1 to the
target frame t. The flow ft−1:t represents the motion of
the pixels from the previous frame to the target frame. We
reconstruct the target frame xf

t from the estimated optical
flow via differentiable warping [15]. Finally, we estimate a
mask m(xp

t ,x
f
t ) from the two frame estimations to combine

them into the final estimation x̂t:

x̂t = m(xp
t ,x

f
t )� xp

t + (1−m(xp
t ,x

f
t ))� xf

t (1)

where � denotes element-wise Hadamard product and xf
t

is the result of warping the source frame to the target frame
according to the estimated flow field ft−1:t. Especially in
the dynamic parts with moving objects, the target frame can
be reconstructed accurately using motion information. In
the occluded regions where motion is unreliable, the model
learns to rely on the appearance prediction. The mask pre-
diction learns a weighting between the appearance and the
motion predictions for combining them.

We call this model SLAMP-Baseline because it is limited
in the sense that it only considers the motion with respect to
the previous frame while decoding the output. In SLAMP,
we extend the stochasticity in the appearance space to the
motion space as well. This way, we can model appearance
changes and motion patterns in the video explicitly and make
better predictions of future. Fig. 3 shows an illustration of
SLAMP (see Appendix Section A for SLAMP-Baseline).

In order to represent appearance and motion, we com-
pute two separate posterior distributions qφp

(zpt |x1:t) and
qφf

(zft |x1:t), respectively. We sample two latent variables
zpt and zft from these distributions in the pixel space and the
flow space. This allows a decomposition of the video into
static and dynamic components. Intuitively, we expect the
dynamic component to focus on changes and the static to
what remains constant from the previous frames to the target
frame. If the background is moving according to a camera
motion, the static component can model the change in the
background assuming that it remains constant throughout
the video, e.g. ego-motion of a car.

The Motion History: The latent variable zft should contain
motion information accumulated over the previous frames
rather than local temporal changes between the last frame
and the target frame. We achieve this by encouraging
qφf

(zft |x1:t) to be close to a prior distribution in terms
of KL-divergence. Similar to [5], we learn the motion
prior conditioned on previous frames up to the target frame:
pψf

(zft |x1:t−1). We repeat the same for the static part rep-
resented by zpt with posterior qφp

(zpt |x1:t) and the learned
prior pψp

(zpt |x1:t−1).
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Figure 3: SLAMP. This figure shows the components of our SLAMP model including the prediction model, inference and
learned prior models for pixel and then flow from left to right. Observations xt are mapped to the latent space by using a pixel
encoder for appearance on each frame and and a motion encoder for motion between consecutive frames. The blue boxes show
encoders, yellow and green ones decoders, gray ones recurrent posterior, prior, and predictor models, and lastly red ones show
loss functions during training. Note that L2 loss is applied three times for appearance prediction xp

t , motion prediction xf
t , and

the combination of the two x̂t according to the mask prediction m(xp
t ,x

f
t ). We only show L2 loss between the actual frame

xt and the final predicted frame x̂t in the figure. For inference, only the prediction model and learned prior models are used.

3.3. Variational Inference

For our basic formulation (SLAMP-Baseline), the deriva-
tion of the loss function is straightforward and provided
in Appendix Section B. For SLAMP, the conditional joint
probability corresponding to the graphical model in Fig. 2
is:

p(x1:T ) =

T∏
t=1

p(xt|x1:t−1, z
p
t , z

f
t ) (2)

p(zpt |x1:t−1, z
p
t−1) p(z

f
t |x1:t−1, z

f
t−1)

The true distribution over the latent variables zpt and zft is
intractable. We train time-dependent inference networks
qφp

(zpt |x1:T ) and qφf
(zft |x1:T ) to approximate the true dis-

tribution with conditional Gaussian distributions. In order
to optimize the likelihood of p(x1:T ), we need to infer la-
tent variables zpt and zft , which correspond to uncertainty of
static and dynamic parts in future frames, respectively. We
use a variational inference model to infer the latent variables.

Since zpt and zft are independent across time, we can
decompose Kullback-Leibler terms into individual time steps.
We train the model by optimizing the variational lower bound

(see Appendix Section B for the derivation):

log pθ(x) ≥ Lθ,φp,φf ,ψp,ψf
(x1:T ) (3)

=
∑
t

Ezp
1:t∼qφp

zf
1:t∼qφf

log pθ(xt|x1:t−1, z
p
1:t, z

f
1:t)

− β
[
DKL(q(z

p
t |x1:t) || p(zpt |x1:t−1))

+DKL(q(z
f
t |x1:t) || p(zft |x1:t−1))

]
The likelihood pθ, can be interpreted as an L2 penalty

between the actual frame xt and the estimation x̂t as defined
in (1). We apply the L2 loss to the predictions of appearance
and motion components as well.

The posterior terms for uncertainty are estimated as an
expectation over qφp

(zpt |x1:t), qφf
(zft |x1:t). As in [5], we

also learn the prior distributions from the previous frames up
to the target frame as pψp

(zpt |x1:t−1), pψf
(zft |x1:t−1). We

train the model using the re-parameterization trick [19]. We
classically choose the posteriors to be factorized Gaussian
so that all the KL divergences can be computed analytically.
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3.4. Architecture

We encode the frames with a feed-forward convolutional
architecture to obtain appearance features at each time-step.
In SLAMP, we also encode consecutive frame pairs into a
feature vector representing the motion between them. We
then train linear LSTMs to infer posterior and prior distribu-
tions at each time-step from encoded appearance and motion
features.

Stochastic video prediction model with a learned prior
[5] is a special case of our baseline model with a single pixel
decoder, we also add motion and mask decoders. Next, we
describe the steps of the generation process for the dynamic
part.

At each time step, we encode xt−1 and xt into hf
t , rep-

resenting the motion from the previous frame to the target
frame. The posterior LSTM is updated based on the hf

t :

hf
t = MotionEnc(xt−1,xt) (4)

µφf (t)
,σφf (t)

= LSTMφf
(hf

t )

For the prior, we use the motion representation hf
t−1 from

the previous time step, i.e. the motion from the frame t− 2
to the frame t− 1, to update the prior LSTM:

hf
t−1 = MotionEnc(xt−2,xt−1) (5)

µψf (t)
,σψf (t)

= LSTMψf
(hf

t−1)

At the first time-step where there is no previous motion,
we assume zero-motion by estimating the motion from the
previous frame to itself.

