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Abstract

Membership inference attacks (MIA) try to detect if data
samples were used to train a neural network model, e.g. to
detect copyright abuses. We show that models with higher
dimensional input and output are more vulnerable to MIA,
and address in more detail models for image translation
and semantic segmentation, including medical image seg-
mentation. We show that reconstruction-errors can lead to
very effective MIA attacks as they are indicative of memo-
rization. Unfortunately, reconstruction error alone is less
effective at discriminating between non-predictable images
used in training and easy to predict images that were never
seen before. To overcome this, we propose using a novel
predictability error that can be computed for each sample,
and its computation does not require a training set. Our
membership error, obtained by subtracting the predictability
error from the reconstruction error, is shown to achieve high
MIA accuracy on an extensive number of benchmarks. 1

1. Introduction
Deep neural networks have been widely adopted in vari-

ous computer vision tasks, e.g. image classification, semantic
segmentation, image translation and generation, etc. Due
to the high sample-complexity of such models, they require
large amounts of training data. However, collection and an-
notation of many training samples is an expensive and labor
intensive process. In many domains, such as medical imag-
ing, publicly available training data are particularly scarce
due to privacy concerns. In such settings, a common solution
is training the model privately and then providing black-box
access to the trained model. However, even black-box access
may leak sensitive information about the training data.

Membership inference attacks (MIA) are one way to detect
such leakage. Given access to a data sample, an attacker
attempts to find whether or not the sample was used in the
training process.

Due to memorization in deep neural networks, prediction
confidence tends to be higher for images used in training.
This difference in prediction confidence helps MIA methods

1Our source code is available at GitHub: https://bit.ly/3k0UE6P

to successfully determine which images were used for train-
ing. Therefore, in addition to detecting information leakage,
MIA also provide insights on the degree of memorization in
the victim model.

MIA has previously been applied to a variety of neural net-
work tasks including: classification, generative adversarial
models, and segmentation. The accuracy achieved by MIA
can vary greatly as a function of different properties of the at-
tempted tasks. Our empirical results highlight two properties
that make tasks more vulnerable to MIA attacks: i) Uncer-
tainty: tasks where there is more uncertainty in the prediction
of the output given an input are more susceptible to MIA. ii)
Output dimensionality: tasks with higher-dimensional out-
puts are more vulnerable to MIA. These apparently simple
properties can explain non-intuitive observations, for exam-
ple, that reconstruction-based MIA on CycleGAN leads to
very low accuracy. As the training images should be recon-
structed back after being translated to the other domain and
back, there is no uncertainty of the output given the input.
As the desired output is fully specified by the input (i.e. they
are identical), the reconstruction task is easy leading to low
MIA accuracy.

Motivated by the above findings, we focus our attention
on two tasks that exhibit these properties: supervised image
translation and semantic segmentation, including medical
image segmentation. We begin by evaluating a simple-to-
implement but effective MIA that uses pixel-wise reconstruc-
tion error between the model output and ground truth. This
approach exploits memorization of the training data in the
victim model, resulting in lower reconstruction error on im-
ages used for training. However, we observe that for some
sample images the ground truth result can be easily predicted,
and for others it is harder to predict. Reconstruction error
alone is therefore less accurate at discriminating between
hard to predict samples used in training and easy samples
not seen before. To overcome this limitation, we propose a
novel predictability error which is computed for each query
input image and its ground truth output.

Our predictability error uses the accuracy of a linear pre-
dictor computed over the given query image, predicting pixel
values from deep features of the input image. The linear pre-
dictor serves as a simple approximation of the task attempted
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Model Dataset Reconstruction Membership
Error Error

Pix2pix Facades 93.62% 97.59%
Pix2pix Maps2sat 84.22% 85.65%
Pix2pix Cityscapes 77.74% 83.23%

Pix2pixHD Facades 98.92% 99.95%
Pix2pixHD Maps2sat 95.74% 99.42%
Pix2pixHD Cityscapes 96.04% 99.09%

SPADE Cityscapes 99.75% 100%
SPADE ADE20K 85.31% 89.79%

UperNet50 ADE20K 96.80% 98.09%
UperNet101 ADE20K 95.74% 96.94%
HRNetV2 ADE20K 83.67% 85.92%

Inf-Net COVID19 97.16% 99.01%
PraNet Polyp 96.03% 96.38%

Table 1. Membership attack ROCAUC using our (i) reconstruction
error Lrec and (ii) membership error Lmem. Using the member-
ship error, which subtracts the image predictability error from the
reconstruction error, substantially improves performance.

by the victim model, providing an indication of the ease of
predicting the output image from the input. The reconstruc-
tion error, together with the predictability error, helps to
discriminate between two factors of variation in the recon-
struction error: (i) The ”intrinsic” difficulty of the generation
task for each image, based on its predictability error, and
(ii) The boost in accuracy due to memorization of the train-
ing images. Defining a membership error that subtracts the
predictability error from the reconstruction error is shown
empirically to achieve high success rates in MIA.

Differently from other MIA approaches, we do not as-
sume the existence of a large number of in-distribution data
samples for training a shadow model - but rather operate on a
single sample, using only a single query to the victim model.
Our method is demonstrated to be effective over strong base-
lines on an extensive number of benchmarks, taken from
image translation, semantic segmentation, and medical im-
age segmentation. We discuss possible defenses against MIA
and show their ineffectiveness against our method.

Our main contributions are:
1. Highlighting two key properties of tasks that are highly

vulnerable to MIA.
2. Presenting the first MIA on image translation models.
3. Proposing a general single-sample, self-supervised, im-

age predictability error for MIA.

