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Abstract

Disentangling data into interpretable and independent
factors is critical for controllable generation tasks. With
the availability of labeled data, supervision can help en-
force the separation of specific factors as expected. How-
ever, it is often expensive or even impossible to label every
single factor to achieve fully-supervised disentanglement.
In this paper, we adopt a general setting where all factors
that are hard to label or identify are encapsulated as a sin-
gle unknown factor. Under this setting, we propose a flexi-
ble weakly-supervised multi-factor disentanglement frame-
work DisUnknown, which Distills Unknown factors for en-
abling multi-conditional generation regarding both labeled
and unknown factors. Specifically, a two-stage training
approach is adopted to first disentangle the unknown fac-
tor with an effective and robust training method, and then
train the final generator with the proper disentanglement
of all labeled factors utilizing the unknown distillation. To
demonstrate the generalization capacity and scalability of
our method, we evaluate it on multiple benchmark datasets
qualitatively and quantitatively and further apply it to vari-
ous real-world applications on complicated datasets

1. Introduction

Disentanglement learning is the task of breaking down
the tangled high-dimensional data variation into inter-
pretable factors. In the desired disentangled representation,
each dimension corresponds to a distinct factor of variables,
such that when one factor changes, the others remain unaf-
fected [4]. Disentanglement learning thus enables various
downstream tasks such as transfer learning and few-shot
learning, as well as challenging controllable image synthe-
sis applications (e.g. [50, 16]).

With the availability of fully-labeled data, supervised
disentanglement has seen much progress [31, 40, 17, 1, 16].
However, ground-truth labels are not always accessible,
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while even human labeling could be prohibitively expen-
sive or inconsistent. Thus, fully-supervised approaches of-
ten have a hard time generalizing to common scenarios
where labels are only partially available or even entirely
missing. In light of this, unsupervised disentanglement ap-
proaches [12, 22, 29, 53, 44] have been proposed to address
these challenges. However, most of them rely on the strong
assumption that the target data is well-structured enough
to be cleanly decoupled into explanatory and recoverable
factors. And more importantly, there is no guarantee that
these factors could be explicitly controlled with respect to
the true intended semantics in specific manipulation scenar-
ios. Therefore, weakly-supervised disentanglement, a nice
mix of the best of both worlds, has recently become popular
for more flexible learning [31, 47, 10, 19]. Unfortunately,
although state-of-the-art performance is achieved on certain
two-factor class-content disentanglement tasks [10, 19],
most existing methods in this category are still unable to
extract factor-aware latent representation, which is essen-
tial for manipulating individual factors especially when
multiple ones are presented. In conclusion, no solution
seems completely satisfactory yet on multi-factor disentan-
glement, due to the limited generalizability and insufficient
performance.

In this paper, we propose a weakly-supervised multi-
factor disentanglement learning framework, which handles
arbitrary numbers of factors through explicit and near-
orthogonal latent representation. Given that challenging
factors that are hard to label or interpret exist in most tasks,
the key idea to our approach is a general setting of N -factor
disentanglement with N − 1 factors labeled and a single
factor unknown, where all the remaining task-irrelevant or
difficult-to-label factors are flexibly encapsulated as one un-
known factor. We find such a setting highly effective and
practical in real scenarios. Take face motion retargeting as
an example, facial expression could be a good candidate for
the unknown factor since it is much more difficult to pre-
cisely label than others such as the identity and the pose.
Thanks to its flexibility, our method naturally adapts to var-
ious tasks with varying domains (e.g. cartoon and real pho-
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tos), data types (e.g. images, skeletons, and landmarks), in-
tegrity (well-structured or in-the-wild), and label continuity
(discrete or continuous).

To this end, our framework consists of two major stages:
1) Unknown Factor Distillation and 2) Multi-Conditional
Generation. Specifically, we extract the unknown factor us-
ing an adversarial training method in the first stage, and then
embed all labeled factors to the latent space as the second
stage, which are used to condition the final generation. The
core of our method lies in the joint adversarial training of
factor encoders and discriminative classifiers, which explic-
itly disentangles unknown and known factors without intro-
ducing leakage between their disentangled representations.

The performance of our approach is extensively evalu-
ated on several benchmark datasets, both qualitatively and
quantitatively. Furthermore, we demonstrate the general-
ization capacity and practical robustness of the framework
on multiple challenging tasks using complicated real-world
datasets without any additional manual labeling effort.

Our contributions are: 1) A flexible weakly-supervised
disentanglement learning framework that models data as a
combination of labeled/unlabeled factors, which scales well
to different datasets and benefits various challenging tasks;
2) A two-stage training architecture that explicitly learns
disentangled representations for both labeled and unknown
semantic factors, enabling mutual exclusive manipulation in
the dimension of each factor; 3) A set of learning strategies
to improve the effectiveness and robustness of adversarial
training throughout our pipeline, which could potentially
inspire future research; 4) State-of-the-art performance and
wide range of practical uses on multiple challenging tasks
including controllable image generation.

2. Related Work
Unsupervised Disentanglement has become the research
focus because it does not require the access to the factors
of variation. The pioneering work of InfoGAN [12], an
information-theoretic extension to the Generative Adversar-
ial Network framework [21], learns disentangled represen-
tations by maximizing the mutual information between the
observations and a subset of latents. Considering its train-
ing instability and reduced diversity, the Variational Au-
toencoder (VAE)-based methods [22, 11, 32, 37, 29] are
proposed for better performance and reconstruction qual-
ity by enforcing a factorized aggregated posterior on the la-
tent space. However, these models are built on the assump-
tion that the observations are independent and identically
distributed in the datasets, thus successfully disentangled
models may not be identified without any supervision [36].
Some task-specific unsupervised approaches disentangle
two or more factors and achieve impressive results, such as
image-to-image translation [23, 34, 45] and motion retar-
geting [52, 63]. These methods do learn disentangled rep-

resentations, relying on specific categories [56, 51, 38, 63],
clearly defined domains [23, 34, 45], or well-structured
datasets with certain categories [53, 35]. In contrast, our
method proposes a general framework, adapting to various
tasks, domains, modalities and factor numbers.
Supervised Disentanglement requires strong supervision
on specific factors of the data. These methods train a sub-
set of the representations to match the known labels using
supervised learning [46, 61]. With observed class labels
only available for partial data, [24] and [42] propose semi-
supervised VAE methods that learn disentangled represen-
tation. These supervised methods require large amounts
of supervised data that would be expensive to acquire in
practice. Although some methods can use synthetic data
or data priors to provide full supervision [1, 16, 55], they
are limited to processing domain-specific data such as hu-
man faces/bodies/hairstyles. Comparing to most supervised
methods that only apply to specific tasks, what we propose
is a general approach that applies to various applications.
Weakly-Supervised Disentanglement has been recently
studied to build robust disentangled representations with-
out requiring large amounts of data. Such weak supervision
is provided as either known relations between the factors
in different samples or ground truth labels of a subset of
factors. To avoid explicitly labeling, some methods con-
sider guiding disentanglement by matching pairs of data
that share the same underlying factor [47, 31, 24, 5, 10].
By observing a subset of the ground truth factors, some
methods perform distribution matching over data and ob-
served factors and supervision is leveraged in style-content
disentanglement with available labels for style only [30, 62,
28, 19]. Some of these methods may achieve state-of-the-
art performance on certain class-content disentanglement
tasks [10, 19], but they cannot ensure factor-aware latent
representations for manipulating individual factors. The
similar idea of a unified representation of labeled/unlabeled
factors has emerged [18]. But we present a general dis-
entanglement learning framework, which benefits various
tasks.

