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Abstract

Extracting robust feature representation is one of the
key challenges in object re-identification (ReID). Although
convolution neural network (CNN)-based methods have
achieved great success, they only process one local
neighborhood at a time and suffer from information loss on
details caused by convolution and downsampling operators
(e.g. pooling and strided convolution). To overcome
these limitations, we propose a pure transformer-based
object ReID framework named TransReID. Specifically,
we first encode an image as a sequence of patches
and build a transformer-based strong baseline with a
few critical improvements, which achieves competitive
results on several ReID benchmarks with CNN-based
methods. To further enhance the robust feature learning
in the context of transformers, two novel modules
are carefully designed. (i) The jigsaw patch module
(JPM) is proposed to rearrange the patch embeddings
via shift and patch shuffle operations which generates
robust features with improved discrimination ability and
more diversified coverage. (ii) The side information
embeddings (SIE) is introduced to mitigate feature bias
towards camera/view variations by plugging in learnable
embeddings to incorporate these non-visual clues. To the
best of our knowledge, this is the first work to adopt a
pure transformer for ReID research. Experimental results
of TransReID are superior promising, which achieve state-
of-the-art performance on both person and vehicle ReID
benchmarks. Code is available at https://github.
com/heshuting555/TransReID.

1. Introduction
Object re-identification (ReID) aims to associate a

particular object across different scenes and camera views,
such as in the applications of person ReID and vehicle
ReID. Extracting robust and discriminative features is a
crucial component of ReID, and has been dominated by
CNN-based methods for a long time [19, 37, 36, 44, 42].

*This work was done when Shuting He was intern at Alibaba
supervised by Hao Luo and Pichao Wang.
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Figure 1: Grad-CAM [34] visualization of attention maps: (a)
Original images, (b) CNN-based methods, (c) CNN+attention
methods, (d) Transformer-based methods which captures global
context information and more discriminative parts.
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Figure 2: Visualization of output feature maps for 2 hard samples
with similar appearances. Transformer-based methods retain
backpack details on output feature maps in contrast to CNN-based
methods, as noted in red boxes. For better visualization, input
images are scaled to size 1024× 512.

By reviewing CNN-based methods, we find two
important issues which are not well addressed in the field
of object ReID. (1) Exploiting the rich structural patterns
in a global scope is crucial for object ReID [54]. However,
CNN-based methods mainly focus on small discriminative
regions due to a Gaussian distribution of effective receptive
fields [29]. Recently, attention modules [54, 6, 4, 48, 21, 2]
have been introduced to explore long-range dependencies
[45], but most of them are embedded in the deep layers and
do not solve the principle problem of CNN. Thus, attention-
based methods still prefer large continuous areas and are
hard to extract multiple diversified discriminative parts (see
Figure 1). (2) Fine-grained features with detail information
are also important. However, the downsampling operators
(e.g. pooling and strided convolution) of CNN reduce
spatial resolution of output feature maps, which greatly
affect the discrimination ability to distinguish objects with
similar appearances [37, 27]. As shown in Figure 2, the
details of the backpack are lost in CNN-based feature maps,
making it difficult to differentiate the two people.

Recently, Vision Transformer (ViT) [8] and Data-

ar
X

iv
:2

10
2.

04
37

8v
2 

 [
cs

.C
V

] 
 2

6 
M

ar
 2

02
1

https://github.com/heshuting555/TransReID
https://github.com/heshuting555/TransReID


efficient image Transformers (DeiT) [40] have shown
that pure transformers can be as effective as CNN-
based methods on feature extraction for image recognition.
With the introduction of multi-head attention modules
and the removal of convolution and downsampling
operators, transformer-based models are suitable to solve
the aforementioned problems in CNN-based ReID for
the following reasons. (1) The multi-head self-attention
captures long range dependencies and drives the model
to attend diverse human-body parts than CNN models
(e.g. thighs, shoulders, waist in Figure 1). (2) Without
downsampling operators, transformer can keep more
detailed information. For example, one can observe that
the difference on feature maps around backpacks (marked
by red boxes in Figure 2) can help the model easily
differentiate the two people. These advantages motivate us
to introduce pure transformers in the object ReID.

Despite its great advantages as discussed above,
transformers still need to be designed specifically for
object ReID to tackle the unique challenges, such as
the large variations (e.g. occlusions, diversity of poses,
camera perspective) in images. Substantial efforts have
been devoted to alleviating this challenge in CNN-based
methods. Among them, local part features [37, 44, 20, 49,
28] and side information (such as cameras and viewpoints)
[7, 61, 35, 30], have been proven to be essential and
effective to enhance the feature robustness. Learning
part/stripe aggregated features makes it robust against
occlusions and misalignments [50]. However, extending
the rigid stripe part methods from CNN-based methods to
pure transformer-based methods may damage long-range
dependencies due to global sequences splitting into several
isolated subsequences. In addition, taking side information
into consideration, such as camera and viewpoint-specific
information, an invariant feature space can be constructed
to diminish bias brought by side information variations.
However, the complex designs for side information built on
CNN, if directly applied to transformers, cannot make full
use of the inherent encoding capabilities of transformers.
As a result, specific designed modules are inevitable and
essential for a pure transformer to successfully handle these
challenges.

Therefore, we propose a new object ReID framework
dubbed TransReID to learn robust feature representations.
Firstly, by making several critical adaptations, we construct
a strong baseline framework based on a pure transformer.