2. Related Work
2.1. Membership Inference Attacks (MIA)

Shokri et al. [36] were the first to study MIA against
classification models in a black-box setting. In this setting
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Figure 1. Illustration of the proposed black-box membership in-
ference attack. Here shown for the case of image translation over
the Cityscapes dataset. We would like to determine if a given
sample was used in training. The victim model predicts a recon-
structed image based on the input. In the top path the difference
between the reconstructed image and the ground truth image gives
the reconstruction error Lrec. In the bottom path we compute the
predictability error Lpred of the sample from the error of a linear
predictor to predict pixel values of the ground-truth image from
deep features of the input. Subtracting Lpred from Lrec gives the
membership error, Lmem.

the attacker can only send queries to the victim model and get
the full probability vector response, without being exposed
to the model itself. They proposed to train multiple shadow
models to mimic the behavior of the victim model, and then
use those to train a binary classifier to distinguish between
known samples from the train set and unknown samples.
They assume the existence of in-distribution new training
data and knowledge of the victim model architecture.

Salem et al. [35] further relaxed those assumptions and
demonstrated that using only one shadow model is sufficient,
and proposed using out-of-distribution dataset and different
shadow model architectures, for a slightly inferior attack.
Even more interestingly, they showed that without any train-
ing, a simple threshold on the victim model’s confidence
score is sufficient. This shows that classification models
are more confident of samples that appeared in the training
process, compared to unseen samples.

Sablayrolles et al. [34] proposed an attack based on apply-
ing a threshold over the loss value rather then the confidence
and showed that black-box attacks are as good as white-box
attacks. As the naive defense against such attacks is to mod-
ify the victim model’s API to only output the predicted label,
other works proposed label-only attacks [48, 27, 7].

While most previous work has been around classification
models, there has been some effort regarding MIA on gener-
ative models such as GANs and VAEs [5, 19, 22]. An attack
against semantic segmentation models was proposed by He
et al. [21], where a shadow semantic segmentation model is
trained, and is used to train a binary classifier. The classifier
is trained on image patches, and final decision regarding the
query image is set by aggregation of the per-patch classifi-



cation scores. The input to the classifier is a structured loss
map between the shadow model’s output and the ground
truth segmentation map. Although this task is the closest
to ours, our work is the first study of membership inference
attacks on image translation models. We also note that [21]
consider the setting where other input-output samples from
the data distribution (or a very similar distribution) are avail-
able, whereas our attack does not require this information.

Besides membership inference attacks, other privacy at-
tacks against neural networks exist. We refer the reader to
the supplementary material (SM) for more details.

2.2. Conditional Image Generation

Image-to-image translation is the task of mapping an
image from a source domain to a target domain, while pre-
serving the semantic and geometric content of the input
image. Currently, the most popular methods for training
image-to-image translation models use Generative Adver-
sarial Networks (GANs) [17] and are currently used in two
main scenarios: (i) unsupervised image translation between
domains [52, 26, 28, 6]; (ii) serving as a perceptual image
loss function [23, 46, 53]. In this work we introduce the
novel task of MIA on conditional image generation models.

2.3. Semantic Segmentation

Semantic segmentation is the task assigning a class label
to each pixel in the input image. This can be thought of a
classification problem for each pixel. State-of-the-art meth-
ods [47, 38] are based on fully convolutional networks and
multi-scale representations of the input [29, 31].

3. Difficulty-based MIA
We investigate the effect of task difficulty and dimension-

ality on the success of MIA. Consequently, we concentrate
on two promising tasks for MIA, image translation and se-
mantic segmentation. We also present a novel image pre-
dictability error which significantly improves MIA accuracy.

3.1. Effects of task difficulty and dimensionality

Every neural network model is a potential target for MIA.
Previous work attempted MIA on many different models
(classification, GANs, segmentation) with highly variable
accuracy. In this section we present an investigation into two
factors that affect MIA accuracy: task difficulty and output
dimensionality. Full details are provided in Sec. 4.1. We
perform reconstruction-based MIA by measuring the recon-
struction error between the model output and the ground
truth. This is done for multiple models, datasets and tasks.
The attack method is described in more detail in Sec. 3.2.

MIA accuracy vs. task difficulty: We present results
of reconstruction-based attack on three different tasks of
different difficulties. We define task difficulty as the un-
certainty in the output given the input image. The tasks

Model Task Reconstruction Error

NVAE CelebA2Self 50.74%

Pix2pixHD Maps2sat 95.74%
Pix2pixHD Cityscapes 96.04%

Pix2pixHD Landmarks2CelebA 99.54%

Table 2. Comparison of reconstruction-based MIA accuracy on
tasks with different difficulties. Easier tasks, e.g. CelebA2Self, in
which there no uncertainty in the output given the input image, suf-
fer less from memorization of the training data and therefore have
lower vulnerability to MIA. As the uncertainty increases (segmen-
tation maps and landmarks) models tend to memorize the training
data and therefore the MIA accuracy increases.
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Figure 2. Effect of reducing output dimensionality over a
reconstruction-based attack. MIA accuracy is correlated with the
output dimension, i.e. number of pixels, demonstrating that high
output dimensionality tasks are more vulnerable to MIA.

are: i) auto-encoding - translating an image to itself. ii)
Segmentation-to-image translation. iii) Landmark to face
translation. The first task is the easiest as the output is triv-
ially determined by the input. Landmark-to-face is harder
than segmentation-to-image as the input contains less infor-
mation on the output (e.g. no information on the identity of
the face requires much more memorization). The results are
presented in Tab. 2, where it can be seen that indeed MIA
performance is more accurate for harder tasks.

MIA accuracy vs. output dimensionality: Many MIA
approaches attack classification networks that have only a
single output, usually a probability vector or in the more re-
strictive case, a single label. It is natural to ask if tasks with
higher dimensional outputs are more vulnerable to MIA due
to the ensemble effect of attacking each individual output
dimension. The intuition behind this is similar to the ensem-
ble effect of boosting algorithms - each output pixel serves
as a weak attack, and the aggregation of the reconstruction
errors between all output pixels can produce a strong attack.
In Fig. 2, we provide a comparison of reconstruction-based
MIA when subsets of different sizes are used as the out-
put. Note that segmentation with only a single pixel output
is equivalent to classification. We can observe that MIA



accuracy indeed scales with output dimensionality.