The predictor LSTMs are updated according to encoded
features and sampled latent variables:

gf
t = LSTMθf

(hf
t−1, z

f
t ) (6)

µθf
= FlowDec(gf

t )

There is a difference between the train time and inference
time in terms of the distribution the latent variables are sam-
pled from. At train time, latent variables are sampled from
the posterior distribution. At test time, they are sampled
from the posterior for the conditioning frames and from the
prior for the following frames. The output of the predictor
LSTMs are decoded into appearance and motion predictions
separately and combined into the final prediction using the
mask prediction (Eq. (1)).

4. Experiments
We evaluate the performance of the proposed approach

and compare it to the previous methods on three stan-
dard video prediction datasets including Stochastic Moving
MNIST, KTH Actions [28] and BAIR Robot Hand [6]. We

5 10 15 20 25
t

15

20

25

30

PSNR

5 10 15 20 25
t

0.65
0.70

0.80

0.90

SSIM

SVG SRVP SLAMP-Baseline SLAMP

Figure 4: Quantitative Results on MNIST. This fig-
ure compares SLAMP to SLAMP-Baseline, SVG [5],
and SRVP [9] on MNIST in terms of PSNR (left) and
SSIM (right). SLAMP clearly outperforms our baseline
model and SVG, and performs comparably to SRVP. Vertical
bars mark the length of the training sequences.

specifically compare our baseline model (SLAMP-Baseline)
and our model (SLAMP) to SVG [5] which is a special
case of our baseline with a single pixel decoder, SAVP [20],
SV2P [1], and lastly to SRVP [9]. We also compare our
model to SVG [5] and SRVP [9] on two different challeng-
ing real world datasets, KITTI [12, 11] and Cityscapes [4],
with moving background and complex object motion. We
follow the evaluation setting introduced in [5] by generating
100 samples for each test sequence and report the results
according to the best one in terms of average performance
over the frames. Our experimental setup including training
details and parameter settings can be found in Appendix
Section C. We also share the code for reproducibility.

Table 1: FVD Scores on KTH and BAIR. This table com-
pares all the methods in terms of FVD scores with their
95%-confidence intervals over five different samples from
the models. Our model is the second best on KTH and
among top three methods on BAIR.

Dataset KTH BAIR

SV2P 636 ± 1 965 ± 17
SAVP 374 ± 3 152 ± 9
SVG 377 ± 6 255 ± 4
SRVP 222 ± 3 163± 4
SLAMP-Baseline 236 ± 2 245 ± 5
SLAMP 228 ± 5 —

Evaluation Metrics: We compare the performance using
three frame-wise metrics and a video-level one. Peak Signal-
to-Noise Ratio (PSNR), higher better, based on L2 distance
between the frames penalizes differences in dynamics but
also favors blur predictions. Structured Similarity (SSIM),
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t = 1 t = 3 t = 5 t = 6 t = 8 t = 10 t = 12 t = 15 t = 18 t = 20 t = 22 t = 24 t = 6 t = 8 t = 10 t = 12 t = 15 t = 18 t = 20 t = 22 t = 24

Final Prediction

Appearance Prediction

Motion Prediction

Mask Prediction

Optical Flow

Figure 5: SLAMP-Baseline (left) vs. SLAMP (right) on MNIST. The top row shows the ground truth, followed by the
frame predictions by the final, the appearance, the motion, and the last two rows show the mask and the optical flow predictions
with false coloring. In this challenging case with bouncing and collisions, the baseline confuses the digits and cannot predict
last frames correctly whereas SLAMP can generate predictions very close to the ground truth by learning smooth transitions in
the motion history, as can be seen from optical flow predictions. See Fig. 13 for the color wheel showing the direction of flow.
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Figure 6: Quantitative Results on KTH and BAIR. We
compare our results to previous work in terms of PSNR,
SSIM, and LPIPS metrics with respect to the time steps
on KTH (top), and BAIR (bottom) datasets, with 95%-
confidence intervals. Vertical bars mark the length of training
sequences. SLAMP outperforms previous work including
SVG [5], SAVP [20], SV2P [1] and performs comparably to
the state of the art method SRVP [9] on both datasets.

higher better, compares local patches to measure similar-
ity in structure spatially. Learned Perceptual Image Patch
Similarity (LPIPS) [37], lower better, measures the distance
between learned features extracted by a CNN trained for im-
age classification. Frechet Video Distance (FVD) [31], lower
better, compares temporal dynamics of generated videos to
the ground truth in terms of representations computed for
action recognition.

Stochastic Moving MNIST: This dataset contains up to
two MNIST digits moving linearly and bouncing from walls
with a random velocity as introduced in [5]. Following the
same training and evaluation settings as in the previous work,

we condition on the first 5 frames during training and learn
to predict the next 10 frames. During testing, we again
condition on the first 5 frames but predict the next 20 frames.

Fig. 4 shows quantitative results on MNIST in compari-
son to SVG [5] and SRVP [9] in terms of PSNR and SSIM,
omitting LPIPS as in SRVP. Our baseline model with a mo-
tion decoder (SLAMP-Baseline) already outperforms SVG
on both metrics. SLAMP further improves the results by
utilizing the motion history and reaches a comparable per-
formance to the state of the art model SRVP. This shows
the benefit of separating the video into static and dynamic
parts in both state-space models (SRVP) and auto-regressive
models (ours, SLAMP). This way, models can better handle
challenging cases such as crossing digits as shown next.

We qualitatively compare SLAMP to SLAMP-Baseline
on MNIST in Fig. 5. The figure shows predictions of static
and dynamic parts as appearance and motion predictions,
as well the final prediction as the combination of the two.
According to the mask prediction, the final prediction mostly
relies on the dynamic part shown as black on the mask and
uses the static component only near the motion boundaries.
Moreover, optical flow prediction does not fit the shape of
the digits but expands as a region until touching the motion
region of the other digit. This is due to the uniform black
background. Moving a black pixel in the background ran-
domly is very likely to result in another black pixel in the
background, which means zero-loss for the warping result.
Both models can predict optical flow correctly for the most
part and resort to the appearance result in the occluded re-
gions. However, continuity in motion is better captured by
SLAMP with the colliding digits whereas the baseline model
cannot recover from it, leading to blur results, far from the
ground truth. Note that we pick the best sample for both
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Figure 7: Qualitative Results on KTH We visualize the
results of SLAMP on KTH dataset. The top row shows the
ground truth, followed by the frame predictions by the final,
the appearance, the motion, and the last two rows show the
mask and the optical flow predictions. The mask prediction
combines the appearance prediction (white) and the motion
prediction (black) into the final prediction.

models among 100 samples according to LPIPS.