Secondly, in order to expand long-range dependencies
and enhance feature robustness, we propose a jigsaw
patches module (JPM) by rearranging the patch embeddings
via shift and shuffle operations and re-grouping them for
further feature learning. The JPM is employed on the last
layer of the model to extract robust features in parallel
with the global branch which does not include this special

operation. Hence, the network tends to extract perturbation-
invariant and robust features with global context. Thirdly,
to further enhance the learning of robust features, a side
information embedding (SIE) is introduced. Instead of
the special and complex designs in CNN-based methods
for utilizing these non-visual clues, we propose a unified
framework that effectively incorporates non-visual clues
through learnable embeddings to alleviate the data bias
brought by cameras or viewpoints. Taking cameras for
example, the proposed SIE helps address the vast pairwise
similarity discrepancy between inter-camera and intra-
camera matching (see Figure 6). SIE can also be easily
extended to include any non-visual clues other than the ones
we have demonstrated.

To our best knowledge, we are the first to investigate the
application of pure transformers in the field of object ReID.
The contributions of the paper are summarised:

• We propose a strong baseline that exploits the pure
transformer for ReID tasks for the first time and
achieve comparable performance with CNN-based
frameworks.

• We design a jigsaw patches module (JPM),
consisting of shift and patch shuffle operation,
which facilitates perturbation-invariant and robust
feature representation of objects.

• We introduce a side information embeddings (SIE) that
encodes side information by learnable embeddings,
and is shown to effectively mitigate the bias of learned
features.

• The final framework TransReID achieves state-of-
the-art performance on both person and vehicle
ReID benchmarks including MSMT17[46],
Market-1501[55], DukeMTMC-reID[33], Occluded-
Duke[31], VeRi-776[24] and VehicleID[23].

2. Related Work

2.1. Object ReID

The studies of object ReID have been mainly focused on
person ReID and vehicle ReID, with most state-of-the-art
methods based on the CNN structure. A popular pipeline
for object ReID is to design suitable loss functions to train a
CNN backbone (e.g. ResNet [14]), which is used to extract
features of images. The cross-entropy loss (ID loss) [56]
and triplet loss [22] are most widely used in the deep ReID.
Luo et al. [27] proposed the BNNeck to better combine
ID loss and triplet loss. Sun et al. [36] proposed a unified
perspective for ID loss and triplet loss.

Fine-grained Features. Fine-grained features have been
learned to aggregate information from different part/region.
The fine-grained parts are either automatically generated by
roughly horizontal stripes or by semantic parsing. Methods
like PCB [37], MGN [44], AlignedReID++ [28], SAN



[32], etc., divide an image into several stripes and extract
local features for each stripe. Using parsing or keypoint
estimation to align different parts or two objects has also
been proven effective for both person and vehicle ReID
[25, 30, 47, 31].

Side Information. For images captured in a cross-
camera system, large variations exist in terms of pose,
orientation, illumination, resolution, etc. caused by different
camera setup and object viewpoints. Some works [61, 7]
use side information such as camera ID or viewpoint
information to learn invariant features. For example,
Camera-based Batch Normalization (CBN) [61] forces
the image data from different cameras to be projected
onto the same subspace, so that the distribution gap
between inter- and intra- camera pairs is largely diminished.
Viewpoint/Orientation-invariant feature learning [7, 60] is
also important for both person and vehicle ReID.

2.2. Pure Transformer in Vision

The Transformer model is proposed in [41] to handle
sequential data in the field of natural language processing
(NLP). Many studies also show its effectiveness for
computer-vision tasks. Han et al. [11] and Salman et
al. [18] have surveyed the application of the Transformer
in the field of computer vision.

Pure Transformer models are becoming more and more
popular. For example, Image Processing Transformer
(IPT) [3] takes advantage of transformers by using
large scale pre-training and achieves the state-of-the-art
performance on several image processing tasks like super-
resolution, denoising and de-raining. ViT [8] is proposed
recently which applies a pure transformer directly to
sequences of image patches. However, ViT requires a
large-scale dataset to pretrain the model. To overcome
this shortcoming, Touvron et al. [40] propose a framework
called DeiT which introduces a teacher-student strategy
specific for transformers to speed up ViT training without
the requirement of large-scale pretraining data.

3. Methodology
Our object ReID framework is based on transformer-

based image classification, but with several critical
improvements to capture robust feature (Sec. 3.1). To
further boost the robust feature learning in the context
of transformer, a jigsaw patch module (JPM) and a side
information embeddings (SIE) are carefully devised in
Sec. 3.2 and Sec. 3.3. The two modules are jointly trained
in an end-to-end manner and shown in Figure 4.

3.1. Transformer-based strong baseline

We build a transformer-based strong baseline for object
ReID, following the general strong pipeline for object
ReID [27, 44]. Our method has two main stages, i.e., feature
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Figure 3: Transformer-based strong baseline framework (a non-
overlapping partition is shown). Output [cls] token marked with ∗
is served as the global feature f . Inspired by [27], we introduce
the BNNeck after the f .

extraction and supervision learning. As shown in Figure 3.
Given an image x ∈ RH×W×C , where H , W , C denote
its height, width, and number of channels, respectively, we
split it into N fixed-sized patches {xip|i = 1, 2, · · · , N}.
An extra learnable [cls] embedding token denoted as xcls
is prepended to the input sequences. The output [cls]
token serves as a global feature representation f . Spatial
information is incorporated by adding learnable position
embeddings. Then, the input sequences fed into transformer
layers can be expressed as:

Z0 = [xcls; F(x1p); F(x2p); · · · ; F(xNp )] + P, (1)

where Z0 represents input sequence embeddings and
P ∈ R(N+1)×D is position embeddings. F is a
linear projection mapping the patches to D dimensions.
Moreover, l transformer layers are employed to learn
feature representations. The limited receptive field
problem of CNN-based methods is addressed, because all
transformer layers have a global receptive field. There
are also no downsampling operations, so the detailed
information is preserved.