3.2. MIA for high output dimensionality

We showed in Sec. 3.1 that both task difficulty and output
dimensionality are correlated with the accuracy of MIA. We
therefore focus on two important but difficult image tasks
that have high-dimensional outputs: image translation and
semantic segmentation. To the best of our knowledge, this is
the first paper to consider MIA on image translation models.

We propose a simple but effective attack, assuming that
the attacker has only a black-box access to the victim model
V. Differently from most previous works, we do not use
shadow models or train a binary classifier, and thus do not
require any additional training data and query the victim
model only once.

Our membership attack is performed on a pair of query
images (x, y) where x ∈ Rh×w is an image from the input
domain (h and w are the image height and width respec-
tively) and y ∈ Rh×w is the ground truth from the output
domain. The requirement of the availability of the ground
truth image y is in-line with previous works, and is a rea-
sonable assumption in our target scenario. For each query
we compute a membership error, Lmem (see Eq. (2)), to
which we apply a pre-defined threshold τ , such that all
queries where Lmem(x, y) < τ are marked as members
of the training data. The membership error has two elements:
reconstruction error and predictability error.

3.2.1 Reconstruction Error for Membership

Typical MIA on classification models consider the probabil-
ity (or confidence) given by the model to the correct class.
Semantic segmentation is an extension where the output is a
probability vector for each pixel. Image translation models
are different as they output a color value of each pixel. This
value is the maximum likelihood estimate, and no probability
distribution over possible values is given.

We propose to use the loss term as a reconstruction er-
ror, Lrec, to compute the pixel-wise difference between the
output produced by a black-box access to the model, V(x),
and the ground truth y. For semantic segmentation, where
the output is a probability vector for each pixel, we use the
cross-entropy error. For medical segmentation, we use the
weighted IoU (Intersection over Union) loss and binary cross
entropy loss. In the case of image-translation we use the L1

error as we do not assume access to the discriminator and
therefore can not use a GAN loss.

Due to memorization during the training process, the
model output typically has lower reconstruction errors for
images in the training set compared to unknown images.

3.2.2 Predictable and Unpredictable Images

In this section we address the following question: Given an
input-output sample, is the output easily predictable from
the input. Consider, for example, supervised segmentation-
to-image translation. I.e., the task is to ”invert” the segmen-
tation process, and recover the original image that gave rise
to a given segmentation map. It is clear that not all cases are
equally predictable: (i) hard to predict images have sharp
and detailed textures, whereas more predictable images have
blurrier textures; (ii) images with semantic segmentation
maps that contain only few categories provide less guidance
than those with more detailed segmentation maps, making
the correct prediction less certain. The image predictability
error should quantify these observations. In Sec. 4.2 we show
that such a predictability error is important for increasing
accuracy of membership inference attacks.

We briefly describe two previous approaches for measur-
ing image difficulty:

Human-Supervised: Ionescu et al. [41] proposed to de-
fine image difficulty as the human response time for solving
a visual search task. For this, they collected human annota-
tions for the PASCAL VOC 2012 dataset [10] and trained a
regression model, based on pre-trained deep features, to pre-
dict the collected difficulty score. The disadvantage of this
method is that human-specified difficulty scores may not cor-
relate to the predictability of the image synthesis by neural
networks. This is demonstrated empirically in Sec. 4.2.1.

Multi-Image: Another approach taken by [5] is training
a model on a set of image pairs similar to the target distri-
bution. This approach uses the reconstruction error of the
external model on the target image pairs as its predictability
error - larger reconstruction errors correspond to harder to
predict images. This approach has a significant drawback:
a large number of images, similar to the target image, are
required in order to learn a reliable generative model. In
many cases, images from the target distribution may not be
available. Additionally, training a model for every task is
tedious and computationally expensive.

The Proposed Single-sample predictability error: We
propose a new method to assign a predictability error for
models with image outputs. This error measures the accuracy
of predicting the output pixel from its high-level representa-
tion using linear regression.

A related approach was proposed by Hacohen et al. [18]
for measuring image difficulty for classification models. Our
method is significantly different as it is trained on a single
input-output sample rather than on a large dataset.

The linear regression model uses image features of a
pre-trained Wide-ResNet50×2 [50]. We concatenate the
activation values in the first 4 blocks, giving 56×56 feature
vectors of size 3840 each. The output image resolution
is reduced to 56×56 to match the size of the first Wide-
ResNet50×2 block. We denote the concatenated feature
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Figure 3. Examples of input-output pairs from the Cityscapes, Maps2sat and COVID19-CT datasets that received the lowest (first row) and
highest (second row) predictability errors using our single-sample approach. It can be seen that detailed images with complicated patterns
are ranked as difficult to predict, while images with less details and lower contrast are ranked as easier to predict.

vector for pixel i as ψ(i).
The linear regression model P is a matrix of size 3840×3,

multiplied with the feature vector ψ(i) of pixel i to give an
estimate of the RGB colors yi. We optimize P over 70%
randomly selected pixels. The image predictability error is
the average absolute error over the 30% unselected pixels:

Lpred(x, y) =
1

N

N∑
i=1

‖Pψ(i)− yi‖1 (1)

where yi is the ground truth value of the ith pixel in the
resized ground truth image y. Fig. 3 presents some images
that received the highest and lowest predictability errors. See
supplementary material (SM) for more details.

3.2.3 Membership Error

As observed before, for some samples the output images can
be easily predicted from the input, while for other samples
the output can not be predicted. While the reconstruction
error achieves high MIA success rates, it has a significant
limitation - it does not discriminate between predictable and
unpredictable samples. The victim model will have higher
errors when generating unpredictable training samples, and
lower errors when generating easily predictable ones. In
such samples reconstruction error may result in wrong mem-
bership classification.

Given our image predictability error Lpred in Eq. (1) and
the reconstruction error Lrec we calculate a membership
error Lmem as follows:

Lmem(x, y) = Lrec(x, y)− α · Lpred(x, y) (2)

Lmem is computed by subtracting the predictability error
Lpred from the reconstruction error Lrec weighted by α. Un-
less specified otherwise, we use α = 1.0, and present the

effect of different α values in the SM. This lowers the mem-
bership error Lmem for harder-to-predict images compared
to easier-to-predict images having the same reconstruction
error. See Fig. 1 for an overview illustration of our method.