KTH Action Dataset: KTH dataset contains real videos
where people perform a single action such as walking, run-
ning, boxing, etc. in front of a static camera [28]. We expect
our model with motion history to perform very well by ex-
ploiting regularity in human actions on KTH. Following the
same training and evaluation settings used in the previous
work, we condition on the first 10 frames and learn to predict
the next 10 frames. During testing, we again condition on
the first 10 frames but predict the next 30 frames.

Fig. 6 and Table 1 show quantitative results on KTH
in comparison to previous approaches. Both our baseline
and SLAMP models outperform previous approaches and
perform comparably to SRVP, in all metrics including FVD.
A detailed visualization of all three frame predictions as well
as flow and mask are shown in Fig. 7. Flow predictions
are much more fine-grained than MNIST by capturing fast
motion of small objects such as hands or thin objects such as
legs (see Appendix Section E). The mask decoder learns to
identify regions around the motion boundaries which cannot
be matched with flow due to occlusions and assigns more
weight to the appearance prediction in these regions.

On KTH, the subject might appear after the conditioning
frames. These challenging cases can be problematic for
some previous work as shown in SRVP [9]. Our model can
generate samples close to the ground truth despite very little
information on the conditioning frames as shown in Fig. 8.
The figure shows the best sample in terms of LPIPS, please
see Appendix Section E for a diverse set of samples with
subjects of various poses appearing at different time steps.

BAIR Robot Hand: This dataset contains videos of a

Table 2: Results with a Moving Background. We evaluate
our model SLAMP in comparison to SVG and SRVP on
KITTI [11] and Cityscapes [4] datasets by conditioning on
10 frames and predicting 20 frames into the future.

Models PSNR (↑) SSIM (↑) LPIPS (↓)
SVG [5] 12.70 ± 0.70 0.329 ± 0.030 0.594 ± 0.034
SRVP [9] 13.41 ± 0.42 0.336 ± 0.034 0.635 ± 0.021
SLAMP 13.46 ± 0.74 0.337 ± 0.034 0.537 ± 0.042

KITTI [12, 11]

Models PSNR (↑) SSIM (↑) LPIPS (↓)
SVG [5] 20.42 ± 0.63 0.606 ± 0.023 0.340 ± 0.022
SRVP [9] 20.97 ± 0.43 0.603 ± 0.016 0.447 ± 0.014
SLAMP 21.73 ± 0.76 0.649 ± 0.025 0.2941 ± 0.022

Cityscapes [4]

robot hand moving and pushing objects on a table [6]. Due
to uncertainty in the movements of the robot arm, BAIR is a
standard dataset for evaluating stochastic video prediction
models. Following the training and evaluation settings used
in the previous work, we condition on the first 2 frames and
learn to predict the next 10 frames. During testing, we again
condition on the first 2 frames but predict the next 28 frames.

We show quantitative results on BAIR in Fig. 6 and Ta-
ble 1. Our baseline model achieves comparable results to
SRVP, outperforming other methods in all metrics except
SV2P [1] in PSNR and SAVP [20] in FVD. With 2 condition-
ing frames only, SLAMP cannot utilize the motion history
and performs similarly to the baseline model on BAIR (see
Appendix Section D). This is simply due to the fact that there
is only one flow field to condition on, in other words, no
motion history. Therefore, we only show the results of the
baseline model on this dataset.

Real-World Driving Datasets: We perform experiments
on two challenging autonomous driving datasets: KITTI [12,
11] and Cityscapes [4] with various challenges. Both datasets
contain everyday real-world scenes with complex dynamics
due to both background and foreground motion. KITTI
is recorded in one town in Germany while Cityscapes is
recorded in 50 European cities, leading to higher diversity.

Cityscapes primarily focuses on semantic understanding
of urban street scenes, therefore contains a larger number of
dynamic foreground objects compared to KITTI. However,
motion lengths are larger on KITTI due to lower frame-rate.
On both datasets, we condition on 10 frames and predict 10
frames into the future to train our models. Then at test time,
we predict 20 frames conditioned on 10 frames.

As shown in Table 2, SLAMP outperforms both meth-
ods on all of the metrics on both datasets, which shows its
ability to generalize to the sequences with moving back-
ground. Even SVG [5] performs better than the state of
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Figure 8: Subject Appearing after the Conditioning Frames. This figure shows a case where the subject appears after
conditioning frames on KTH with ground truth (top) and a generated sample by our model (bottom). This shows our model’s
ability to capture dynamics of the dataset by generating samples close to the ground truth, even conditioned on empty frames.
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SVG [5] 

SRVP [9]

Ours
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SVG [5]

SRVP [9]

Ours

Figure 9: Qualitative Comparison. We compare SLAMP to SVG [5] and SRVP [9] on KITTI (top) and Cityscapes (bottom).
Our model can better capture the changes due to ego-motion thanks to explicit modeling of motion history.

the art SRVP [9] in LPIPS metric for KITTI and on both
SSIM and LPIPS for Cityscapes, which shows the limita-
tions of SRVP on scenes with dynamic backgrounds. We
also perform a qualitative comparison to these methods in
Fig. 1 and Fig. 9. SLAMP can better preserve the scene
structure thanks to explicit modeling of ego-motion history
in the background.

Visualization of Latent Space: We visualize stochastic la-
tent variables of the dynamic component on KTH compared
to the static and SVG. (see Fig. 14 and Fig. 15)

5. Conclusion
We presented a stochastic video prediction framework to

decompose video content into appearance and dynamic com-
ponents. Our baseline model with deterministic motion and
mask decoders outperforms SVG, which is a special case of
our baseline model. Our model with motion history, SLAMP,
further improves the results and reaches the performance of
the state of the art method SRVP on the previously used
datasets. Moreover, it outperforms both SVG and SRVP on
two real-world autonomous driving datasets with dynamic
background and complex motion. We show that motion his-

tory enriches model’s capacity to predict future, leading to
better predictions in challenging cases.