3. Method
We propose a generic framework for weakly-supervised

disentanglement learning and conditional generation. In-
stead of jointly training the whole system altogether, we
take a two-stage approach. In the first stage, excluding all
labeled factors, an encoder is trained to extract disentangled
representation of the unknown factor from the input data.
And in the second stage, with the unknown factor distilled, a
conditional generative adversarial network is trained to em-
bed the labeled data into the latent space, which allows inde-
pendent control over each factor. By isolating the unknown
factor from the labeled ones first, this two-stage training
helps reduce the overall complexity of the task and improve
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Figure 1: Illustration of our two-stage training architecture.

the effectiveness of labeled factor disentanglement, as will
be elaborated in the Training Strategy part in Stage II.

We note that Stage II is fully-supervised, in which miss-
ing labels for the unknown factor is provided by Stage I.
Thus our method trivially covers the case where all factors
are labeled, by dropping Stage I and using only Stage II.

3.1. Stage I: Unknown Factor Distillation

This stage trains an unknown encoder E that encodes
the unknown factor completely and exclusively. It has two
parallel branches in Figure 1 (Stage I), taking ground truth
labels (in the real branch) and random labels (in the mis-
matched branch) of all known factors as input, respectively.

Specifically, let there be N factors, with the first N − 1
ones labeled and the last one unlabeled. x is the training
sample, y = {y1, . . . , yN−1} are the associated ground
truth labels and y′ = {y′1, . . . , y′N−1} are random labels
chosen independently of x. E is the aforementioned un-
known encoder, B = {B1, . . . , BN−1} is a set of label em-
bedders, both output normal distributions as in a VAE. GI
is the Stage-I generator that generates a sample x or x′ for
the real or mismatched branch, respectively, conditioned on
E and B. C = {C1, . . . , CN−1} is a set of classifiers that
predicts the probability distribution of each factor from a
generated sample. Both branches share network structures
and weights. The loss functions of the two branches are
summed. For now, we assume discrete labels, and discuss
continuous-valued factors in the supplementary material.

Real branch: B map the ground truth labels y to normal
distributions. We sample codes from these distributions and
feed them to GI, together with the distilled unknown factor
from E, to generate the reconstructed sample x.
Mismatched branch: By replacing the ground truth labels
with random ones y′i, GI is asked to generate a mixed sam-
ple x′. Ci predicts the ground truth label from the mixed
sample, which indicates if any label information is leaked
through E, since only E has the access to the ground truth
factors in x. C are implemented as a single multi-class clas-
sifier that only branches at the last layer, and are trained with
E in an adversarial manner.
Motivation. 1) In the real branch, by enforcing a recon-
struction loss between the generated sample x and the orig-
inal one x, E should include all information not covered by
any labeled factor; 2) In the mismatched branch, by min-
imizing the accuracy of the classifiers C that are trying to
predict the ground truth labels from the generated mixed
sample x′, E should exclude any information associated
with the labeled factors to avoid label leaking.
Training Strategy. As a common problem of adversarial
methods, jointly training the adversarial pair of E and C
could be unstable. To improve the training robustness, we
operate C on samples generated by GI instead of codes sam-
pled from the distributions produced by E (similar to [14]).
This is because, without proper constraints, the distributions
in the code space can fluctuate a lot in attempting to prevent
the code from being classified. In contrast, with the recon-
struction loss in the sample space, the distributions of the
generated samples are close to the real ones, which avoids
this kind of fluctuation.

As usual, the classifier C minimizes the negative log-
likelihood (NLL). Let p be a vector representing the prob-
ability distribution for a particular factor and k be a class
label whose probability is p(k), NLL is defined as:

NLL(p, k) = − ln p(k). (1)

As the adversarial counterpart, the most obvious choice
for the adversarial loss of E is to maximize the NLL loss.
However, since NLL is not bounded when the probability
p(k) is close to zero, E may prefer to focus on scoring very
large NLL values on only a few samples rather than to make
every output code equally unclassifiable. Therefore, instead
of maximizing the NLL loss, we propose to minimize the
weighted negative log-unlikelihood loss (NLU):

NLUq(p, k) = −
1− q(k)

q(k)
ln(1− p(k)), (2)

where q are the reference distributions, which are always
taken to be the actual class distributions in the training set
for our purpose. In the supplementary material, we show
how this definition of NLU loss is derived from the desired



properties that it should be bounded, yield larger gradients
on samples farther from equilibrium, and have the same
equilibrium point as maximizing the NLL loss.
Full Objective. The full training objective on a single sam-
ple for Stage I is formulated as:

(µ, σ2) = E(x), e ∼ N (µ,diag(σ2)), (3a)

(αi, β
2
i ) = Bi(yi), bi ∼ N (αi,diag(β

2
i )), (3b)

(α′
i, (β

′
i)

2) = Bi(y
′
i), b′i ∼ N (α′

i,diag((β
′
i)

2)), (3c)
x = GI(e, b1, . . . , bN−1), (3d)
x′ = GI(e, b

′
1, . . . , b

′
N−1), pi = Ci(e, x

′), (3e)

LC =
∑

i NLL(pi, yi), (3f)

LGEB = Rec(x, x) + λadv1
∑

i NLUq(pi, yi)

+ λKLDKL(N (µ,diag(σ))||N (0, I)) (3g)

+ λKL
∑

i DKL(N (αi,diag(β
2
i ))||N (0, I))).

The square on the variance vectors σ2, β2
i and (β′

i)
2 are

per-element. Rec(x, x) is the reconstruction loss function,
which is the mean squared error ||x − x||2 in our experi-
ments. DKL is the KL-divergence. C are trained in the
mismatched branch to minimize LC , averaged over all sam-
ples. E, B, and GI jointly minimize LGEB .

3.2. Stage II: Multi-Conditional Generation

With the unknown factor distilled in Stage I, this second
stage trains encoders S for labeled factors to extract the dis-
entangled representations from the input samples. The final
multi-conditional generator GΠ accepts conditions for both
labeled and unknown factors, and ensures that varying one
factor would not affect others in the generated output.