Overlapping Patches. Pure transformer-based models
(e.g. ViT, DeiT) split the images into non-overlapping
patches, losing local neighboring structures around the
patches. Instead, we use a sliding window to generate
patches with overlapping pixels. Denoting the step size as
S, size of the patch as P (e.g. 16) , then the shape of the
area where two adjacent patches overlap is (P − S) × P .
An input image with a resolution H ×W will be split into
N patches.

N = NH ×NW = bH + S − P
S

c × bW + S − P
S

c (2)
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Figure 4: Framework of proposed TransReID. Side Information Embedding (light blue) encodes non-visual information such as camera
or viewpoint into embedding representations. It is input into transformer encoder together with patch embedding and position embedding.
Last layer includes two independent transformer layers. One is standard to encode global feature. The other contains the Jigsaw Patch
Module (JPM) which shuffles all patches and regroups them into several groups. All these groups are input into a shared transformer layer
to learn local features. Both global feature and local features contribute to ReID loss.

where b·c is the floor function and S is set smaller than
P . NH and NW represent the numbers of splitting patches
in height and width, respectively. The smaller S is, the
more patches the image will be split into. Intuitively, more
patches usually bring better performance with the cost of
more computations.

Position Embeddings. As the image resolution for
ReID tasks may be different from the original one in
image classification, the position embedding pretrained
on ImageNet cannot be directly loaded here. Therefore,
a bilinear 2D interpolation is introduced to help handle
any given input resolution. Similar to ViT, the position
embedding is also learnable.

Supervision Learning. We optimize the network by
constructing ID loss and triplet loss for global features.
The ID loss LID is the cross-entropy loss without label
smoothing. For a triplet set {a, p, n}, the triplet loss LT

with soft-margin is shown as follows:

LT = log
[
1 + exp

(
‖fa − fp‖22 − ‖fa − fn‖

2
2

)]
(3)

3.2. Jigsaw Patch Module

Although transformer-based strong baseline can
achieve impressive performance in object ReID, it
utilizes information from the entire image for object
ReID. However, due to challenges like occlusions and
misalignments, we may only have partial observation of an
object. Learning fine-grained local features such as striped

features has been widely used for CNN-based methods to
tackle these challenges.

Suppose the hidden features input to the last layer
are denoted as Zl−1 = [z0l−1; z

1
l−1, z

2
l−1, ..., z

N
l−1]. To

learn fine-grained local features, a straightforward solution
is splitting [z1l−1, z

2
l−1, ..., z

N
l−1] into k groups in order

which concatenate the shared token z0l−1 and then feed k
feature groups into a shared transformer layer to learn k
local features denoted as {f jl |j = 1, 2, · · · , k} and f jl
is the output token of j-th group. But it may not take
full advantage of global dependencies for the transformer
because each local segment only considers a part of the
continuous patch embeddings.

To address the aforementioned issues, we propose a
jigsaw patch module (JPM) to shuffle the patch embeddings
and then re-group them into different parts, each of which
contains several random patch embeddings of an entire
image. In addition, extra perturbation introduced in training
also helps improve the robustness of object ReID model.
Inspired by ShuffleNet [53], the patch embeddings are
shuffled via a shift operation and a patch shuffle operation.
The sequences embeddings Zl−1 are shuffled as follow:

• Step1: The shift operation. The first m patches
(except for [cls] token) are moved to the end, i.e.
[z1l−1, z

2
l−1, ..., z

N
l−1] is shifted in m steps to become

[zm+1
l−1 , zm+2

l−1 , ..., zNl−1, z
1
l−1, z

2
l−1, ..., z

m
l−1].

• Step2: The patch shuffle operation. The shifted



patches are further shuffled by the patch shuffle
operation with k groups. The hidden features become
[zx1l−1, z

x2
l−1, ..., z

xN

l−1], xi ∈ [1, N ].

With the shift and shuffle operation, the local feature
f jl can cover patches from different body or vehicle
parts which means that the local features hold global
discriminative capability.

As shown in Figure 4, paralleling with the jigsaw patch,
another global branch which is a standard transformer
encodes Zl−1 into Zl = [fg; z

1
l , z

2
l , ..., z

N
l ], where fg

is served as the global feature of CNN-based methods.
Finally, the global feature fg and k local features are trained
with LID and LT . The overall loss is computed as follow:

L = LID(fg)+LT (fg)+
1

k

k∑
j=1

(LID(f jl )+LT (f
j
l )) (4)

During inference, we concatenate the global feature
and local features [fg, f

1
l , f

2
l , ..., f

k
l ] as the final feature

representation. Using fg only is a variation with lower
computational cost and slight performance degradation.

3.3. Side Information Embeddings

After obtaining fine-grained feature representations,
features are still susceptible to camera or viewpoint
variations. In other words, the trained model may
easily fail to distinguish the same object from different
perspectives due to scene-bias. Therefore, we propose a
Side Information Embedding (SIE) to incorporate the non-
visual information, such as cameras or viewpoints, into
embedding representations to learn invariant features.