Our model with motion history cannot realize its full
potential in standard settings of stochastic video prediction
datasets. A fair comparison is not possible on BAIR due to
the little number of conditioning frames. BAIR holds a great
promise with changing background but infrequent, small
changes are not reflected in current evaluation metrics.

An interesting direction is stochastic motion decomposi-
tion, maybe with hierarchical latent variables, for modelling
camera motion and motion of each object in the scene sepa-
rately.
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TUBITAK 2232 International Fellowship for Outstanding
Researchers Programme, E. Erdem in part by GEBIP 2018
Award of the Turkish Academy of Sciences, A. Erdem by
BAGEP 2021 Award of the Science Academy.

8



References
[1] Mohammad Babaeizadeh, Chelsea Finn, Dumitru Er-

han, Roy H. Campbell, and Sergey Levine. Stochastic
variational video prediction. In Proc. of the Interna-
tional Conf. on Learning Representations (ICLR), 2018.
2, 5, 6, 7, 17

[2] Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam
Shazeer. Scheduled sampling for sequence prediction
with recurrent neural networks. In Advances in Neural
Information Processing Systems, 2015. 15

[3] Lluis Castrejon, Nicolas Ballas, and Aaron Courville.
Improved conditional vrnns for video prediction. In
Proc. of the IEEE International Conf. on Computer
Vision (ICCV), 2019. 2

[4] Marius Cordts, Mohamed Omran, Sebastian Ramos,
Timo Rehfeld, Markus Enzweiler, Rodrigo Benenson,
Uwe Franke, Stefan Roth, and Bernt Schiele. The
cityscapes dataset for semantic urban scene understand-
ing. In Proc. IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR), 2016. 1, 5, 7

[5] Emily Denton and Rob Fergus. Stochastic video gener-
ation with a learned prior. In Proc. of the International
Conf. on Machine learning (ICML), 2018. 1, 2, 3, 4, 5,
6, 7, 8, 11, 15, 16, 17, 19, 20, 28, 29

[6] Frederik Ebert, Chelsea Finn, Alex X. Lee, and Sergey
Levine. Self-supervised visual planning with temporal
skip connections. In 1st Annual Conference on Robot
Learning, CoRL 2017, Mountain View, California, USA,
November 13-15, 2017, Proceedings, 2017. 5, 7

[7] Hehe Fan, Linchao Zhu, and Yi Yang. Cubic lstms
for video prediction. In Proc. of the Conf. on Artificial
Intelligence (AAAI), 2019. 1, 2

[8] Chelsea Finn, Ian Goodfellow, and Sergey Levine. Un-
supervised learning for physical interaction through
video prediction. In Advances in Neural Information
Processing Systems (NeurIPS), 2016. 1, 2

[9] Jean-Yves Franceschi, Edouard Delasalles, Mickaël
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In this part, we provide additional illustrations, derivations, and results for our paper “SLAMP: Stochastic Latent Appearance
and Motion Prediction”. We first show the model illustrations of our proposed model (SLAMP) and our baseline model
(SLAMP-Baseline) in comparison to the previous work by Denton et al. [5] (SVG) in Section A. In Section B, we provide the
full derivations of the variational inference, evidence lower bounds of our baseline model (Section B.1) and our proposed
model (Section B.2). We explain the architectural choices and training details in Section C. In Section D, we present detailed
versions of the quantitative results in the main paper. In addition, we present the ablation experiments for our model’s mask
component. We evaluate and compare the predictions of static, dynamic heads of the model, simple averaging of the two
without a mask, and our full model with learned mask. In Section E, we first provide the color wheel to interpret optical flow
predictions, and a comparison of static and dynamic latent variables. We then present several qualitative results both with
details as in the main paper and with random samples, showing the diversity of the generated samples on all datasets.

For video examples, please visit https://kuis-ai.github.io/slamp/.

A. Model Illustrations
In Fig. 10, we provide the inference procedure of our model SLAMP, in addition to the training procedure provided in the

main paper. Moreover, we present graphical illustrations of the training (Fig. 11) and the inference procedures (Fig. 12) of our
baseline model, SLAMP-Baseline, in comparison to SVG [5].

Pixel
Encoder

Motion
Encoder

Pixel 
Decoder

Flow
Decoder

 

Pixel
Encoder

Motion
Encoder  

Mask Decoder

Figure 10: Illustration of the Inference Procedure for SLAMP. This figure illustrates the difference between the inference
time and the train time in terms of the distributions the latent variables are sampled from. While at train time, latent variables
are sampled from the posterior distribution, at test time, they are sampled from the posterior for the conditioning frames and
from the prior for the following frames.
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Figure 11: Illustration of the Training Procedure for SVG (left) and SLAMP-Baseline (right). The main difference
between SVG and SLAMP-Baseline is that SLAMP-Baseline has three decoders instead of one pixel decoder. In SLAMP-
Baseline, in addition to the appearance prediction xp

t , we also estimate flow ft−1:t and warp the previous frame according
to the estimated flow to obtain motion prediction xf

t . Mask decoder takes appearance and motion predictions as input and
generates a weighted combination of the two, x̂t as the final prediction. Note that SVG corresponds to only appearance
prediction case of our baseline model.
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Figure 12: Illustration of the Inference Procedure for SVG (left) and SLAMP-Baseline (right). This figure illustrates the
inference time in comparison to the train time in terms of the distribution the latent variables are sampled from. While at train
time, latent variables are sampled from the posterior distribution, at test time, they are sampled from the posterior for the
conditioning frames and from the prior for the following frames.
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B. Derivations

Here, we provide derivations of inference steps and variational lower bounds of the baseline method, SLAMP-Baseline
(Section B.1), and our method SLAMP (Section B.2).