In this stage, as shown in Figure 1 (Stage II), the condi-
tions of the unknown and labeled factors come from train-
ing samples x and {x′

1, . . . , x
′
N−1} respectively, all cho-

sen independently. Each Si of the labeled-factor encoders
S = {S1, . . . , SN−1} computes the code for labeled fac-
tor i from x′

i, while the unknown encoder E, pre-trained in
Stage I, computes the unknown factor code from x. The
Stage-II generator GΠ generates a sample x conditioned on
all the codes (Eq. 5c). On x, a set of discriminative classi-
fiers R = {R1, . . . , RN−1} are trained to enforce the inde-
pendent controllability of the labeled factor codes, and the
pre-trained E is adopted to ensure the consistency of the
unknown factor. In addition, a discriminator D is applied
to ensure the realism of generated samples, as in GAN.
Motivation. Trained on random combinations of input
samples, the generator GΠ is asked to synthesis a new sam-
ple with each factor conditioned by encodings from inde-
pendent sources. Each classifiers Ri enforces that factor i of
x is completely and solely controlled by x′

i, and by choos-
ing each x′

i randomly and independently we ensure that Si

is the only encoder that can consistently compute factor i of

x′
i. The discriminator D makes the distribution of generated

samples and real data indistinguishable globally.
Training Strategy. Most previous class-conditional GANs
differ on how the generated sample is treated by the classi-
fiers. Their classifiers are trained to correctly label the gen-
erated sample [43] or to be uncertain about the task [54].
But we go the opposite way: in addition to the NLL loss
(Eq. 5e) for classifying the training sample x to the cor-
rect labels, our discriminative classifiers R are specifically
trained to not classify the generated sample x correctly, by
adding the unweighted NLU loss:

NLU(p, k) = − ln(1− p(k)). (4)

Its rationale is that a conventional classifier oblivious to the
generated samples tends to only learn just enough to dis-
tinguish one class from the others, which is insufficient to
define the full characteristics of that class. However, if we
ask the classifier to identify a generated sample as being in
the wrong class, in order to tell real and generated samples
apart it would be encouraged to gain a more complete un-
derstanding of each class.

GΠ and S are jointly trained to ensure that the gener-
ated sample x is classified to the same labels as the inputs
{x′

1, . . . , x
′
N−1} (the NLL term in Eq. 5g).

Meanwhile, to enforce that the unlabeled factor is consis-
tently controlled by the code from E, we minimize the dis-
tance between the encodings of the generated sample x and
the input x, using the fixed E (square error term in Eq. 5g).
This further explains why E must be trained in a separate
stage from the rest of the system: E is used both for provid-
ing the input to the generator and for re-encoding the output
to compare against the input. If E is allowed to be updated
while this distance is being minimized, it could collapse to
a state where it encodes everything to a zero vector.

As for the discriminator D, we use LSGAN loss func-
tions [39] (Eq. 5f and the D term in Eq. 5g).
Full Objective. Similar to Stage I, the full training objec-
tive on a single sample for Stage II is formulated as:

(µ, σ2) = E(x), e ∼ N (µ,diag(σ2)), (5a)

(α′
i, (β

′
i)

2) = Si(x
′
i), s′i ∼ N (α′

i,diag((β
′
i)

2)), (5b)

x = GΠ(e, s
′
1, . . . , s

′
N−1), (µ, σ2) = E(x),

(5c)

pi = Ri(x), p′i = Ri(x), (5d)

LR =
∑

i(NLL(pi, yi) + NLU(p′i, y
′
i)), (5e)

LD = (D(x)− 1)2 + (D(x) + 1)2, (5f)

LGS = ||µ− µ||2

+ λadv2(D(x)2 +
∑

i NLL(p
′
i, y

′
i)) (5g)

+ λKL
∑

i DKL(N (α′
i,diag((β

′
i)

2))||N (0, I)).

Note that while a total of N input samples are required to
generate one sample, in practice this can be efficiently done



by computing all factor codes for a whole batch and com-
bining them randomly for generation. Classification labels
are permuted accordingly. The classifiers R minimize LR,
the discriminator D minimizes LD, and the generator G and
encoders S jointly minimize LGS .

3.3. Implementation Details

For maximum generality we do not favor any specific
network architecture. In all our experiments, encoders and
generators consist of 3, 4, or 5 stride-2 convolutions for
datasets with image sizes of 28, 64, or 128, respectively,
followed by 3 fully-connected layers. Discriminators and
classifiers have the same convolutional layers but only one
fully-connected layer. The convolution feature map depth
starts from 32 and doubles after each convolution but does
not exceed 256. Fully-connected layers have 512 features.

4. Experiments
4.1. Datasets and Metrics

Datasets. We conduct evaluation experiments on four
benchmark datasets: MNIST [33], Fashion-MNIST (F-
MNIST) [60], 3D Chairs [2], and 3D Shapes [6]. For
MNIST and F-MNIST, we use the standard training/testing
split. For 3D Chairs and 3D Shapes, we randomly hold out
10% of all images for testing and use the rest for training.
In MNIST and F-MNIST, we take class as the labeled factor
since only it has labels available. In 3D Chairs which con-
tains three factors, i.e. model, elevation, and azimuth, we
combine elevation and azimuth in to a single unknown fac-
tor of rotation. In 3D Shapes which is fully defined by six
labeled factors, i.e. floor hue, wall hue, object hue, scale,
shape, and orientation, we select one or more factors as la-
beled and merge the remaining ones into the unknown factor
to train various models for our empirical study.
Metrics. We evaluate the disentanglement performance by
computing the Mutual Information Gap (MIG) [11] of the
encoders. Since factors may contain more than one dimen-
sion, the mutual information of each factor is defined as the
largest one over all dimensions. Then the MIG is computed
as the gap of mutual information between the top two fac-
tors. Higher MIGs indicate better disentanglement quality.

4.2. Empirical Study

We empirically study how unknown distillation con-
tributes to the disentanglement of labeled factors and en-
ables control over the unknown factor.
Necessity of the Unknown Factor. Without the unknown
distillation, there is no guarantee that the features repre-
sented by the unknown factor remain fixed when altering
any labeled ones. To compare, we modify Stage II by re-
placing the unknown factor code encoded by E with Gaus-
sian noise and removing the feature matching loss ||µ−µ||2

Table 1: Unknown consistency ratios on 3D Shapes with
different unknown factors, w/ and w/o distillation.

Unknown Factor w/ Distillation w/o Distillation
Floor hue 100.00% 63.42%
Wall hue 100.00% 55.63%

Object hue 100.00% 68.76%

Table 2: Labeled consistency ratios and MIG scores on 3D
Shapes with the unknown factor merged from varying num-
bers of factors. Zero unknown means fully-supervised.

# Unknown Ratio MIG ↑
0 100.00% 0.9501
1 100.00% 0.9555
2 100.00% 0.9733
3 100.00% 0.9718
4 100.00% 0.9393
5 100.00% 0.9868

Table 3: Mean squared error (MSE) and MIG scores on 3D
Shapes with different unknown factor.