Inspired by position embeddings which encode
positional information adopting learnable embeddings, we
plug learnable 1-D embeddings to retain side information.
Particularly, as illustrated in Figure 4, SIE is inserted into
the transformer encoder together with patch embeddings
and position embeddings. In specific, suppose there
are NC camera IDs in total, we initialize learnable side
information embeddings as SC ∈ RNC×D. If camera ID of
an image is r, then its camera embeddings can be denoted
as SC [r]. Different from the position embeddings which
vary between patches, camera embeddings SC [r] are the
same for all patches of an image. In addition, if viewpoint
of the object is available, either by a viewpoint estimation
algorithm or human annotations, we can also encode the
viewpoint label q as SV [q] for all patches of an image
where SV ∈ RNV ×D and NV represents the number of
viewpoint IDs.

Now comes the problem about how to integrate two
different types of information. A trivial solution might be
directly adding the two embeddings together like SC [r] +
SV [q]. However, it might make the two embeddings
counteract each other due to redundant or adversarial

information. We propose to encode the camera and
viewpoint jointly as S(C,V ) ∈ R(NC×NV )×D.

Finally, the input sequences with camera ID r and
viewpoint ID q are fed into transformer layers as follows:

Z
′

0 = Z0 + λS(C,V )[r ∗Nk + q], (5)

where Z0 is the raw input sequences in Eq. 2 and λ is
a hyperparameter to balance the weight of SIE. As the
position embeddings are different for each patch but the
same across different images, and S(C,V ) are the same
for each patch but may have different values for different
images. Transformer layers are able to encode embeddings
with different distribution properties which can then be
added directly.

Here we have only demonstrate the usage of SIE
with camera and viewpoint information which are
both categorical variables. In practice, SIE can be
further extended to encode more kinds of information,
including both categorical and numerical variables. In
our experiments on different benchmarks, camera and
viewpoint information is included wherever available.

4. Experiments
4.1. Datasets

We evaluate our proposed method on four person
ReID datasets, Market-1501 [55], DukeMTMC-reID [33],
MSMT17 [46], Occluded-Duke [31], and two vehicle ReID
datasets, VeRi-776 [24] and VehicleID [23]. It is noted that,
unlike other datasets, images in Occluded-Duke are selected
from DukeMTMC-reID and the training/query/gallery set
contains 9%/ 100%/ 10% occluded images respectively.
All datasets except VehicleID provide camera ID for each
image, while only VeRi-776 and VehicleID dataset provide
viewpoint labels for each image. The details of these
datasets are summarized in Table 1.

Dataset Object #ID #image #cam #view
MSMT17 Person 4,101 126,441 15 -
Market-1501 Person 1,501 32,668 6 -
DukeMTMC-reID Person 1,404 36,441 8 -
Occluded-Duke Person 1,404 36,441 8 -
VeRi-776 Vehicle 776 49,357 20 8
VehicleID Vehicle 26,328 221,567 - 2

Table 1: Statistics of datasets used in the paper.

4.2. Implementation

Unless otherwise specified, all person images are resized
to 256×128 and all vehicle images are resized to 256×256.
The training images are augmented with random horizontal
flipping, padding, random cropping and random erasing
[57]. The batch size is set to 64 with 4 images per ID.
SGD optimizer is employed with a momentum of 0.9 and



Inference MSMT17 VeRi-776
Backbone Time mAP R1 mAP R1
ResNet50 1x 51.3 75.3 76.4 95.2

ResNet101 1.48x 53.8 77.0 76.9 95.2
ResNet152 1.96x 55.6 78.4 77.1 95.9
ResNeSt50 1.86x 61.2 82.0 77.6 96.2

ResNeSt200 3.12x 63.5 83.5 77.9 96.4
DeiT-S/16 0.97x 55.2 76.3 76.3 95.5
DeiT-B/16 1.79x 61.4 81.9 78.4 95.9
ViT-B/16 1.79x 61.0 81.8 78.2 96.5

ViT-B/16s=14 2.14x 63.7 82.7 78.6 96.4
ViT-B/16s=12 2.81x 64.4 83.5 79.0 96.5

Table 2: Comparison of different backbones. Inference time is
represented by comparing each model to ResNet50 as only relative
comparison is necessary. All the experiments were carried out on
the same machine for fair comparison. ViT-B/16 is regarded as
the baseline model and abbreviated as Baseline in the rest of
this paper.

the weight decay of 1e-4. The learning rate is initialized
as 0.008 with cosine learning rate decay. Unless otherwise
specified, we set m = 5, k = 4 and m = 8, k = 4 for
person and vehicle ReID datasets, respectively.

All the experiments are performed with one Nvidia Tesla
V100 GPU using the PyTorch toolbox 1 with FP16 training
. The initial weights of ViT are pre-trained on ImageNet-
21K and then finetuned on ImageNet-1K, while the initial
weights of DeiT are trained only on ImageNet-1K.

Evaluation Protocols. Following conventions in the
ReID community, we evaluate all methods with Cumulative
Matching Characteristic (CMC) curves and the mean
Average Precision (mAP).

4.3. Results of Transform-based Baseline

In this section, we compare CNN-based and transformer-
based backbones in Table 2. To show the trade-off between
computation and performance, several different backbones
are chosen. DeiT-small, DeiT-Base, ViT-Base denoted
as DeiT-S, DeiT-B, ViT-B, respectively. ViT-B/16s=14

means ViT-Base with patch size 16 and step size S =
14 in overlapping patches setting. For a comprehensive
comparison, inference time consumption of each backbone
is included as well.