B.1. Derivation of the ELBO for SLAMP-Baseline

We first derive the variational lower bound for the baseline model with one posterior and one learned prior distribution.

log pθ(x) = log

∫
z

pθ(x|z) p(z|x) (7)

= log

∫
z

pθ(x|z) p(z|x)
qφ(z|x)
qφ(z|x)

= logEqφ(z|x)
pθ(x|z) p(z|x)

qφ(z|x)

≥ Eqφ(z|x) log
pθ(x|z) p(z|x)

qφ(z|x)

= Eqφ(z|x) log pθ(x|z)− Eqφ(z|x) log
qφ(z|x)
p(z|x)

= Eqφ(z|x) log pθ(x|z)−DKL(qφ(z|x) || p(z|x))

We model the posterior distribution with a recurrent network. The recurrent network outputs a different posterior distribution,
qφ(zt|x1:t), at every time step. Due to independence of latent variables across time, z = [z1, z2, . . . , zT ], we can derive the
estimation of posterior distribution across time steps as follows:

qφ(z|x) =
∏
t

qφ(zt|x1:t) (8)

Since the latent variables, z = [z1, z2, · · · , zT ], are independent across time, we can further decompose Kullback-Leibler
term in the evidence lower bound into individual time steps:

DKL ( qφ(z|x)|| p(z|x1:t−1)) (9)

=

∫
z

qφ(z|x) log
qφ(z|x)

p(z|x1:t−1)

=

∫
z1

· · ·
∫
zT

qφ(z1|x1) · · · qφ(zT |x1:T ) log
qφ(z1|x1) · · · qφ(zt|x1:T )

p(z1|x1) · · · p(zT |x1:T−1)

=

∫
z1

· · ·
∫
zT

qφ(z1|x1) · · · qφ(zT |x1:T )
∑
t

log
qφ(zt|x1:t)

p(zt|x1:t−1)

=
∑
t

∫
z1

· · ·
∫
zT

qφ(z1|x1) · · · qφ(zT |x1:T ) log
qφ(zt|x1:t)

p(zt|x1:t−1)

And because
∫
x

p(x) = 1, this simplifies to:

=
∑
t

∫
zt

qφ(zt|x1:t) log
qφ(zt|x1:t)

p(zt|x1:t−1)

=
∑
t

DKL ( qφ(zt|x1:t)|| p(zt|x1:t−1))
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At each time step, our model predicts xt, conditioned on xt−1 and zt. Since our model has recurrence connections, it
considers not only xt−1 and zt, but also x1:t−2 and z1:t−1. Therefore, we can further write our inference as:

log pθ(x|z) = log
∏
t

pθ(xt|x1:t−1, z1:t) (10)

=
∑
t

log pθ(xt|x1:t−1, z1:t)

Combining all of them leads to the following variational lower bound:

log pθ(x) ≥ Lθ,φ,ψ(x1:T ) (11)
= Eqφ(z|x) log pθ(x|z)−DKL(qφ(z|x) || pψ(z|x))

=
∑
t

[
Eqφ(z1:t|x1:t) log pθ(xt|x1:t−1, z1:t)

−DKL(qφ(zt|x1:t || pψ(zt|x1:t−1))
]

B.2. Derivation of the ELBO for SLAMP

In this section, we derive the variational lower bound for the proposed model with two posterior and two learned prior
distributions.

log pθ(x) = log

∫
zp

∫
zf

pθ(x|zp, zf ) p(zp|x) p(zf |x) (12)

= log

∫
zp

∫
zf

pθ(x|zp, zf ) p(zp|x) p(zf |x)
qφp

(zp|x)
qφp

(zp|x)
qφf

(zf |x)
qφf

(zf |x)

= logEzp∼qφp

zf∼qφf

pθ(x|zp, zf ) p(zp|x) p(zf |x)
qφp

(zp|x) qφf
(zf |x)

≥ Ezp∼qφp

zf∼qφf

log
pθ(x|zp, zf ) p(zp|x) p(zf |x)

qφp
(zp|x) qφf

(zf |x)

= Ezp∼qφp

zf∼qφf

log pθ(x|zp, zf )− Ezp∼qφp
log

qφp
(zp|x)

p(zp|x)
− Ezf∼qφf

log
qφf

(zf |x)
p(zf |x)

= Ezp∼qφp

zf∼qφf

log pθ(x|zp, zf )−DKL(qφp
(zp|x) || p(zp|x))−DKL(qφf

(zf |x) || p(zf |x))

We model the posterior distributions with two recurrent networks. The recurrent networks output two different posterior
distributions, qφp

(zpt |x1:t) and qφf
(zft |x1:t), at every time step. Due to the independence of the latent variables across time,

zp = [zp1, z
p
2, · · · , z

p
T ] and zf = [zf1 , z

f
2 , · · · , z

f
T ], we can derive the estimation of posterior distributions across time steps as

follows:

qφp
(zp|x) =

∏
t

qφp
(zpt |x1:t)

qφf
(zf |x) =

∏
t

qφf
(zft |x1:t) (13)

Since the latent variables, zp = [zp1, z
p
2, . . . , z

p
T ] and zf = [zf1 , z

f
2 , . . . , z

f
T ], are independent across time and independent

from each other, we can further decompose Kullback-Leibler terms in the evidence lower bound into individual time steps as
in Eq. (9).
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At each time step, our model predicts xt, conditioned on xt−1, zpt , zft . Since our model has recurrence connections, it
considers not only xt−1, zpt and zft , but also x1:t−2, zp1:t−1 and zf1:t−1. Therefore, we can further write our inference as:

log pθ(x|zp, zf ) = log
∏
t

pθ(xt|x1:t−1, z
p
1:t, z

f
1:t) (14)

=
∑
t

log pθ(xt|x1:t−1, z
p
1:t, z

f
1:t)

Combining all of them leads to the following variational lower bound:

log pθ(x) ≥ Lθ,φp,ψf
(x1:T ) (15)

= Ezp∼qφp

zf∼qφf

log pθ(x|zp, zf )−DKL(qφp
(zp|x) || pψp

(zp|x))−DKL(qφf
(zf |x) || pψf

(zf |x))

=
∑
t

Ezp∼qφp

zf∼qφf

log pθ(xt|x1:t−1, z
p
1:t, z

f
1:t)

−DKL(qφp
(zpt |x1:t || pψp

(zpt |x1:t−1))

−DKL(qφf
(zft |x1:t || pψf

(zft |x1:t−1))

C. Training Details

We provide training details including scheduled sampling (Section C.1), architecture details (Section C.2), and the
hyper-parameters used in the optimization (Section C.3).