Unknown Factor MSE ↓ MIG ↑
Floor hue 0.00049 0.9607
Wall hue 0.00063 0.9825

Object hue 0.00074 0.9766
Scale 0.00062 0.9411
Shape 0.00064 0.9637

Orientation 0.00064 0.9537

(Eq. 5g), and train three models on 3D Shapes, with each se-
lecting floor hue, wall hue, and object hue as the unknown
factor, respectively. We generate images using the same
random code for the unknown factor and independently-
sampled random codes for all labeled factors, and then cal-
culate the ratio of results sharing the same unknown fea-
ture, namely consistency ratio. Due to the simplicity of 3D
Shapes, these three features can be reliably computed by
taking the colors at fixed pixel coordinates. Two colors are
considered the same if their L2 RGB distance is less than
half of the mean distance between two adjacent hue samples
in the dataset. We generate 10,000 images for each network,
and show the results in Table 1. As can be seen, all ratios
reach 100% with distillation, meaning the unknown factor
remains unchanged for all test samples. Note that MIGs
are not measured here because the disentanglement perfor-
mance among labeled factors is generally not affected.
Scope of the Unknown Factor. In our setting, if there
is more than one unknown factor, all these factors will be
treated as a whole without individual controllability. How-
ever, we can still ensure that the unknown factors are iso-
lated from the labeled ones, and the disentanglement per-
formance of the labeled factors will not be influenced. To



(a) MNIST/ class/ style (b) F-MNIST/ class/ style (c) 3D Chairs/ model/ rotation (d) 3D Shapes/ noted/ others

Figure 2: Generated samples on different datasets. The top row and the leftmost column are the input conditions for the
labeled and the unknown factors, respectively, annotated as dataset / labeled / unknown in the sub-captions.

(a) style /class /class (b) ori. /ori. /ori. (c) rot. / rot. / rot.

(d) style / style /class (e) shape/shape/floor (f) rot. /model / rot.

Figure 3: Visualizing the disentanglement with test sam-
ple distributions. The sub-caption of each figure represents:
unknown factor/ encoding factor/ coloring factor.

verify this, we train six models on 3D Shapes: starting all
factors labeled, we successively merge floor hue, orienta-
tion, wall hue, scale, and shape into the unknown factor,
with object hue being the last labeled factor at the end. We
measure the consistency ratios as introduced in Necessity
of the Unknown Factor and MIG scores on object hue only
in Table 2. Note that all MIG scores are quite close to the
upper bound of 1, suggesting good disentanglement quality.
Choice of the Unknown Factor. We also study the ro-
bustness of our method by choosing different factors as the
unknown one on 3D Shapes. The MSE and MIG results,
reflecting the consistent performance of reconstruction and
disentanglement, respectively, are shown in Table 3.

4.3. Results and Visualizations

To demonstrate the quality of our multi-conditional gen-
erator, we plot the generated samples with factors controlled
by random references on the benchmark datasets. As shown
in Figure 2, our method accurately encodes both known (the
top row) and unknown (the leftmost column) factors and
uses them to independently control the generation.

We also illustrate the disentanglement quality by visu-

alizing the test sample distributions in the code spaces in
Figure 3. For each figure, we pick one encoding factor and
one coloring factor from all factors, where both factors may
or may not be the same. To draw each test sample on the
2D visualization, we generate the 2D position with the en-
coding factor and the color with the coloring factor. Specif-
ically, we get its factor code using the encoder correspond-
ing to the encoding factor and project it to 2D by selecting
two dimensions with the largest variance. Then we draw a
point on that 2D projection using the color mapped to its
label of the coloring factor. The indication of good disen-
tanglement is that colors should be clearly separated when
the encoding and coloring factors are identical, but entirely
mixed with no color pattern or bias when they are different.

4.4. Comparisons

We compare our approach against the state-of-the-art, in-
cluding unsupervised [22, 29, 11] and weakly-supervised
methods [10, 19]. The weakly-supervised methods are run
under the same setting as ours where only one factor is
labeled for MNIST, F-MNIST, and 3D Chairs. Suggested
hyperparameters are used to train these models: β = 4
for [22]; γ = 10 on MNIST and F-MNIST, and γ = 3.2
on 3D Chairs for [29]; β = 6 for [11]; and β = 10 for [10].

From the results in Table 4, our method achieves sub-
stantially higher MIG scores than other methods on all
datasets. Since the unsupervised methods [22, 29, 11] are
trained without any supervision, comparing with them is
somewhat unfair. Nevertheless, this emphasizes the impor-
tance of supervision in the disentanglement tasks, which is
also reflected by the observation that the weakly-supervised
methods consistently outperform the unsupervised ones.

We show a qualitative comparison in Figure 4 which ro-
tates the 3D Chairs images via traversing the latent code
that depicts the azimuth rotation. The unsupervised meth-
ods [22, 29, 11] can smoothly change the orientation but
fail to preserve the original style (e.g. shape, color, etc.).
Among the weakly-supervised methods, [10] suffers from
over-blurriness, while [19] cannot consistently control the



Table 4: The MIG scores of different disentanglement
methods computed on the benchmark datasets.

Dataset Unsupervised Weakly-Supervised
[22] [29] [11] [10] [19] Ours

MNIST 0.279 0.071 0.568 0.760 0.582 0.978
F-MNIST 0.105 0.043 0.111 0.630 0.539 0.874
3D Chairs 0.031 0.098 0.115 0.212 0.284 0.404

[22] [29]

[11] [10]

[19] Ours

Figure 4: The rotation manipulation comparison on 3D
Chairs by uniformly sampling the latent codes depicting the
azimuth rotation. The leftmost column shows the inputs.

orientation. Instead, our method is capable of handling var-
ious chair styles and orientations, and achieves better gener-
ation quality with the original styles well preserved. More-
over, both weakly-supervised methods are limited to two-
factor class-content disentanglement, but our approach is a
more flexible multi-factor framework that supports factor-
aware latent representation for each individual factor.

5. Downstream Tasks
Portrait Relighting. We train the network on the dataset
combining celebA-HQ [25] and FFHQ [26] by treating the
lighting as the labeled factor and the remaining content as
unknown. Here, lighting is represented by second-order
spherical harmonics coefficients for RGB and estimated
with [27, 8]. Figure 5 shows our portrait relighting results.
Anime Style Transfer. We train the network on a custom
dataset of 106, 814 anime portrait images drawn by 1, 139

Figure 5: Portrait relighting. The top row shows various
environment lightings mapped on a sphere. The leftmost
column shows input images, and to the right are the re-lit
results conditioned by the lightings in the same column.

Figure 6: Anime style transfer. Each column is condi-
tioned by the example style at the top row. In each group
with three rows, the leftmost image is the content and the
results are shown to the right. From top to bottom: our
method, StarGAN [13], and Neural Style Transfer [20].

artists collected online. The labeled factor is the artists’
identity, which is used as the proxy for style. The unla-
beled factor is interpreted as the content of the subject. Fig-
ure 6 shows our results on transferring style between dif-
ferent anime portrait illustrations, with comparisons to Star-
GAN [13] in multi-domain translation and the original Neu-
ral Style Transfer [20]. Our method achieves better results
with styles more faithful to the examples.
Landmark-Based Face Reenactment. We train our disen-
tanglement network on facial landmark coordinates. After
the new landmarks are synthesized with our generator, the
output face images are translated from the rasterized land-



(a) Fix identity and pose, change facial expression.

(b) Fix identity and facial expression, change pose.

Figure 7: Face reenactment with expression/pose con-
trol. In each sub-figure, the leftmost column provides the
identity and the pose/expression, and the top row provides
the expression/pose. The reenactment results are generated
with factors conditioned by these inputs.