We can observe a large gap in model capacity between
the ResNet series and DeiT/ViT. DeiT-S/16 is a little bit
better in performance and speed compared to ResNet50.
DeiT-B/16 and ViT-B/16 achieve similar performance with
ResNeSt50 [51] backbone, with less inference time than
ResNeSt50 (1.79x vs 1.86x). When we reduce the step size
of the sliding window S, the performance of the Baseline
can be improved while the inference time is also increasing.
ViT-B/16s=12 is faster than ResNeSt200 (2.81x vs 3.12x)

1http://pytorch.org

MSMT17 VeRi-776
Backbone #groups mAP R1 mAP R1
Baseline - 61.0 81.8 78.2 96.5
+JPM 1 62.9 82.5 78.6 97.0
+JPM 2 62.8 82.1 79.1 96.4
+JPM 4 63.6 82.5 79.2 96.8
+JPM w/o rearrange 4 63.1 82.4 79.0 96.7
+JPM w/o local 4 63.5 82.5 79.1 96.6

Table 3: The ablation study of jigsaw patch module. ‘w/o
rearrange’ means the patch features are split into parts without
rearrange including shift and shuffle operation. ‘w/o local’
means we evaluate the global feature without concatenating local
features.

(a) (b) (c) (d) (a) (b) (c) (d) (a) (b) (c) (d)

Figure 5: Grad-CAM visualization of attention maps. (a) Input
images, (b) Baseline, (c) JPM w/o rearrange, (d) JPM.

and performs slightly better than ResNeSt200 on ReID
benchmarks. Therefore, ViT-B/16s=12 achieves better
speed-accuracy trade-off than ResNeSt200. In addition,
we believe that DeiT/ViT still have lots of room for
improvement in terms of computational efficiency.

4.4. Ablation Study of JPM

The effectiveness of the proposed JPM module is
validated in Table 3. JPM provides +2.6% mAP and +1.0%
mAP improvements compared to baseline on MSMT17 and
VeRi-776, respectively. Increasing the number of groups
k can improve the performance while slightly increasing
inference time. In our experiment, k = 4 is a choice
to trade off speed and performance. Comparing JPM and
JPM w/o rearrange, we can observe that the shift and
shuffle operation helps the model learn more discriminative
features with +0.5% mAP and +0.2% mAP improvements
on MSMT17 and VeRi-776, respectively. It is also observed
that, if only the global feature fg is used in inference
stage (still trained with full JPM), the performance (denoted
as “w/o local”) is nearly comparable with the version of
full set of features, which suggests us to only use the
global feature as an efficient variation with lower storage
cost and computational cost in the inference stage. The
attention maps visualized in Figure 5 show that JPM with
the rearrange operation can help the model learn more
global context information and more discriminative parts,
which makes the model more robust to perturbations.



MSMT17 VeRi-776
Method Camera Viewpoint mAP R1 mAP R1
Baseline 61.0 81.8 78.2 96.5
+ SC [r]

√
62.4 81.9 78.7 97.1

+ SV [q]
√

- - 78.5 96.9
+ S(C,V )

√ √
- - 79.6 96.9

Table 4: Ablation study of SIE. Since the person ReID datasets
do not provide viewpoint annotations, viewpoint information can
only be encoded in VeRi-776.
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Figure 6: We visualize the distance distributions of different
camera pairs and viewpoint pairs on VeRi-776. (a) inter-camera
and intra-camera distance distribution. (b) inter-viewpoint and
intra-viewpoint distance distribution.
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Figure 7: Impact of the hyper-parameter λ.

4.5. Ablation Study of SIE

Performance Analysis. In Table 4, we evaluate the
effectiveness of the SIE on MSMT17 and VeRi-776.
MSMT17 does not provide viewpoint annotations, so the
results of SIE which only encode camera information are
shown for MSMT17. VeRi-776 not only have a camera
ID of each image, but is also annotated with 8 different
viewpoints according to vehicle orientation. Therefore, the
results are shown with SIE encoding various combinations
of camera ID and/or viewpoints information.

When SIE encodes only the camera IDs of images,
the model gains 1.4% mAP and 0.1% rank-1 accuracy
improvements on MSMT17. Similar conclusion can be
made on VeRi-776. Baseline obtains 78.5% mAP when SIE
encodes viewpoint information. The accuracy increases to
79.6% mAP when both camera IDs and viewpoint labels

are encoded at the same time. If the encoding is changed
to SC [r] + SV [q], which is sub-optimal as discussed in
Section 3.3, we can only achieve 78.3% mAP on VeRi-776.
Therefore, the proposed S(C,V ) is a better encoding manner.

Visualization of Distance Distribution. As shown
in Figure 6, the distribution gaps with cameras and
viewpoints variations are obvious in Figure 6a and
Figure 6b, respectively. When we introduce the SIE
module into Baseline, the distribution gaps between inter-
camera/viewpoint and intra-camera/viewpoint are reduced,
which shows that the SIE module weakens the negative
effect of the scene-bias caused by various cameras and
viewpoints.

Ablation Study of λ. We analyze the influence of
weight λ of the SIE module on the performance in Figure 7.
When λ = 0, Baseline achieves 61.0% mAP and 78.2%
mAP on MSMT17 and VeRi-776, respectively. With λ
increasing, the mAP is improved to 63.0% mAP (λ =
2.0 for MSMT17) and 79.9% mAP (λ = 2.5 for VeRi-
776), which means the SIE module now is beneficial for
learning invariant features. Continuing to increase λ, the
performance is degraded because the weights for feature
embedding and the position embedding are weakened.