C.1. Scheduled Sampling

Scheduled sampling proposed for sequence prediction [2] has been proven useful for several tasks where predictions need
to be made based on the generated results from the previous time steps. We also experiment with scheduled sampling as
part of our training procedure. Scheduled sampling prevents the model from conditioning on ground-truth perfect samples
which are not available at test time. This is achieved by allowing the model to slowly encounter generated samples instead of
ground-truth perfect samples. The ratio of ground-truth perfect samples over generated samples is decreased throughout the
training. Specifically, we apply inverse sigmoid decay. We report the scores with and without scheduled sampling for the
proposed models, both SLAMP-Baseline and SLAMP, on all datasets. As can be seen from Table 3, scheduled sampling is not
crucial but it improves the results on KTH, especially for SLAMP.

C.2. Architecture Details

Encoders and Decoders: For all encoders and decoders, we use the same architectures as the previous work [5, 9]: a
DCGAN [27] generator and discriminator for MNIST, and a VGG16 architecture [30] for KTH and BAIR datasets. In all
datasets, we encode the image into an appearance feature vector of size happearance = 128 and the two consecutive images
into a motion feature vector of size hmotion = 128. Compared to SVG, there are two more decoders for predicting flow and
mask in our models. For flow decoder, we use the same decoder with two output channels representing motion in horizontal
and vertical direction. See below for the details of the mask decoder. For SLAMP, motion encoder takes concatenated frame
pair as input and outputs a feature vector encoding motion from one frame to the next.

Similar to previous work [5, 9], we also use skip connections but with a minor modification. In the previous work, the skip
connection from either the last conditioning frame or last generated frame is used. Instead, we take the running average of all
the skip connections from seen or generated frames. For example, at time step 15, we use the average of previous 14 skip
connections that are generated.

Mask Predictor: For mask predictor, we use a 5-layer CNN with 2 Squeeze and Excitation layers (SE-Layer) [14] after each
two convolutional layers. In the CNN, we use 64-channel filters at each layer and do not reduce the resolution by using 3× 3
kernels with padding. We simply concatenate the output of pixel decoder and warped prediction along their channel axis and
feed it into mask predictor which outputs a one-channel image. We apply sigmoid at the end to map the output to the range
between 0 and 1, representing the weight to combine the appearance and the motion predictions.
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Table 3: Ablation Study. This table shows the quantitative results comparing SLAMP-Baseline and SLAMP with scheduled
sampling (+ SS) and without during training. Following the previous work, we report the results as the mean and the
95%-confidence interval in terms of PSNR, SSIM, and LPIPS on all the datasets except LPIPS on MNIST.

Models PSNR SSIM LPIPS
M

N
IS

T SLAMP-Baseline 16.83± 0.06 0.7537± 0.0017 —
SLAMP-Baseline + SS 16.32± 0.06 0.7343± 0.0016 —

SLAMP 18.07± 0.07 0.7736± 0.0019 —
SLAMP + SS 17.54± 0.08 0.7567± 0.0018 —

K
T

H

SLAMP-Baseline 28.47± 0.27 0.8527± 0.0053 0.0896± 0.0038
SLAMP-Baseline + SS 29.20± 0.28 0.8633± 0.0048 0.0951± 0.0036

SLAMP 28.91± 0.28 0.8604± 0.0049 0.0860± 0.0037
SLAMP + SS 29.39± 0.30 0.8646± 0.0049 0.0795± 0.0033

B
A

IR

SLAMP-Baseline 19.60± 0.26 0.8175± 0.0083 0.0596± 0.0031
SLAMP-Baseline + SS 19.55± 0.26 0.8171± 0.0083 0.0634± 0.0034

SLAMP 19.67± 0.26 0.8161± 0.0086 0.0639± 0.0037
SLAMP + SS 19.75± 0.26 0.8160± 0.0084 0.0661± 0.0035

LSTMs and Latent Variables: For prior, posterior, and frame predictor LSTMs, we use the settings proposed in SVG [5].
All LSTMs have 256 neurons and all prior and posterior LSTMs have one layer whereas the frame predictor LSTMs have two
layers. For the size of the latent variables, we use 20, 50, 64 for MNIST, KTH, and BAIR, respectively.

C.3. Optimization Hyper-Parameters

All the models are trained with Adam optimizer [18], with decay rates β1 = 0.9 and β2 = 0.999. We train each model for
300 epochs where each epoch consists of 1000 updates, unless otherwise is specified. We take the model which performs
the best in the validation set. We will share the trained models upon publication for replicating the results. Dataset-specific
parameters for each dataset are as follows:

MNIST: The batch size is chosen to be 32, learning rate is 3× 10−4 and β = 1× 10−4. We continue training the models on
MNIST with a lower learning rate, 1× 10−5, a lower β = 5× 10−5, and a lower β1 = 0.7.

KTH: The batch size is chosen to be 20, learning rate is 1× 10−4 and β = 1× 10−6. We apply scheduled sampling with
inverse sigmoid decay.

BAIR: The batch size is chosen to be 20, learning rate is 1× 10−4 and β = 1× 10−4.

Training details for KITTI and Cityscapes:
We use 92× 310 image resolution for KITTI and 128× 256 for Cityscapes. We replaced LSTMs with ConvLSTMs and

used 3× 10 intermediate feature size for KITTI, 4× 8 for Cityscapes. We used a shared encoder to downsample the image
first and then, use two separate encoders for pixel and motion encoders to make model less powerful. We increased the number
of layers in the shared encoder to downsample the higher resolution image, and preserve the VGG-basedd structure.

For SVG, we use the same settings as SLAMP. For SRVP, we use the same shared encoder and use a channel pooling at the
end to make the convolutional feature vector compatible with the rest of the architecture.

We train all the models until the models see 2.4M video samples. We use the largest batch size that we could use and
choose the learning rate 1× 10−4 for all the models.
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D. Detailed Quantitative Results
In this section, we provide a detailed version of the quantitative results presented in the main paper in Figure 3 and 5.
We compare the performance of SLAMP-Baseline and SLAMP to the previous work in terms of PNSR, SSIM, and LPIPS

averaged over all time steps on MNIST (Table 4), KTH (Table 5), and BAIR (Table 6) datasets. Confirming the results in the
main paper, the proposed model SLAMP with motion history outperforms both the baseline model, SLAMP-Baseline, and the
previous work [5, 1, 20] and performs comparably to the state of the art model SRVP [9]. See the main paper for a detailed
analysis.