Figure 8: Face reenactment with factors from different
sources. The first three rows provide the identity, pose, and
expression, respectively. The fourth row shows the results.

marks using the image translation network (e.g. [57], [59]).
We use FD-GAN in [59] for one-shot image translation.
The labeled factors are the identity and the head pose, where
the pose is represented by Euler angles, estimated from the
landmarks. The unlabeled factor is the facial expression.
We train the network on VoxCeleb2 [15]. Figure 7-8 show
our face reenactment results with various controls, includ-
ing editing a single factor (expression/pose) (Figure 7) and
mixing all three factors from different sources (Figure 8).
Skeleton-Based Body Motion Retargeting. We extract 2D
joint coordinates from the driving videos and the actor im-
ages. The motion of the driving skeleton and the identity
of the actor skeleton are combined to synthesize the target

Figure 9: Body motion retargeting. From top to bottom in
each column: input source frame, extracted source skeleton,
transformed skeleton, and generated frame using [48].

skeleton, with motion as the unknown factor. The images
are generated using skeleton-guided synthesis (e.g. [48],
[9]). Figure 9 shows the motion retargeting results on real
images trained on Mixamo [41], which demonstrate promis-
ing disentanglement between identity and motion.

6. Conclusion

We propose DisUnknown, a weakly-supervised multi-
factor disentanglement learning framework. By distill-
ing unknown factors, it enables independent control over
each factor for multi-conditional generation. Our approach
achieves state-of-the-art performance compared to existing
unsupervised and weakly-supervised methods on multiple
benchmark datasets. We further demonstrate its generaliza-
tion capacity through various downstream tasks. Moreover,
as a general framework, it can easily carry over to other
modalities (e.g. text, audio) and help improve the stability
of other tasks with our adversarial training strategies.
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A. Method Details

A.1. Derivation of the Negative Log Unlikelihood

Here we show how the form of the adversarial loss of the
classifiers are chosen.

First, we consider the assumed equilibrium of the ad-
versarial training. In Stage I, the goal is that the encoder’s
output should not contain any information about the labeled
factors. So, each classifier Ci can at best make a guess, and
since there is no way to distinguish between inputs from
different classes, it should give the same output class distri-
bution for every sample.

Assume that, as commonly done, the output distribution
of the classifier is computed by taking the softmax of a vec-
tor t = (t(1), t(2), . . . , t(m)), where m is the number of
classes for the factor of concern. Let Sm denote softmax,
we have:

∂

∂t(i)
NLL(Sm(t), k) (6)

=
∂

∂t(i)
− ln

et(k)∑
j e

t(j)

=
∂

∂t(i)
(−t(k) + ln

∑
j

et(j))

=− δik +
et(i)∑
j e

t(j)

=− δik + Sm(t, i),

where δik = 1 when i = k and δik = 0 otherwise. At equi-
librium, the expectation of gradient over the whole dataset
should be zero. Let q = (q(1), q(2), . . . , q(m)) be the class
frequency in the dataset. Then we must have

∂

∂t(i)

∑
k

q(k)NLL(Sm(t), k) (7)

=
∑
k

q(k)(−δik + Sm(t, i))

=Sm(t, i)− q(i)

=0.

That is, Sm(t, i) = qi. So, at the assumed equilibrium, the
classifier should give the class distribution in the dataset as
the output for any input.

If the adversarial objective is to maximize the NLL loss
of the classifier, then naturally at this assumed equilibrium
the expected gradient of the adversarial loss function is also

zero. But, consider the second-order derivatives:

∂2

∂t2(i)
NLL(Sm(t), k) (8)

=
∂

∂t(i)
(−δik + Sm(t, i))

=Sm(t, i)(1− Sm(t, i))

>0,

the adversarial loss function has a local minimum with re-
spect to t at the assumed equilibrium, while the objec-
tive is to maximize this function. So in the proximity of
the assumed equilibrium, the adversarial objective actually
pushes the networks away from the equilibrium. Further-
more, consider the L1 norm of the gradient:

|| ∂
∂t

NLL(Sm(t), k)||1 (9)

=
∑
i

| − δik + Sm(t, i)|

=
∑
i ̸=k

Sm(t, i) + (1− Sm(t, k))

=2− 2 · Sm(t, k),

the gradient is larger when the NLL loss is larger, and NLL
is not bounded above. If the adversarial objective is to max-
imize the NLL, it can accelerate towards infinity, which
causes strong instability.

Remember that a basic trick in vanilla GAN is that in-
stead of letting the generator maximize

− ln(1−D(G(z))), (10)

we let it minimize

− ln(D(G(z))). (11)

In a similar vein, instead of maximizing

NLL(p, k) = − ln p(k), (12)

we can minimize what we call “negative log unlikelihood”

NLU(p, k) = − ln(1− p(k)). (13)

The derivatives are computed as:

∂

∂t(k)
NLU(Sm(t), k) (14)

=
∂

∂t(k)
− ln(1− et(k)∑

j e
t(j)

)

=−
∑

j e
t(j)∑

j e
t(j) − et(k)

· −
et(k)(

∑
j e

t(j) − et(k))

(
∑

j e
t(j))2

=Sm(t, k),



∂

∂t(i)
NLU(Sm(t), k) (i ̸= k) (15)

=
∂

∂t(i)
− ln(1− et(k)∑

j e
t(j)

)

=−
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j e
t(j)∑

j e
t(j) − et(k)

· − −et(i)et(k)

(
∑

j e
t(j))2

=− Sm(t, k) · Sm(t, i)

1− Sm(t, k)
.

At the assumed equilibrium Sm(t) = q, where q is the
class frequency in the dataset, these evaluate to

∂

∂t(k)
NLU(Sm(t), k)

∣∣∣∣
Sm(t)=q

(16)

=q(k),

∂

∂t(i)
NLU(Sm(t), k)

∣∣∣∣
Sm(t)=q

(i ̸= k) (17)

=−
q(k) · q(i)
1− q(k)

.

If the classes are not evenly distributed in the dataset, this
may not satisfy the condition that the assumed equilibrium
is a stationary point of

∑
k q(k) ·NLU(Sm(t), k). To achieve

this, we need to properly weight the NLU by class. We can
do this by scaling Equation 16 and Equation 17 to match
Equation 6. We define the weighted negative log unlikeli-
hood function as:

NLUq(p, k) = −
1− q(k)

q(k)
ln(1− p(k)). (18)

Then we have, at the assumed equilibrium:

∂

∂t(i)
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q(k) · NLUq(Sm(t), k)
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Sm(t)=q

(19)
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−q(k) ·
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1− q(k)
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∑
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−q(k)q(i) + q(i)(1− q(i))

=− (1− q(i))q(i) + q(i)(1− q(i))

=0.

And the L1 norm of the gradient would be:

|| ∂
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=
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1− q(k)

q(k)
· Sm(t, k)
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=2 ·

1− q(k)

q(k)
· Sm(t, k),

which equals to Equation 9 at the assumed equilibrium, and
has the desired property that a smaller value of Sm(t, k)
gives a smaller gradient. Evaluating the second derivative
at the assumed equilibrium gives
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(1− q(i))
2 +

∑
k ̸=i

q(k)(2q(i) − 1)


=q(i)

(
(1− q(i))

2 + (1− q(i))(2q(i) − 1)
)

=q(i)(1− q(i))(1− q(i) + 2q(i) − 1)

=q2(i)(1− q(i))

>0.