4.6. Ablation Study of TransReID

Finally, we evaluate the benefits of introducing JPM and
SIE in Table 5. For the Baseline, JPM and SIE improve
the performance by +2.6%/+1.0% mAP and +1.4%/+1.4%
mAP on MSMT17/VeRi-776, respectively. With these
two modules used together, TransReID achieves 64.9%
(+3.9%) mAP and 80.6% (+2.4%) mAP on MSMT17 and
VeRi-776, respectively. The experimental results show the
effectiveness of our proposed JPM, SIE, and the overall
framework.

MSMT17 VeRi-776
Method JPM SIE mAP R1 mAP R1
Baseline × × 61.0 81.8 78.2 96.5√

× 63.6 82.5 79.2 96.8
×

√
62.4 81.9 79.6 96.9

TransReID
√ √

64.9 83.3 80.6 96.9

Table 5: The ablation study of TransReID.

4.7. Comparison with State-of-the-Art Methods

In Table 6, our TransReID is compared with state-of-
the-art methods on six benchmarks including person ReID,
occluded ReID and vehicle ReID.

Person ReID. On MSMT17 and DukeMTMC-reID,
TransReID∗ (DeiT-B/16) outperforms the previous state-of-
the-art methods by a large margin (+5.5%/+2.1% mAP). On
Market-1501, TransReID∗ (256×128) achieves comparable
performance with state-of-the-art methods especially on



MSMT17 Market1501 DukeMTMC Occluded-Duke VeRi-776 VehicleID
Backbone Method Size mAP R1 mAP R1 mAP R1 mAP R1 Method mAP R1 R1 R5

CNN

CBN c© [61] 256×128 42.9 72.8 77.3 91.3 67.3 82.5 - - PRReID[13] 72.5 93.3 72.6 88.6
OSNet [58] 256×128 52.9 78.7 84.9 94.8 73.5 88.6 - - SAN[32] 72.5 93.3 79.7 94.3
MGN [44] 384×128 52.1 76.9 86.9 95.7 78.4 88.7 - - UMTS [16] 75.9 95.8 80.9 87.0

RGA-SC [54] 256×128 57.5 80.3 88.4 96.1 - - - - VANet v© [7] 66.3 89.8 83.3 96.0
SAN [17] 256×128 55.7 79.2 88.0 96.1 75.7 87.9 - - SPAN v©[5] 68.9 94.0 - -
SCSN [6] 384×128 58.5 83.8 88.5 95.7 79.0 91.0 - - PGAN [52] 79.3 96.5 78.0 93.2

ABDNet [4] 384×128 60.8 82.3 88.3 95.6 78.6 89.0 - - PVEN v© [30] 79.5 95.6 84.7 97.0
PGFA [31] 256×128 - - 76.8 91.2 65.5 82.6 37.3 51.4 SAVER [19] 79.6 96.4 79.9 95.2

HOReID [43] 256×128 - - 84.9 94.2 75.6 86.9 43.8 55.1 CFVMNet [38] 77.1 95.3 81.4 94.1
ISP [59] 256×128 - - 88.6 95.3 80.0 89.6 52.3 62.8 GLAMOR[39] 80.3 96.5 78.6 93.6

DeiT-B/16

Baseline 256×128 61.4 81.9 86.6 94.4 78.9 89.3 53.1 60.6 Baseline 78.4 95.9 83.1 96.8
TransReID c© 256×128 63.9 82.7 88.0 94.7 81.2 90.1 55.6 62.8 TransReID v© 80.6 96.8 84.6 97.4
TransReID c© 384×128 65.5 83.5 88.1 94.9 81.3 90.2 - - TransReID b© 81.2 96.8 - -
TransReID∗ c© 256×128 66.2 84.3 88.4 95.0 81.9 91.1 58.1 66.4 TransReID∗ v© 81.4 96.8 85.2 97.6
TransReID∗ c© 384×128 66.3 84.5 88.5 95.1 82.1 91.1 - - TransReID∗ b© 82.3 97.1 - -

ViT-B/16

Baseline 256×128 61.0 81.8 86.8 94.7 79.3 88.8 53.1 60.5 Baseline 78.2 96.5 82.3 96.1
TransReID c© 256×128 64.9 83.3 88.2 95.0 80.6 89.6 55.7 64.2 TransReID v© 79.6 97.0 83.6 97.1
TransReID c© 384×128 66.6 84.6 88.8 95.0 81.8 90.4 - - TransReID b© 80.6 96.9 - -
TransReID∗ c© 256×128 67.4 85.3 88.9 95.2 82.0 90.7 59.2 66.4 TransReID∗ v© 80.5 96.8 85.2 97.5
TransReID∗ c© 384×128 69.4 86.2 89.5 95.2 82.6 90.7 - - TransReID∗ b© 82.0 97.1 - -

Table 6: Comparison with state-of-the-art methods. DukeMTMC denotes the DukeMTMC-reID benchmark. The star * in the superscript
means the backbone is with a sliding-window setting. Results are shown for person ReID datasets (left) and vehicle ReID datasets (right).
Only the small subset of VehicleID is used in this paper. c© and v© indicate the methods are using camera IDs and viewpoint labels,
respectively. b© means both are used. Viewpoint and camera information are used wherever available. Best results for previous methods
and best of our methods are labeled in bold.

mAP. Our method also shows superiority when compared
with methods which also integrate camera information like
CBN [61].