Using the membership error Lmem (2) for MIA substan-
tially improves the success rates in all of our experiments, as
shown in Tab. 1 and Fig. 4

4. Experiments
We first investigate two factors that affect MIA accuracy,

task difficulty and output dimensionality, and show that MIA
attacks are easier on difficult tasks with high output dimen-
sionality. We then extensively evaluate our MIA on image
translation and semantic segmentation networks. We also
compare our single-sample predictability error against strong
baselines. Additional results and ablations can be found in
the SM. In accordance with previous membership attack
works, the success rate is measured using the area under the
ROC curve (ROCAUC) metric.

4.1. Effectiveness of membership inference attacks

As mentioned in Sec. 3.1, there has been extensive re-
search on MIA against various neural networks, resulting
in variable accuracy. We investigated two factors that affect
MIA accuracy: task difficulty and output dimensionality.

4.1.1 MIA accuracy vs. task difficulty

We defined task difficulty as the uncertainty of the output
given the input image. In the limit of sufficiently large train-
ing datasets, when models are trained to perform easy tasks,
such as auto-encoding - translating an image to itself, they
are able to generalize well to unseen images, and do not
need to depend on memorization of the training data in order
to minimize the loss function. As membership inference
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Figure 4. The proposed membership errorLmem can better separate
train (blue) and test (orange) images by a simple threshold (i.e. a
vertical line) compared to the reconstruction error Lrec.

attacks are highly correlated with model memorization, their
performance decreases on such tasks. Similarly, models
struggle with learning difficult tasks, in which the input does
not contain sufficient information to fully specify the output,
and therefore the loss minimization encourages the model
to memorize the training samples. This lack of predictabil-
ity acts as a strong motivation for memorization, even at
the limit of well-trained models trained on large datasets,
provided sufficient capacity.

In order to demonstrate this, we performed reconstruction-
based MIA, by using Lrec described in Sec. 3.2.1, on three
tasks of different levels of difficulty. The first and easiest
task is auto-encoding. For this, we attack a NVAE [43]
model, trained on the CelebA [30] dataset. The second task,
more difficult than auto-encoding, is segmentation-to-image
translation. We attack two Pix2PixHD models [46], trained
on the Maps2sat [23] and Cityscapes [8] datasets. The third
and most difficult task is landmarks-to-face translation. For
this task we extracted facial landmarks [3] from 50K CelebA
images [30]. We consider this to be the most difficult task
out of the three as the input contains less information on
the output in comparison to segmentation maps (e.g. no
information regarding the identity of the face). Results,
presented in Tab. 2, demonstrate that reconstruction-based
MIA are more successful on difficult tasks.

4.1.2 MIA accuracy vs. output dimensionality

Previous works mostly focused on MIA against classification
models, where there is a single output, i.e. probability vector
or in the more restrictive case, a single label. It is natural to
ask whether higher dimensional outputs are more vulnerable
due to the ensemble effect of combining the attacks on each
individual output dimension to a stronger, joint attack.

We perform reconstruction-based MIA on the Pix2PixHD
architecture, trained on the CMP Facades [42], Maps2Sat
and Cityscapes datasets, as well as on three semantic seg-
mentaion models - UperNet50, UperNet101 [47] (using
ResNet50 and ResNet101 as backbones) and HRNetV2 [38]
- trained on the ADE20K dataset [51]. Fig. 2 demonstrates

the effect of reducing the output dimension on the attack
accuracy. The reduction is achieved by randomly sampling
N output pixels, and using them as the output, where N
ranges from a single pixel and up to 200 pixels. Note that
in the case of semantic segmentation, having only a single
pixel output is equivalent to classification. We repeat this
experiment 10 times and report the average result.

We observed that MIA accuracy indeed scales with the
number of output dimensions. Results for other models are
presented in the SM.

4.2. MIA accuracy evaluation

We evaluate our membership attack on three image trans-
lation architectures, Pix2Pix [23], Pix2PixHD [46], SPADE
[33], three semantic segmentation architectures - UperNet50
and UperNet101 [47] (ResNet50 and ResNet101 as back-
bones), HRNetV2 [38] as well as two medical segmentation
architectures - Inf-Net [12] and PraNet [11]. We evaluated
on various datasets, including CMP Facades [42], Maps2sat
[23], Cityscapes [8], ADE20K [51].

In the case of medical segmentation we evaluated two
tasks: lung infection segmentation from Covid-19 CT images
[12] and polyp segmentation in colonoscopy images [37, 2,
39, 44, 25].

All pix2pix and pix2pixHD models are trained from
scratch, with the exception of the Cityscapes dataset on
the Pix2pixHD architecture in which we use the supplied
large pre-trained model for computational constraints on the
high resolution. The rest of the models are pre-trained.

It can be seen in Tab. 1 that while using the reconstruc-
tion error alone achieves a high success rate, the membership
error (which calibrates the result by sample predictability)
significantly improves the results. Fig 4 demonstrates the
effect of subtracting the predictability error from the recon-
struction error. After calibration, a single threshold on the
membership error can separate train and test images. Results
on additional benchmarks are presented in the SM.

Utilizing common image augmentations, i.e. horizontal
flipping and random cropping, in order to construct a larger a
larger set {(xaug, yaug)} has a small impact over the attack
accuracy, as the output dimension is large enough as is.

4.2.1 Comparison to Human Supervision

We compare our self-supervised single-sample predictability
error with the human-supervised difficulty score described
in Sec. 3.2.2. This score was proposed by Ionescu et al.
[41], which defined image difficulty to be the human re-
sponse time for solving a visual search task. In order to
provide a fair comparison, we replace the pretrained VGG-f
[4] features, used by [41], with the more powerful pretrained
Wide-ResNet50×2 [50] features we use in our predictability
error. Samples of images ranked as easy and hard by the



Model Dataset Single Multi
Ours Superv. In-Dist.