Table 4: Results on MNIST. This table compares the results of SLAMP and SLAMP-Baseline to the previous work on
MNIST dataset. Following the previous work, we report the results as the mean and the 95%-confidence interval in terms of
PSNR and SSIM. Bold and underlined scores indicate the best and the second best performing method, respectively.

Models PSNR SSIM

SVG [5] 14.50 ± 0.04 0.7090 ± 0.0015
SRVP [9] 16.93± 0.07 0.7799 ± 0.0020
SLAMP-Baseline 16.83 ± 0.06 0.7537 ± 0.0018
SLAMP 18.07 ± 0.08 0.7736± 0.0019

Table 5: Results on KTH. This table compares the results of SLAMP and SLAMP-Baseline to the previous work on KTH
dataset. Following the previous work, we report the results as the mean and the 95%-confidence interval in terms of PSNR,
SSIM, and LPIPS. Bold and underlined scores indicate the best and the second best performing method, respectively.

Models PSNR SSIM LPIPS

SV2P [1] 28.19 ± 0.31 0.8141 ± 0.0050 0.2049 ± 0.0053
SAVP [20] 26.51 ± 0.29 0.7564 ± 0.0062 0.1120 ± 0.0039
SVG [5] 28.06 ± 0.29 0.8438 ± 0.0054 0.0923 ± 0.0038
SRVP [9] 29.69 ± 0.32 0.8697 ± 0.0046 0.0736 ± 0.0029
SLAMP-Baseline 29.20 ± 0.28 0.8633 ± 0.0048 0.0951 ± 0.0036
SLAMP 29.39± 0.30 0.8646± 0.0050 0.0795± 0.0034

Table 6: Results on BAIR. This table compares the results of SLAMP and SLAMP-Baseline to the previous work on BAIR
dataset. Following the previous work, we report the results as the mean and the 95%-confidence interval in terms of PSNR,
SSIM, and LPIPS. Bold and underlined scores indicate the best and the second best performing method, respectively.

Models PSNR SSIM LPIPS

SV2P [1] 20.39 ± 0.27 0.8169 ± 0.0086 0.0912 ± 0.0053
SAVP [20] 18.44 ± 0.25 0.7887 ± 0.0092 0.0634 ± 0.0026
SVG [5] 18.95 ± 0.26 0.8058 ± 0.0088 0.0609 ± 0.0034
SRVP [9] 19.59 ± 0.27 0.8196 ± 0.0084 0.0574 ± 0.0032
SLAMP-Baseline 19.60 ± 0.26 0.8175± 0.0084 0.0596± 0.0032
SLAMP 19.67± 0.26 0.8161 ± 0.0086 0.0639 ± 0.0037

In addition, we provide detailed results corresponding to the components of our model. We evaluate the result of the static
head, the dynamic head, and simply their average without the learned mask and compare them to our full model with the
learned mask in Table 7. Our full model, SLAMP, performs the best in all datasets according to all three evaluation metrics by
combining the two predictions according to the mask prediction.
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Table 7: Mask Ablation Study. This table shows the quantitative results comparing the components of SLAMP model. Static
refers to the evaluation of the prediction of the static head directly, Dynamic refers to the evaluation of the prediction of the
dynamic head which uses optical flow to predict the next frame, Average refers to average of static and dynamic heads without
using the mask prediction. The last row for each dataset show the results of our model which uses the mask prediction to fuse
the static and dynamic predictions. Following the previous work, we report the results as the mean and the 95%-confidence
interval in terms of PSNR, SSIM, and LPIPS on all the datasets except LPIPS on MNIST.

Models PSNR SSIM LPIPS

M
N

IS
T SLAMP - Static 15.03 ± 0.04 0.7273 ± 0.0014 —

SLAMP - Dynamic 17.64 ± 0.09 0.7639 ± 0.0019 —
SLAMP - Average 15.96 ± 0.05 0.7377 ± 0.0017 —
SLAMP 18.07 ± 0.07 0.7736 ± 0.0019 —

K
T

H

SLAMP - Static 28.12 ± 0.28 0.8410 ± 0.0056 0.0844 ± 0.0037
SLAMP - Dynamic 16.14 ± 0.14 0.7614 ± 0.0064 0.3689 ± 0.0080
SLAMP - Average 21.61 ± 0.11 0.8359 ± 0.0048 0.2039 ± 0.0054
SLAMP 29.39 ± 0.30 0.8646 ± 0.0049 0.0795 ± 0.0033

B
A

IR

SLAMP - Static 19.38 ± 0.26 0.8119 ± 0.00837 0.0606 ± 0.0033
SLAMP - Dynamic 16.65 ± 0.20 0.7643 ± 0.0010 0.1176 ± 0.0048
SLAMP - Average 18.51 ± 0.20 0.8073 ± 0.0088 0.0897 ± 0.0044
SLAMP 19.75 ± 0.26 0.8160 ± 0.0084 0.0661 ± 0.0035
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E. Additional Visualizations and Qualitative Results

E.1. Optical Flow Visualization

Figure 13: Optical Flow False
Coloring. Colors on the wheel
indicate the direction of motion
in 2D.

Fig. 13 shows the color wheel used to visualize the optical flow with false coloring.
Colors show the direction of motion and the intensity of color in the visualizations show
the magnitude of motion, i.e. intense colors for large motions. By following the usual
practice in optical flow, we predict flow from the target frame to the current frame and
apply inverse warping to obtain the target frame. Therefore, the direction of motion is
also inverse, i.e. the opposite direction on the wheel shows the motion from the current
frame to the target frame.

E.2. Comparison of Static and Dynamic Latent Variables

In Fig. 8 of the main paper, we provide a visualization of stochastic latent variables of
the dynamic component on KTH using t-SNE. Here, we provide both the static and the
dynamic components for a comparison. The same colors from the main paper show the
semantic classes of video frames plotted. As can be seen from Fig. 14, static variables on
the right are more scattered and do not from clusters according to semantic classes as in the dynamic variables on the left
(and in the main paper). This shows that our model can learn video dynamics according to semantic classes with separate
modelling of the dynamic component.

jogging running handwaving boxing walking handclapping

Figure 14: Dynamic (left) vs. Static (right) Latent Variables. This figure shows the T-SNE visualization of dynamic and
static latent variables on 300 test videos from KTH dataset. In dynamic latent variables, different classes with similar repetitive
movements such as walking, running, and jogging are clustered together. However, in static latent variables, points are more
scattered and do not form clusters according to semantic actions.