Occluded ReID. ISP implicitly uses human body
semantic information through iterative clustering and
HOReID introduces external pose models to align body
parts. TransReID (DeiT-B/16) achieves 55.6% mAP with a
large margin improvement (at least +3.3% mAP) compared
to aforementioned methods, without requiring any semantic
and pose information to align body parts, which shows
the ability of TransReID to generate robust feature
representations. Furthermore, TransReID∗ improves the
performance to 58.1% mAP with the help of overlapping
patches.

Vehicle ReID. On VeRi-776, TransReID∗ (DeiT-B/16)
reaches 82.3% mAP surpassing GLAMOR by 2.0% mAP.
When only using viewpoint annotations, TransReID∗

still outperforms VANet and SAVER on both VeRi-
776 and VehicleID. Our method achieves state-of-the-art
performance about 85.2% Rank-1 accuracy on VehicleID.

DeiT vs ViT vs CNN. TransReID∗ (DeiT-B/16) reaches
competitive performance with existing methods under
a fair comparison (ImageNet-1K pre-training). Extra
results of our methods with ViT-B/16 are also reported
in Table 6 for further comparison. DeiT-B/16 achieves
similar performance with ViT-B/16 for shorter image patch
sequences. When the number of input patches is increasing,
ViT-B/16 reaches better performance than DeiT-B/16,

which shows ImageNet-21K pre-training provides ViT-
B/16 better generalization capability. Although CNN-based
methods mainly report performance with the ResNet50
backbone, they may include multiple branches, attention
modules, semantic models, or other modules that increase
computational consumption. We have conducted a fair
comparison on inference speed between TransReID∗ and
MGN [44] on the same computing hardware. Compared
with MGN, TransReID* is 4.8% faster in speed. Therefore,
TransReID* can achieve more promising performance
under comparable computation to most of CNN-based
methods.

5. Conclusion
In this paper, we investigate a pure transformer

framework for the object ReID task, and propose two
novel modules, i.e., jigsaw patch module (JPM) and
side information embedding (SIE). The final framework
TransReID outperforms all other state-of-the-art methods
by a large margin on several popular person/vehicle ReID
datasets including MSMT17, Market-1501, DukeMTMC-
reID, Occluded-Duke, VeRi-776 and VehicleID. Based on
the promising results achieved by TransReID, we believe
the transformer has great potential to be further explored
for ReID tasks. Based on the rich experience gained from
CNN-based methods, it is in prospect that more efficient
transformer-based networks can be designed with better
representation power and less computational cost.
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Appendix

A. More Experimental Results
A.1. Study on Transformer-based Strong Baseline

A transformer-based strong baseline with a few critical
improvements has been introduced in Section 3.1 of the
main paper. In this section, hyper-parameters and the
settings for training such a baseline model will be analyzed
in detail. Ablation studies are shown in Table 7 for
performance on MSMT17 and Veri-776 with different
variations of the training settings.

Initialization and hyper-parameters. For our
experiments, we initialize the pure transformer with ViT or
DeiT ImageNet pre-trained weights and we initialize the
weights for the SIE with a truncated normal distribution
[12]. Compared with ViT, DeiT is more sensitive to hyper-
parameter settings. For the training of DeiT, we use a
learning rate of 0.05 on MSMT17 and a high random
erasing probability with 0.8 on each dataset to avoid
overfitting. Other hyper-parameters settings are the same
with ViT.

Optimizer. Transformers are sensitive to the choice of
the optimizer. Directly applying Adam optimizer with the
hyper-parameters commonly used in ReID community [27]
to transformer-based models will cause a significant drop in
performance. AdamW [26] is a commonly used optimizer
for training transformer-based models, with much better
performance compared with Adam. The best results are
actually achieved by SGD in our experiments.

Network Configuration. Position embeddings
incorporate crucial spatial information which provides a
significant boost in performance and is one of the key
ingredients of our proposed training procedure. Without
the position embeddings, the performance decreases by
38.6% mAP and 10.2% mAP on MSMT17 and VeRi-776,

respectively.
Introducing stochastic depth [15] can boost the mAP

performance by about 1%, and it has also been proved
to facilitate the convergence of transformer, especially for
those deep ones [9, 10]. Regarding other regularization
methods, adding either drop out or attention drop out will
result in performance drop. In our experiments, we set all
the probability of regularization methods as 0.1.

Loss Function. Different choices of loss functions have
been compared in the bottom section of Table 7. The soft
version of triplet loss provides 0.7% mAP improvement
on MSMT17 compared with the regular triplet loss.
Introducing label smoothing is harmful to performance,
even though it has been a widely adopted trick. Therefore,
the best combination for loss functions is soft triplet loss
and cross entropy loss without label smoothing.

A.2. More Ablation Studies of JPM and SIE

In the main paper, we have demonstrated the
effectiveness of using JPM and SIE based on the Baseline
(ViT-B/16). More results about JPM and SIE are shown
in Table 8 and Table 9 respectively, with the Baseline
ViT-B/16s=12, which is supposed to have better feature
representation ability and higher performance than ViT-
B/16. From Table 8, we observe that: (1) The proposed
JPM performs better with the rearrange schemes, indicating
that the shift and patch shuffle operation help the model
learn more discriminative features which are robust against
perturbations. (2) The JPM module provides a consistent
performance improvement over the baselines, no matter
the baseline is ViT-B/16 or the stronger ViT-B/16s=12,
demonstrating the effectiveness of the proposed JPM.