Pix2pix Facades 97.59% 93.67% -
Pix2pix Maps2sat 85.65% 86.48% 92.43%
Pix2pix Cityscapes 83.23% 77.06% 82.47%

Pix2pixHD Facades 99.95% 98.86% -
Pix2pixHD Maps2sat 99.42% 98.38% 82.87%
Pix2pixHD Cityscapes 99.09% 96.86% 94.76%

UperNet50 ADE20K 98.09% 96.79% 79.47%
UperNet101 ADE20K 96.94% 95.49% 76.01%
HRNetV2 ADE20K 85.92% 84.42% 84.48%

Table 3. MIA accuracy of our self-supervised single-sample method
vs. using human-supervised single-sample and multi-image base-
lines for the predictability error. Note that in-distribution multi-
image requires extra supervision of 100 images

Model Dataset Ours Shadow Model

Pix2pix Maps2sat 85.65% 80.15%
Pix2pix Cityscapes 83.23% 78.68%

Pix2pixHD Maps2sat 99.42% 98.63%
Pix2pixHD Cityscapes 99.09% 96.39%

Table 4. Comparison between our MIA and the popular shadow-
model-based classifier attack, using 100 train and 100 test samples.
Our MIA outperforms while not requiring extra training images.

supervised score are presented in the SM. As can be seen in
Tab. 3, our self-supervised single-sample predictability error
outperforms the human-supervised difficulty score. In the
SM, we provide a comparison of the relation between the
reconstruction error and the supervised score to the relation
between the reconstruction error and our self-supervised pre-
dictability error, and show that our score is better correlated
to the reconstruction error.

4.2.2 Comparison to Multi-Image Scores

Although our MIA method does not require the availability
of multiple auxiliary samples from the target distribution or
from a similar distribution, it is interesting to compare our
single sample predictability error to methods that use multi-
ple samples. We compute multi-sample predictability errors
(MSPS) by training a ”shadow” model to map the input to
output images in the auxiliary samples. As an upper-bound
on MSPS performance, the shadow model is given exactly
the same architecture as used by the victim model (although
this knowledge may not be available in practice). The MSPS
is defined by the reconstruction error of the shadow model
on the target sample. Two scenario were evaluated:

In-distribution data: In this setting the shadow model’s
data shares the distribution of the victim’s training data, by
being trained on 100 randomly sampled image pairs from the

test set of the corresponding dataset. Facades was not used
as it did not have enough images. The results are presented
in Tab. 3. For Pix2PixHD and semantic segmentation, MSPS
underperformed our method (as 100 samples are insufficient
for training such large models). As Pix2Pix is a smaller
network, MSPS was more successful there, obtaining com-
petitive results with our method. Note that it still requires
extra samples, often not available. We analyzed the number
of samples required for MSPS to reach the accuracy of our
method, in most tasks, even 100 were insufficient (see SM).

Auxiliary dataset: As suggested by He et al. [21], we
also compare our method to the setting were many out-of-
distribution but similar samples are available. We trained
shadow models on 4K image pairs from the BDD dataset
[49] as MSPS for the Cityscapes dataset, as both datasets
consist of street scene images and have compatible label
spaces. We found that MSPS underpeformed our method by
10%−30%. (see SM for exact results). Note that it is rare to
have similar datasets with nearly identical labels. Cityscapes
was the only dataset from those evaluated in this paper for
which such a similar dataset could be found.

Shadow-model classifiers: Although deviating some-
what from predictability errors, for the interest of complete-
ness, we report the ROCAUC results of the popular approach
of shadow-model classifiers for image translation MIA, see
Tab. 4 (classification accuracy is lower, see SM). We use
the approach of He et al. [21] and train a classifier to distin-
guish between the ”loss maps” of the train and test auxiliary
samples of the shadow model. The classifier is then used to
score images of the target dataset as train or test (see [21]
for the complete details).

We show that this approach underperforms our method
in both in-distribution and auxiliary dataset settings (exact
results presented in the SM). It is surprising that shadow mod-
els do not perform well on image translation MIA as they
are very effective for image segmentation MIA (as shown
in [21]). We believe the difference in performance can be
explained by the fact that segmentation maps have simi-
lar distributions between datasets with similar label spaces
while natural images have very different distribution - mak-
ing membership classifiers on the image2seg task generalize
better than the seg2image task. We note again, that such tech-
niques requires the availability of auxiliary in-distribution
samples or very similar datasets which is often not possible.
For example, medical segmentation datasets are often quite
small due to the sensitivity of the data and high cost of ob-
taining ground truth labels. The Covid-19 CT dataset [12] is
composed of 50 train and 50 test samples, too small to apply
a shadow model based attack.

5. Discussion
Effect of Memorization: Membership inference attacks

are closely related to memorization in the victim model.



Model Dataset Orig No Lrec

Pix2pix Maps2sat 84.22% 68.44%
Pix2pix Cityscapes 77.74% 51.06%

Pix2pixHD Maps2sat 95.74% 75.76%
Pix2pixHD Cityscapes 96.04% 56.58%

Table 5. Effect of cGAN and reconstruction losses on the accuracy
of reconstruction-based MIA. The cGAN loss is less susceptible to
MIA.

Model Dataset No-defense Argmax-defense

UperNet50 ADE20K 98.09% 98.05%
UperNet101 ADE20K 96.94% 97.11%
HRNetV2 ADE20K 85.92% 89.32%

Table 6. Comparison between our attack accuracy (ROCAUC) on
undefended semantic segmentation models and models defended
by the argmax defense. As can be seen, our attack still manages to
succeed much better than random guessing.

In order to better understand this relation, we measure the
success of our attack under different levels of memorization.
We do so by evaluating our attack on checkpoints saved at
different epochs during the training of our image-translation
victim models. We observed that as the training process
progresses, the victim model memorizes the training data
which results in higher attack success rates (See SM).

Reconstruction loss effect on MIA: We evaluated the
effect of the reconstruction loss term on the accuracy of
reconstruction-based MIA. For this, we compared the accu-
racy of the attack against image translation models, trained
using both reconstruction and cGAN loss terms versus mod-
els that were only trained using the cGAN loss term. As
can be seen in Tab. 5, the reconstruction loss indeed has a
significant impact over the attack accuracy.