So the assumed equilibrium is indeed a local minimum of
the adversarial loss function we want to minimize.

A.2. Sample-Space Classification

The Stage I training procedure of generating samples
from random labels for classification is not straightforward
to understand, and here we give an explanation.



Figure 10: Ill-formed sample generated from mean labeled
code.

The distribution of the encoder’s output in the code space
has few constraints, and there can be different networks that
give very different distribution in the code space but are nev-
ertheless essentially equivalent. For example, assume that
the last layer of the encoder and the first layer of the gen-
erator are linear and the dimension of the code space is d.
Then we can take an invertible d×d matrix M . We multiply
the last layer weights of the encoder by M on the right and
multiply the first layer weights of the generator by M−1 on
the left. In terms of reconstruction, the modified network
gives the exact same result as the original, but the code dis-
tribution in the code space has been transformed.

This becomes a problem with adversarial training: if
the classifier operates in the code space, then to avoid be-
ing successfully classified, instead of removing information
about the labeled factors from its output, the unknown fac-
tor encoder can change its output distribution to confuse the
classifier, which results in the code distribution fluctuating
constantly in the code space.

In contrast, in the sample space, the distribution of gen-
erated samples is anchored to the distribution of training
samples and cannot change freely. So, operating the clas-
sifier in the sample space can potentially reduce fluctuation
in the code space and improve stability. Then the question
is which samples should be the input to the classifier.

The reconstructed sample cannot serve as the input to the
classifier, since it must contain full information of the input
sample, including those about the labeled factors, which is
in conflict with the adversarial objective of making the clas-
sifier unable to classify by the labeled factor.

Another choice is to combine the unknown code with
some kind of “neutral” labeled code, for example, the mean
of all label embeddings. The problem is that the “mean”
labeled code may not be “typical”: as can be seen in Figure
13, in the 3D Shapes dataset, the network learns that the ten
classes of each color attribute are arranged like a circle, but
no samples are distributed near the center of the circle. In
this case, the mean labeled code does not produce a well-
formed sample. An example is shown in Figure 10: on the
left is the input. The floor hue is the unknown factor. In the
generated sample on the right, all labeled factors have been
replaced by the mean embedding, and the generated sample
is ill-formed.

The result is that the encoder can encode labeled in-
formation about the input sample without being detected:

the generator can easily recognize an invalid mean labeled
code, and when it receives one it generates ill-formed sam-
ples so that the classifier cannot classify the generated sam-
ple, regardless of what the encoder has encoded.

So the unknown code used for generating the input to
the classifier must be a typical code but at the same time
independent from the input sample. Thus, we use the em-
bedding of a random label chosen independently from the
input sample.

A.3. Continuous-Valued Factor Disentanglement

When presenting our method, we assumed that all labels
are discrete, class-type labels. Here we discuss the treat-
ment of continuous-valued factors.

Continuous-valued labels are usually associated with re-
gression problems. So it is reasonable to first attempt to
use regressors in place of the classifiers. But there are obvi-
ous problems with this approach. Consider training sam-
ples x(i) each associated with a single, real-valued label
y(i). For each x(i), compute x(i)′ as in Equation 3 in the
main text. The regressor C should minimize some kind
of distance between C(x(i)′) and y(i), say squared distance
(C(x(i)′)− y(i))2. Then, in the assumed equilibrium where
the encoder does not encode any information about the la-
beled factor, the regressor can only make a guess. To min-
imize the expected loss, the best guess should be the mean
of all y(i). Let y∗ =

∑n
i=1 y

(i). Then if there exists training
sample x∗ whose label is y∗ or very close to y∗, any adver-
sarial training would not guarantee to prevent the encoder
from encoding full information of x∗: there is no way to
distinguish whether the regressor is giving a y∗ because it
has detected labeled information in its input, or it is giving
a y∗ because it detected no such information and is making
a guess.

While we have not stated explicitly, we have already pro-
vided the solution to working with continuous-valued fac-
tors: note that in the 3D Chairs dataset, the rotation angle is
not a true category-type factor, but a quantized continuous-
valued factor. Treating it as a category-type factor gives
satisfactory results. Similarly, for any continuous-valued
factor, we can always divide its range into a suitable num-
ber of buckets and quantize the factor into discrete labels.
Generally, a few dozen buckets would work fine.

B. Data and Metrics

B.1. Data

The image size and list of factors of the datasets are given
in Table 5, with the number of possible values of each factor
and the length of code we use for the encoder of that factor.



Table 5: Datasets used for evaluation and comparison.

Dataset Factor # of Values Code Size

MNIST
28× 28× 1

Class 10 10
(Style) N/A 64

F-MNIST
28× 28× 1

Class 10 10
(Style) N/A 64

3D Chairs
128×128×3

Model 1393 512
Elevation 2 2
Azimuth 31 2

3D Shapes
64× 64× 3

Floor hue 10 8
Wall hue 10 8

Object hue 10 8
Scale 8 8
Shape 4 8

Orientation 15 8

B.2. Metrics

The Mutual Information Gap (MIG) was originally pro-
posed for the unsupervised setting. We made some ad-
justments to the computation of MIG to suit the weakly-
supervised setting and to allow multi-dimensional code
spaces for each factor.

Let N be the number of factors, Li be the (discrete) ran-
dom variable representing the label of factor i and Xi be
the vector-valued random variable representing the output
of the encoder for factor i, i = 1, 2, . . . , N . Let X(k)

i be the
k-th entry of Xi, which is a real-valued random variable.
The normalized mutual information between Li and X

(k)
j

is defined as in [11]:

Î(Li;X
(k)
j ) =

I(Li;X
(k)
j )

H(Li)
. (24)

Then, the multi-dimensional mutual information between
Li and Xj is defined by taking the maximum of Î(Li;X

(k)
j )

over k:
Î(Li;Xj) = max

k
Î(Li;X

(k)
j ). (25)

One might argue that it is mathematically more meaning-
ful to take the normalized mutual information between Li

and the whole Xj instead. But we found that, as the dimen-
sionality of the code space increases, the number of samples
required to accurately estimate H(Xj) and H(Xj |Li) in-
creases exponentially. And when the number of samples is
insufficient, even a randomly initialized encoder would be
incorrectly computed to have normalized mutual informa-
tion close to one, which makes the evaluation meaningless.
So we have to settle with our current definition.

Figure 11: Average squared code distance.

Then, the MIG is computed as

MIG =
1

N

∑
i

(Î(Li;Xi)−max
j ̸=i

Î(Li;Xj)). (26)

As we have noted, in Table 2 in the main text we are only
concerned with the disentanglement between the combined
unknown factor and each individual labeled factor. To re-
flect this, in the computation of MIG here, in Equation 26
we only take the average over i where factor i is labeled.