In Fig. 15, we visualize the latent variables of SVG [5] to show the difference between our architecture’s latent variables
and SVG’s latent variables. In our architecture, dynamic branch learns the similar repetitive movements whereas static branch
learns the general image information. Therefore, dynamic latent variables form cluster around similar movements. However,
in SVG, there is only one branch to predict the future frames, which only encodes the general image information rather than
motion cues. Therefore, samples do not form clusters according to semantic classes as in our case for dynamic latent variables
shown on the left in Fig. 14.
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jogging running handwaving boxing walking handclapping

Figure 15: Latent Variables of SVG. This figure shows the T-SNE visualization of latent variables of SVG [5] on 300 test
videos from KTH dataset. The latent variables form a normal distribution when visualized with T-SNE because SVG method
uses a standard normal distribution as a fixed prior in KTH dataset. The model learns the general image information instead of
motions groupings.

E.3. Diversity of Generated Samples

As proposed in SAVP [20], as a measure of diversity, we visualize the average over 100 generated samples. According
to this measure, if a model is able to generate diverse results, generated samples should differ where there is motion, e.g. a
moving object appearing in different positions and moving in different directions, leading to blurring out of the moving object.
Therefore, we expect to see the background without moving objects in the average of the generated samples. The average
samples confirm this for our model as shown for MNIST Fig. 16, KTH Fig. 17, and BAIR Fig. 18.

There is a special case on KTH which further supports our diversity claim as shown in Fig. 7 of the main paper. When
subject appears after conditioning frames, our model can handle stochasticity of this challenging case and can generate diverse
sequences. We show the best prediction and three random predictions in Fig. 19. Generated samples differ in terms of pose
and speed of the subject as well as the time step that the subject appears.
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Figure 16: Diversity on MNIST. After a digit hits the wall, it can move in any direction. Our model successfully models the
stochasticity of this case and generates diverse results, resulting in blurry average images.
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Figure 17: Diversity on KTH. Since the running person appears after the conditioning frames, the model should generate
different results for each sample. The average of the generated samples does not contain any human because our model can
generate diverse results, e.g. person in various poses appearing at different time steps with different speed.
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Figure 18: Diversity on BAIR. The robot hand can move in any direction at each time step, therefore the generated samples
should differ from each other in terms of the position of the robot hand. The moving robot hand becomes invisible in the
average images after the first few frames, which is an indication of the diversity of the generated samples.
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Figure 19: Subject Appearing after Conditioning Frames on KTH. We show the best sample and three random samples
for the case where the subject appears after conditioning frames. Our model generates different results at each random sample
by learning dataset dynamics.
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E.4. Additional Qualitative Results

For each dataset, we show random examples with details of the best sample as well as three random samples generated.
The detailed visualizations show appearance and motion prediction separately as well as the mask prediction and optical flow
with false coloring. Random sample visualizations show the best sample and three random samples. We also provide full
sequences of the samples in Fig. 1 in Fig. 32 and 33.
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Figure 20: No Overlapping Digits. This figure show a regular case with two non-overlapping digits. Note that predicted flow
is from the target frame to the current frame since we apply inverse warping. The correctness of the optical flow estimation
can be verified by inspecting Fig. 13.
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Figure 21: Stationary Digit. This figure shows a case where a digit, i.e. 0, is not moving. As can be seen from the last row,
optical flow is correctly estimated as zero for that digit.
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Figure 22: Overlapping Digits. This figure shows a challenging case where two digits cross each other and continue moving.
The digits start overlapping at around t = 13. Our model can successfully handle this challenging case by preserving the
appearance of digits.
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Figure 23: Overlapping Digits. This figure shows a challenging case where two digits cross each other and continue moving.
The digits start overlapping at around t = 6. Our model can successfully handle this challenging case by preserving the
appearance of digits.
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Figure 24: Random Samples. We show the best sample and three random samples generated. All of the predictions are
sharp-looking and different than each other, which proves that our model can generate diverse results.
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Figure 25: Random Samples. We show the best sample and three random samples generated. The first and the third samples
cannot preserve the shape of the digits, however, the best sample and the second sample are still sharp-looking.
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Figure 26: Person Waving Hands. This figure shows the challenging case of hand waving with fast motion in a small region.
Note that predicted flow is from the target frame to the current frame since we apply inverse warping. The correctness of the
optical flow estimation can be verified by checking Fig. 13. Our model focuses on the motion prediction for moving hands but
it recovers the occluded motion boundaries from the appearance prediction.
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Figure 27: Person Running. Our model correctly estimates the optical flow showing the motion of a person running and it
can recover the occluded pixels around the legs from the appearance prediction.
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Figure 28: Person Leaving the Frame. Our model correctly estimates optical flow when the person leaves the scene in the
middle of the sequence by predicting nearly zero flow towards the end.
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Figure 29: Random Samples. We show the best sample and three random samples generated. Random samples look very
similar due to the regular motion in the conditioning frames. Our model can capture the motion from the conditioning frames
by generating consistent samples, only with minor differences in speed.
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Figure 30: Results on BAIR. Optical flow consistently changes from one frame to the next, showing that our model can learn
the dataset dynamics. Note that predicted flow is from the target frame to the current frame since we apply inverse warping.
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Figure 31: Random Samples. We show the best sample and three random samples generated. Random samples look very
similar in the beginning due to regular motion in the conditioning frames. Towards the end of the sequence, samples start
looking different which shows that our model can generate diverse results.
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Figure 32: Full sequence of Cityscapes in Fig. 1 We show the full sequence comparisons with baseline method, SVG [5],
and state-of-the-art method, SRVP [9]. Our model can model the ego-motion while both SRVP and SVG suffers from it
significantly.
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Figure 33: Full sequence of KITTI in Fig. 1 We show the full sequence comparisons with baseline method, SVG [5], and
state-of-the-art method, SRVP [9]. Our model can model both the ego-motion and independently moving objects while both
SRVP and SVG cannot reconstruct the future frames successfully.
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