Argmax defense: In the argmax defense, the victim
model returns only the predicted label, rather then the full
probability vector. As image translation models predict pixel
values, and does not output probability vectors, this defense
does not apply. For semantic segmentation models, we eval-
uate our attack against this defense, by replacing the cross-
entropy loss in Lrec to the L0 error. As can be seen in
Tab. 6, the attack efficacy is not reduced, demonstrating the
weakness of this defense.

Differential private SGD (DP-SGD) defense: In the
defense by Abadi et al. [1], the commonly used Stochas-
tic Gradient Descent optimization algorithm is modified in
order to provide a differentially private [9] model. This is
done by adding Gaussian noise to clipped gradients for each
sample in every training batch. There exists a trade-off be-
tween privacy and utility, in which the amount of added noise
must be large enough to ensure privacy while not degrading
the model’s outputs to the point where the model is useless.
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Figure 5. Effect of Gauss defense on the attack accuracy. Even with
large amounts of added noise, our attack still manages to succeed
much better then random guessing.

Training a deep model with DP-SGD is an unstable process.
We experimented with multiple common configurations, i.e.
added noise ratios and maximal gradient clipping threshold,
and were not able to find a configuration that yields visually
satisfying results. Hence, although the DP-SGD defense is
theoretically protecting the victim model against member-
ship inference attacks, in practice we find it to be impractical
against our attack as it results with total corruption of the
victim model.

Gauss defense: In this defense, we add Gaussian noise to
the image generated by the victim model [16]. This attempts
to hide specific artifacts of the model. We evaluate our attack
accuracy as a function of different noise STD. Fig. 5 shows
that a considerable amount of noise, which corrupts the
generated output, is required in order to have a significant
effect over our attack success. Moreover, it can be seen that
even with large amounts of noise, our attack still manages
to succeed much better than random guessing. This implies
that our attack is robust to the Gauss defense. Results on
additional benchmarks are presented in the SM.

6. Conclusion
In this work, we highlight two properties that make tasks

more vulnerable to MIA: i) Uncertainty: tasks where there
is more uncertainty in the prediction of the output given an
input ii) Output dimensionality: tasks with high-dimensional
output. We show that a black-box reconstruction-based mem-
bership attack is very effective on two tasks that exhibit these
properties: image translation and semantic segmentation,
including medical segmentation. We further improve the
attack by proposing a novel image predictability error. Our
membership error, composed of the reconstruction and pre-
dictability errors, has been extensively evaluated on various
benchmarks and was shown to achieve high accuracy.
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[40] Florian Tramèr, Fan Zhang, Ari Juels, Michael K Reiter,
and Thomas Ristenpart. Stealing machine learning models
via prediction apis. In 25th {USENIX} Security Symposium
({USENIX} Security 16), pages 601–618, 2016.

[41] Radu Tudor Ionescu, Bogdan Alexe, Marius Leordeanu, Mar-
ius Popescu, Dim P Papadopoulos, and Vittorio Ferrari. How
hard can it be? estimating the difficulty of visual search in an
image. In CVPR, pages 2157–2166, 2016.
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8. Supplementary Material
8.1. Other Privacy Attacks

Besides membership inference attacks, there exists a wide
range of privacy attacks against neural networks. Model in-
version attacks, first proposed by [14], aim at reconstructing
features of the training data, e.g. recovering an image of a
person from face recognition models [13]. Property infer-
ence attacks, proposed by [15], do not focus on the privacy
of individual data samples, as in membership inference and
model inversion attacks, but focus at inferring global proper-
ties of the training data, such as the environment in which
the data was produced or the fraction of the data that comes
from a certain class.

Model extraction attacks, also referred to as model steal-
ing, attack a model f by constructing a substitute model f̂
that is either identical or equivalent to f [40, 24]. Related
line of work [45, 32] attempts to infer hyperparameters such
as the optimization proccess, e.g. SGD or ADAM.

8.2. Detailed Description of Our MIA Algorithm

Our MIA consist of computing the two terms in Eq. (2),
i.e. Lrec and Lpred for a given query pair (x, y), where x is
an image from the input domain and y is the ground truth
from the output domain, using only a black-box access to
the victim conditional generation model V.
Lrec is computed using the pixel-wise error between the

output image predicted by the model, V(x), and the ground
truth image y, see step 1 in the Algorithm 1. For image
translation models, we set the pixel-wise error function, err,
to be the L1 loss:

Ltrans
rec (x, y) = ‖V(x)− y‖ (3)

For semantic segmentation, where the output values are
probability vectors rather then pixel values, we use the cross-
entropy loss:

Lseg
rec(x, y) = −log(V(x)[y]) (4)

In the case of medical segmentation, following Fan et al.
[11, 12], we use the weighted IoU loss and binary cross-
entropy loss:

Lmed
rec (x, y) = Lw

IoU (x, y) + Lw
BCE(x, y) (5)

Defined as:

Lw
IoU = 1−

H∑
i=1

W∑
j=1

wij(V(x)ij · yij)

H∑
i=1

W∑
j=1

wij(V(x)ij + yij −V(x)ij · yij)
(6)

Lw
BCE = −

H∑
i=1

W∑
j=1

wij log(V(x)[y]ij)

H∑
i=1

W∑
j=1

wij

(7)

Where H and W are the height and width of the query
sample, and wij is the weight of pixel (i, j) and is defined
as follows, where Aij represents the area that surrounds the
pixel (i, j):

wij = 1−

∣∣∣∣∣∣∣
∑

m,n∈Aij

ymn∑
m,n∈Aij

1
− yij

∣∣∣∣∣∣∣ (8)

Lpred is computed as the average error of a linear regres-
sion model, P, in predicting pixel values from deep features
of the input image.