Special procedures were taken to compute the MIG for
[19]: the definition of MIG requires the distribution of Xj

to have continuous support, for otherwise all the normal-
ized mutual information would be equal to one and the
MIG would be zero. The output of [19] is in the form
of an exact code, rather than a normal distribution as in
VAE-based methods, so the Xj’s will have discrete sup-
port, making MIG non-applicable. Note that during the
training of [19], Gaussian noise with fixed standard devia-
tion was added to the content embedding, which effectively
turns discrete codes into a distribution with full support.
So in the computation of MIG, we similarly add Gaussian
noise with a fixed standard deviation. The standard devia-
tion is chosen using the following procedure: for all possi-
ble pairs of (σ1, σ2) where σ1, σ2 ∈ {10−5, 2 × 10−5, 5 ×
10−5, 10−4, . . . , 1, 2, 5, 10}, we compute MIG by adding
N (0, σ2

1I) to the content (“unknown factor” in our termi-
nology) code and N (0, σ2

2I) to the class (“labeled factor”)
code. The values of σ1 σ2 are chosen so that the average
MIG under two settings on the 3D chairs dataset (rotation
unknown and model unknown) is maximized. By this we
determine that σ1 = 0.05 and σ2 = 0.02.

C. Ablation Analysis
C.1. Stability of Stage I

Our proposed methods of Negative Log Unlikelihood
and sample-space classification aim to improve the stabil-
ity of encoder-classifier adversarial training. Here we eval-
uate the effectiveness of these two schemes. Specifically,



(a) β-VAE [22] (b) Factor-VAE [29] (c) β-TCVAE [11]

(d) Pairwise-VAE [10] (e) Lord [19] (f) Ours

Figure 12: Visualizing the disentanglement with test sample distributions.

Table 6: Comparison of result with different Stage II con-
figurations on MNIST.

Configuration MSE ↓ MIG ↑
Standard 0.0086 0.978

Non-adversarial R 0.0103 0.916
No unknown code condition 0.0402 0.930

we track the change of code distribution. We take snapshots
of the network at fixed intervals during training. The whole
test dataset is encoded, and we compute the average squared
distance in the code space, from the code of each sample to
the code of the same sample in the previous snapshot. In
stable training, the encoder should keep the distance small
while still finding a good distribution.

We train three variants of Stage I on the 3D chairs dataset
with rotation unknown: one standard variant (proposed),
one where the adversarial objective is maximizing the NLL
loss of the classifier, and one where the classifier is an MLP
operating in the code space, with four hidden layers of size

512.
The code distribution is computed every 10,000 itera-

tions until iteration 400,000. The average squared code dis-
tance in the unknown code space every 10,000 iterations
apart is shown in Figure 11, in logarithm scale. We can see
that both NLU and sample-space classification contributed
to reducing the fluctuation in code space.

C.2. Adversarial Classifier and Condition on Unla-
beled Code in Stage II

We evaluate the effectiveness of adversarial classifiers in
Stage II compared to non-adversarial ones and examine the
necessity of the code distance loss term. We train three vari-
ants of Stage II on the MNIST dataset: one standard variant
(proposed), one without NLU term (remove NLU term from
Equation 5e in the main text) so that the classifiers do not try
to distinguish generated samples from real ones in the same
class, and one without code distance term (remove code dis-
tance from Equation 5g in the main text) so that the network
does not explicitly preserve the unknown factor.

The initial network weights of E and G for three con-
figurations are inherited from the same Stage I training run



(a) Floor hue (b) Wall hue

Figure 13: Distribution of test samples in the code space of
the two correlated labeled factors.

so that the result is only affected by Stage II training. We
compute the mean squared reconstruction loss and mutual
information gap for the final models in Table 6. By using
the adversarial Stage II classifier and adding the code dis-
tance term, we are able to improve both disentanglement
(MIG) and reconstruction (MSE).

D. Effect of Factor Correlation

In the datasets used for evaluation, the factors are in-
dependent of each other. In particular, in the 3D Shapes
and the 3D Chairs datasets, every combination of labels oc-
curred exactly once. In this section we would like to explore
the behavior of our method when some of the factors are
correlated. For better control, we construct a dataset where
the correlation is exactly known: in the 3D Shapes dataset,
each of the three color factors has 10 possible values, num-
bered 0 to 9. We take the subset of the dataset consisting of
all images whose floor hue and wall hue differ by 0 or ±1,
modulo 10.

D.1. Correlation Between Two Labeled Factors

The first case is when correlation exists between two of
the labeled factors. The semantics of the labeled factors in
our networks is enforced to strictly follow the semantics of
the labels, so it is expected that our network would behave
in the same way as when the labeled factors did not have
correlation.

We train our model on the correlated subset with object
hue being the unknown factor, so that the two correlated
factors are both labeled. The distribution of test samples in
the two correlated factors is shown in Figure 13. As can be
seen, our network successfully learns to encode floor hue
and wall hue as labeled.

While the behavior of the network remains the same, the
MIG decreases: due to correlation the mutual information
between floor hue and wall hue is now ln 10 − ln 3 instead
of 0, and a perfect set of encoders would produce an MIG

Figure 14: Distribution of test samples in the code space
of the unknown encoder when the unknown factor and the
labeled factors are correlated.

of
1

6

(
2

(
1− ln 10− ln 3

ln 10

)
+ 4

)
≈ 0.8257 (27)

In comparison, our method gives an MIG of 0.8026.

D.2. Correlation Between Labeled and Unknown
Factors

The situation is more complicated when there is corre-
lation between the unlabeled factor and the labeled factors.
Our goal is for the unknown encoder to not encode any in-
formation about the labeled factors, which is to say, the con-
ditional distribution of the unknown encoder, given the la-
beled factors, should be the same regardless of the value of
the labeled factors. We train our model with floor hue being
the unknown factor. In this case, since for any value of wall
hue there are exactly three possible values of floor hue, it
can be predicted that our unknown encoder should discover
a factor with three discrete values, such that for any wall
hue, each of the three floor hues is encoded as a different
value. Note that this discovered factor is not necessarily the
“hue difference” of the floor and the wall: there is no guar-
antee that the three values of this factor correspond to the
hue difference being −1, 0 and 1 consistently, independent
of other factors. The mapping from hue difference to the
value of the discovered factor can vary according to wall
hue. The only guarantee is that for the same wall hue, dif-
ferent floor hues correspond to different values of the dis-
covered factor.

The distribution of the samples in the unknown encoder’s
code space, colored by floor hue, is shown in Figure 14.
Three clusters can be clearly seen.

In general, we can conclude that if the intended seman-
tics of the unknown factor is correlated to the labeled fac-
tors, then the factor discovered by our method would have
different semantics. This may or may not be a desirable out-
come, but it shows that our method is highly effective in en-
suring the independence between the discovered unknown
factor and the labeled factors.



(a) β-VAE [22] (b) Factor-VAE [29]

(c) β-TCVAE [11] (d) Pairwise-VAE [10]

(e) Lord [19] (f) Ours

Figure 15: Additional results of manipulation comparison on 3D Chairs by uniformly sampling the latent codes depicting
the azimuth rotation. The leftmost column shows the inputs.

E. Comparisons
E.1. Visualization

In Figure 12, for each of the methods compared, we plot
the distribution of test samples of the 3D Chairs dataset in
the code space, projected onto the two dimensions having
the largest mutual information with the rotation label. In
β-VAE [22] and Factor-VAE [29], no clear color pattern

can be observed. In β-TCVAE and Lord [19], samples with
the same rotation are somewhat close together but there is
no meaningful order between different rotations. Pairwise-
VAE [10] and our method can arrange the azimuth angle
correctly into a ring, but the structure is more clear in our
method, and also, we can distinguish two slightly different
elevation angles, which are not distinguished by any other
method.