Our deep features are the activation values in the first 4
blocks of a pre-trained Wide-ResNet50×2 [50]. These fea-
tures are of sizes 56×56×256, 28×28×512, 14×14×1024,
and 7×7×2048. We interpolate all features to size 56×56
using bi-linear interpolation (step 2), and also reduce the
output image to 56×56 using bicubic interpolation (step 3).
This gives a concatenated feature vector of size 3840 for each
pixel i in the 56×56 image (256+512+1024+2048=3840).
We denote the concatenated feature vector for pixel i as ψ(i).

We randomly select 70% of the pixels as train set,
and compute a linear model P to estimate the RGB
pixel values yitrain from the corresponding deep fea-
tures ψtrain(i) (step 4). The remaining 30% of pixels
will be used as a test split, {ψtest, ytest} (step 5). I.e.
|ψtrain| = 2195×3840, |ytrain| = 2195×3 and |ψtest| =
941×3840, |ytest| = 941×3.

The linear regression model P, a matrix of size 3840×3,
is trained to minimize the error over {ψtrain, ytrain} (step 6).
Lpred will be the average absolute error over {ψtest, ytest}
(step 7). We found that fitting the linear model to 70%
of pixels and measuring the error on the remaining 30%
gives better results than just measuring the error of the linear
fitting.

We compute Lmem according to Eq. (2) and compare the
results with a predefined threshold value τ , such that any pair
(x, y) for which is holds that Lmem(x, y) < τ is denoted as
a member of the victim models’ V train set (steps 8-9).

We have experimented with different resize methods (step
3) and found that our attack success rate is not very sensitive
to the resize method. Additionally, we evaluated the effect
of different train-test partitions (steps 4 & 5) and found that
using less than 50% of the image pixels for training the linear
regression model results with unstable performance, while
all values of 50% or above results in similar attack success
rates.

8.3. Parameter Selection

We experimented with different values for the α value in
Eq. (2). As can be seen in Fig. 6, α = 1 was the best choice
over all benchmarks.
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Figure 6. Effect of α in Eq. (2) over the attack success.

Algorithm 1. Membership Inference Attack
Input: Query pair (x, y), victim model V, feature
extractor F, scalar α, threshold τ , error function err
Output: Membership inference result

1. Lrec = err(V(x), y)

2. ψ = F(x)// |ψ| = 56× 56× 3840

3. y = resize(y, 56× 56× 3)

4. {ψtrain, ytrain}
70%←−− {ψ, y}

5. {ψtest, ytest} = {ψ, y} \ {ψtrain, ytrain}

6. Train linear regression P with {ψtrain, ytrain}

7. Lpred = 1
N

∑N
i=1 ‖Pψtest(i) − yitest‖1 //N =

941

8. Lmem = Lrec − α · Lpred

9. if Lmem < τ then
Return True

else
Return False

8.4. MIA vs output dimension

As described in Sec. 4.1, we evaluted the effect of reduc-
ing the output dimension on the accuracy of reconstruction-
based MIA. The reduction was achieved by randomly sam-
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Figure 7. Effect of reducing output dimensionality over a
reconstruction-based attack. MIA accuracy is correlated with the
decrease of output dimension, i.e. number of pixels, demonstrating
that high output dimensionality problems are more vulnerable to
MIA.

pling N output pixels, and using them as the output, where
N ranges from a single pixel and up to 200 pixels. Fig. 7
demonstrates that MIA accuracy indeed scales with the num-
ber of output dimensions. Results for Pix2PixHD, UperNet
and HRNetV2 are presetned in Fig. 2.

8.5. calibration Effect

As can be seen in Tab. 1, using our membership error
Lmem, Eq. (2), substantially improves the sucess rates in
all of our experiments. As can be seen in Fig. 8, our Lmem

can better separate train and test images by a simple thresh-
old compared to the reconstruction error Lrec. Results for
Pix2PixHD on the Maps2sat and Cityscapes datasets are
presented in Fig. 4.

8.6. Human-Supervised Image difficulty score

We compare our self-supervised single-sample pre-
dictability error with the human-supervised difficulty score
proposed by [41]. In Fig. 9, we present images ranked from
easy to difficult using our implementation of the supervised-
image difficulty score, for the Cityscapes and Maps datasets.
The ranking seems correlated with image sharpness and level-
of-detail images. As can be seen in Tab. 3, our score outper-
forms the human-supervised score. We compare the corre-
lation between the reconstruction error for unseen images
to our self-supervised predictability error and the human-
supervsied scorre.

8.7. Multi-Image predictability error

As discussed in Sec. 4.2.2, we compare our single-sample
predictability error to a multi-sample predictability error
(MSPS) by training a ”shadow” model, sharing the same
architecture as the victim model, on auxiliary samples. As
can be seen in Tab. 3, when training the MSPS on 100 im-
ages, it underperforms our method on Pix2PixHD and the
evaluated semantic segmentation models. For the smaller
Pix2Pix architecture, MSPS was more successful, obtaining
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Figure 8. The proposed membership error Lmem can better separate train and test images by a simple threshold (i.e. a vertical line) compared
to the reconstruction error Lrec. Pix2pixHD for Maps2sat and Cityscapes are presented in Fig. 4

competitive results with our method. We analyzed the effect
of number of samples over the MSPS performance. As can
be seen in Fig. 10, in most tasks, increasing the number of
samples did not improve performance.

We also compare our method to the setting were many out-
of-distribution but similar sample are available. We trained
shadow models on 4K samples from the BDD dataset as
MSPS for the Cityscapes dataset. As can be seen in Tab. 8,

this too underperforms our method. Note that it is rare to
have similar datasets with nearly identical labels, such as in
the case of BDD and Cityscapes.

8.8. Shadow models

As discussed in Sec. 4.2.2, for the interest of complete-
ness we compare our method with the popular approach of
shadow-model classifiers for image translation MIA. For this,



Model Dataset Ours Human-Supervised
train / test train / test

Pix2Pix Facades 0.79 / 0.50 -0.02 / 0.16
Pix2Pix Maps2sat 0.51 / 0.77 0.79 / 0.52
Pix2Pix Cityscapes 0.78 / 0.71 0.04 / 0.09

Pix2PixHD Facades 0.67 / 0.36 0.27 / 0.04
Pix2PixHD Maps2sat 0.38 / 0.79 0.77 / 0.56
Pix2PixHD Cityscapes 0.76 / 0.62 0.36 / 0.48

SPADE Cityscapes 0.80 / 0.68 0.29 / 0.53
SPADE ADE20K 0.48 / 0.27 0.25 / -0.05

UperNet50 ADE20K 0.66 / 0.13 0.34 / 0.05
UperNet101 ADE20K 0.65 / 0.13 0.38 / 0.06
HRNetV2 ADE20K 0.61 / 0.22 0.36 / 0.10

Table 7. Our self-supervised difficulty score is better correlated
with the reconstruction error than the human-supervised

Figure 9. Examples of images from the Cityscapes (first two rows)
and Maps2sat (last two rows) datasets that received the lowest (first
and third row) and highest (second and last row) predictability
errors using the supervised difficulty score.

Model Dataset Ours Multi-Image
In-Dist BDD

Pix2pix Cityscapes 82.94% 82.47% 74.43%
Pix2pixHD Cityscapes 99.29% 96.86% 66.2%

Table 8. Comparison between our single-image predictability error
and two multi-image baselines, using in-distribution images and a
larger amound of out-of-distribution images (BDD).

we select N images, denoted as shadow train, for training
the shadow model. As an upper-bound, the shadow model
is given the exactly same architecture as used by the victim
model. Another N images, not seen by the shadow model,
are set to be shadow test. We define a new label for each
sample as follows:

label(x) =

{
0, if x← shadow train

1, if x← shadow test
(9)

The classifier C architecture and training procedure are sim-
ilar to [21]. For each image, we compute the structured
loss map between the ground-truth image and the generated
image, using L1 as the loss function. At every epoch we
randomly crop 15 patches of size 90 × 90 from the struc-
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Figure 10. Comparison of MIA accuracy when using our single
sample vs. using multi-sample predictability errors, as a function
of the number of training images. Note that the multi-image score
assumes knowledge of the victim’s model, as well as the availability
of many labeled training images

tured loss map. We train a ResNet-50 [20] from scratch
on the 90 × 90 patches, modified for binary classification.
We use a batch size of 8, SGD optimizer, weight decay of
1e− 2, initial learning rate of 0.1 which reduces by a factor
of 0.1 every 15 epochs. As previously mentioned, we do not
evaluate this on the Facades dataset, due to its size.



Model Dataset Ours In-Dist Out-of-Dist (BDD)
ROC ROC Acc. ROC Acc.

Pix2pix Maps2sat 85.65% 80.15% 73.4% - -
Pix2pix Cityscapes 83.23% 78.68% 67.5% 72.57% 56.16%

Pix2pixHD Maps2sat 99.42% 98.63% 93.7% - -
Pix2pixHD Cityscapes 99.09% 96.39% 64.0% 95.78% 56.5%

Table 9. Comparison between our MIA and the commonly used shadow-model-based classifier attack, using 4K train and 4K test images
from the BDD dataset. Our MIA outperforms while not requiring extra training images.

We compare the performance of our single-sample
method to the shadow model method in Tab. 9. For fair-
ness we compare both the ROCAUC over the classifier’s
confidence, as well as the classification accuracy. It can be
seen that in both cases, and for either in-distribution or out-
of-distribution auxiliary data, the shadow model approach
is inferior to our method for image translation models. We
discuss the case of semantic segmentation in Sec. 4.2.2.

8.9. Memorization

As mentioned in Sec. 5, memorization is the main reason
for the success of our method. Fig. 11 shows the accuracy
of our method as a function of the number of epochs used
for training the victim model, clearly suggesting that memo-
rization is indeed the vulnerability.
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Figure 11. Effect of memorization on the attack success rate.

8.10. Defenses

In Sec. 5, we discuss the Gauss defense, including other
common defenses, against our attack. We evaluated our
attack accuracy as a function of different noise STD. Fig. 12
shows that a considerable amount of noise, which corrupts
the generated output, is required in order to have a significant
effect over our attack success, which is still much better than
random guessing (50%). Results for Pix2PixHD, UperNet
and HRNetV2 are presented in Fig. 5.

8.11. ImageNet predictability error

Our predictability error relies on learning a mapping be-
tween feature vectors to their corresponding pixel values. We
use a pre-trained Wide-ResNet50×2 [50], which is trained
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Figure 12. Effect of Gauss defense on the attack success rate. Even
with large amounts of added noise, our attack still manages to
success much better then random guessing.

Figure 13. Examples of images from the ImageNet dataset that
received the lowest and highest predictability errors. First row -
lowest scored train images. Second row - lowest scored test images.
Third row - highest scored train images. Last row - highest scored
test images. As can be seen, the predictability error is effective
even on images that were used for training the feature extractor.

on the ImageNet dataset. We do not make any assumptions
regarding an overlap between the pre-trained model’s train-
ing data (i.e. ImageNet) and the data during in the attack. In
the scenario in which such an overlap exists, the concern is
that the predictability error would lose its credibility.

In order to verify this, we computed the predictability
error of a random subset of 1K train images and 1K test



images, from the ImageNet dataset. As no input-output pairs
exists, we trained the linear predictor to predict pixel values
from deep features of the same image. We do not observe any
significant difference between the two - both share similar
mean and std values: (0.0549, 0.018) for the train images
and (0.0556, 0.0191) for the test images. A ROCAUC score
of 51% further demonstrates that there is no clear difference
between the distribution of the predictability error on seen
and unseen images.

Fig. 13 further demonstrates this. The first row presents
the train images that received the lowest scores, i.e. marked
as easy images, and the second row presents the test images
with the lowest scores. Both correspond to ”plain” images,
regardless of whether they are known (train) or unknown
(test). The same applies to the Difficult images. The third
row presents the highest scored train images and the last
row presents the highest scored test images. Both contains
complex patterns and high variance. This demonstrates that
the predictability error is not affected by the having prior
knowledge of the image, and is only measuring the amount
of variance and complexity of an image.