Figure 16: Additional portrait relighting results.

E.2. Results

We provide more results of manipulating the latent code
related to azimuth rotations and generate the images using
different methods in Figure 15.

F. Downstream Tasks
F.1. Portrait Relighting

In this task, the labeled factor is lighting, represented by
the coefficients of spherical harmonics up to second-order,
which are 9 real-valued numbers. We show that our disen-
tanglement framework can handle such continuous labels.
More portrait relighting results are shown in Figure 16.

F.2. Anime Style Transfer

Figure 17 and Figure 18 present more results of anime
style transfer generated by fixing either style or content. In
Figure 17, we show the styles of the results are consistently

faithful to the input. In Figure 18, we explore the diversity
of styles our network can learn and demonstrate the ability
to generate the same content in different styles where facial
shapes, appearances, and aspect ratios are captured.

F.3. Landmark-Based Face Reenactment

The landmark-based face reenactment can generate the
face motion of one target person from a single image with
another source subject’s facial expressions and head pose
from a driving video. The generated results should pre-
serve the source poses/expressions while matching the tar-
get identity. With only the identity label known, we can
disentangle unknown poses/expressions from identities and
synthesize new landmarks by changing identities in the
source landmarks to the target.

We train the landmark-to-image network on the training
dataset from VoxCeleb2 [15] which is processed by crop-
ping a 256 × 256 face image and extracting its landmarks
from each frame. In total, the training data contains 52, 112



Figure 17: Generated samples with fixed style and random content. Left column shows four input examples of two different
artists.

Figure 18: Generated samples with fixed content and random style. The content code is fixed for all results while style codes
randomly sample from the style distribution.



Method ID ↑ Pose ↑ Exp. ↓
X2face [58] 0.635 0.302 0.448

First-order [52] 0.770 0.822 0.274
Ours w/o disentanglement 0.715 0.862 0.208
Ours w/ disentanglement 0.776 0.840 0.243

Table 7: Quantitative comparison of methods for cross-
subject face reenactment on the VoxCeleb2 testing dataset
between our method with and without landmark disentan-
glement, and two one-shot methods [58], and [52]. Note
that our results without disentanglement are generated us-
ing the ground truth landmarks from the driving frame so
their poses/expressions in the results should be the closest
to those in the driving frame, but their identities are very
different from the target person. Our method with disentan-
glement achieves the best in identity preservation and the
second-best in poses/expressions.

videos for 1, 000 randomly selected subjects. We test on a
video dataset of 8, 000 frames for 80 pairwise subjects (100
frames per video) randomly sampled from the VoxCeleb2
testing data,

We present more qualitative comparison in Figure 19 be-
tween with and without landmark disentanglement and in
Figure 20 against two of the state-of-the-art one-shot face
reenactment methods, i.e. X2face [58] and First-order [52].
Figure 19 compares the results using source landmarks
without disentanglement and synthesized landmarks with
disentanglement and shows that landmark disentanglement
leads to better identity preservation. Figure 20 shows quan-
titative comparisons with two one-shot face reenactment
baselines and demonstrates our method can better general-
ize to unseen subjects with more consistent quality under a
large variety of poses/expressions.

Besides, we conduct a quantitative comparison as shown
in Table 7 to measure the accuracy of disentanglement. We
evaluate the results using three metrics (ID, Pose, and Exp.)
for identity, pose, and expression respectively. ID mea-
sures the identity similarity between the resulting face and
the target person by computing cosine similarity between
their embedding vectors of the face recognition network
VGGFace2 [7]. Pose measures the similarity between the
resulting head pose and the source subject’s pose in the
driving frame by computing cosine similarity between their
head rotations in radians around the X, Y, and Z axes es-
timated by OpenFace [3]. Exp. measures the difference
between the resulting expression and the source expression
in the driving frame by computing the L2 distance of their
intensities of corresponding facial action units detected by
OpenFace. Note that our results generated without dis-
entanglement directly use the landmarks from the driving
frame so their poses/expressions in the results are the closest

Table 8: Quantitative comparison with the state-of-the-art
methods for skeleton disentanglement on Mixamo.

Method MSE ↓ MAE ↓
[63] 0.0131 0.0673
[1] 0.0151 0.0749

Ours 0.0056 0.0498

to those in the driving frame but their identities mismatch
the target person. In contrast, our method with disentangle-
ment largely increases the identity accuracy while achieving
comparable accuracy in poses/expressions.

F.4. Skeleton-Based Body Motion Retargeting

We train our skeleton disentanglement network on the
dataset of Mixamo [41]. It contains synthetic 3D skele-
tons of approximately 800 unique motion sequences each of
36 distinct characters ground truth labels for motion, view,
and pose. We follow the same setting in [63] to use 32 of
these characters with 800 sequences of each one for training
and the rest for testing. There is no overlap in motion se-
quence and character between training and testing. In train-
ing, we project the 3D joint coordinates on-the-fly onto 2D
with viewing angles chosen randomly. The labeled factors
are the identity of the character and the view angle and the
unknown factor is the motion. The network sees only one
frame at a time instead of a motion sequence.

In Table 8, we quantitatively compare with the state-of-
the-art methods ( i.e., [63] and [1]), which are task-specific,
focusing on skeleton disentanglement. The method of [63]
is unsupervised while the method of [1] utilizes full super-
vision. We perform evaluations on the same held-out test
set from Mixamo (with ground truth available) using MSE
and MAE as the metrics, reported in the original scale of
the data. Our method, using weak supervision, outperforms
both methods in terms of numerical joint position error but
does not rely on any domain-specific prior knowledge.

Figure 21 shows that we can independently control iden-
tity, view and motion, synthesizing 2D skeletons with novel
identity, view and motion while preserving the remaining
factors unchanged.

Figure 22 shows more results of 2D skeleton-based mo-
tion retargeting. Although driven by different subjects, the
target skeleton identity is completely preserved in the gen-
erated results.



Source Target w/o Result w/ Result
Disentanglement Disentanglement

Figure 19: Qualitative comparison on face image reenactment between the translation results without (w/o) and with (w/ )
facial landmark disentanglement.



Source Target X2face [58] First-order [52] Ours

Figure 20: Qualitative comparison on face image reenactment between our method and face motion transfer networks:
X2face [58], and First-order [52] using images from Voxceleb2 [15] and FaceForensics++ [49].



(a) Identity synthesis with view and motion fixed

(b) View synthesis with identity and motion fixed

(c) Motion synthesis with identity and view fixed

Figure 21: Novel synthesis of identity, view and motion. Left column shows the input and the rest represents the generated
skeletons by individually controlling identity, view and motion while fixing the others.



(a)

(b)



(c)

(d)

Figure 22: Motion retargeting results from different driving subjects to the same target person. In each case, left column
shows the target person and his skeleton, right columns (from top to bottom) represent input source frames, extracted source
skeletons, transformed skeletons, and generated target frames.