Similar conclusions can be made from Table 9. (1) We
make better use of the viewpoint and camera information so
that they are complementary with each other and combining
them leads to the best performance. (2) Introducing SIE

Method OPT PE SP DO ADO STL LS
MSMT17 VeRi-776

mAP R1 mAP R1
ViT-B/16 Baseline SGD 3 3 7 7 3 7 61.0 81.8 78.2 96.5

Optimizer
Adam 3 3 7 7 3 7 37.4 (-24.6) 60.2 (-21.6) 65.8 (-12.4) 91.7 (-4.8)

AdamW 3 3 7 7 3 7 60.6 (-0.4) 81.7 (-0.1) 78.0 (-0.2) 96.5 (-0.0)

Network
Configuration

SGD 7 3 7 7 3 7 22.4 (-38.6) 38.3 (-43.5) 68.0 (-10.2) 92.8 (-3.7)
SGD 3 7 7 7 3 7 59.9 (-1.1) 80.2 (-1.6) 77.2 (-1.0) 96.1 (-0.4)
SGD 3 3 3 7 3 7 60.0 (-1.0) 80.7 (-1.1) 78.0 (-0.2) 96.3 (-0.2)
SGD 3 3 7 3 3 7 58.0 (-3.0) 78.8 (-3.0) 74.3 (-3.9) 94.9 (-1.6)

Loss Function
SGD 3 3 7 7 7 7 60.3 (-0.7) 81.3 (-0.5) 77.5 (-0.7) 95.6 (-0.9)
SGD 3 3 7 7 3 3 59.8 (-1.2) 80.4 (-1.4) 77.4 (-0.8) 96.5 (-0.0)

Table 7: Ablation study about training settings on MSMT17 and VeRi-776. The first row corresponds to the default configuration employed
by our transformer-based strong baseline (ViT-B/16 as default backbones). The symbols 3 and 7 indicate that the corresponding setting
is included or excluded, respectively. mAP(%) and R1(%) accuracy scores are reported. The abbreviations OPT, PE, SP, DO, ADO, STL,
LS denote Optimizer, Position Embedding, Stochastic Depth [15], Drop Out, Attention Drop Out, Soft Triplet Loss, Label Smoothing,
respectively.



MSMT17 VeRi-776
Backbone #groups mAP R1 mAP R1
Baseline (ViT-B/16) - 61.0 81.8 78.2 96.5
+JPM 1 62.9 82.5 78.6 97.0
+JPM 2 62.8 82.1 79.1 96.4
+JPM 4 63.6 82.5 79.2 96.8
+JPM w/o rearrange 4 63.1 82.4 79.0 96.7
+JPM w/o local 4 63.5 82.5 79.1 96.6
Baseline (ViT-B/16s=12) - 64.4 83.5 79.0 96.5
+JPM 4 66.5 84.8 80.0 97.0
+JPM w/o rearrange 4 66.1 84.5 79.6 96.7
+JPM w/o local 4 66.3 84.5 79.8 96.8

Table 8: Detailed ablation study of jigsaw patch module
(JPM). ‘w/o rearrange’ means the patch sequences are split into
subsequences without rearrangement. ‘w/o local’ means we
evaluate the global feature without concatenating local features.

MSMT17 VeRi-776
Method Camera View mAP R1 mAP R1

Baseline
(ViT-B/16)

7 7 61.0 81.8 78.2 96.5
3 7 62.4 81.9 78.7 97.1
7 3 - - 78.5 96.9
3 3 - - 79.6 96.9

Baseline
(ViT-B/16s=12)

7 7 64.4 83.5 79.0 96.5
3 7 65.9 84.1 79.4 96.4
7 3 - - 79.3 97.0
3 3 - - 80.3 96.9

Table 9: Detailed ablation study of side information embeddings
(SIE). Experiments of viewpoint information are only conducted
on VeRi-776 as the person ReID datasets do not provide viewpoint
annotations. The symbols 3 and 7 indicate that the corresponding
information is included or excluded.

provides consistent improvement over the baselines of
either ViT-B/16 or ViT-B/16s=12.

B. Analysis on Rearranging Patches in JPM

Although transformers can capture the global
information in the image very well, a patch token still
has a strong correlation with the corresponding patch.
ViT-FRCNN [1] shows that the output embeddings of
the last layer can be reshaped as a spatial feature map
that includes location information. In other words, if we
directly divide the original patch embeddings into k parts,
each part may only consider a part of the continuous patch
embeddings. Therefore, to better capture the long-range
dependencies, we rearrange the patch embeddings and then
re-group them into different parts, each of which contains
several random patch embeddings of an entire image. In
this way, the JPM module help to learn robust features
with improved discrimination ability and more diversified
coverage.

To verify the above point, we visualize the learned
attention of local features [f1l , f

2
l , ..., f

k
l ] (k = 4 in our

cases) by JPM module in Figure 8. Brighter region means

Part 1 Part 2 Part 3 Part 4 Part 1 Part 2 Part 3 Part 4

(b) w/o rearrange(a) Original (c) w/ rearrange

Figure 8: Visualization of the learned attention masks for local
features by JPM module. Higher weight results in higher
brightness of the region. Note that we visualize the learned
attention weights which are averaged among attention heads in the
last layer. Faces in the images are masked for anonymization.

higher corresponding weights. Several observations can be
made from Figure 8: (1) The attention learned by the “JPM
w/o rearrange” tends to focus on limited receptive fields
(i.e. the range of the corresponding patch sequences) due
to global sequences being split into several isolated sub-
sequences. For example, “Part 1” mainly pays attention
to the head of a person, and “Part 4” is mainly focused
around the bottom area. (2) In contrast, “JPM w/ rearrange”
is able to capture long-range dependencies and each part
has attention responses across the whole image because it
is forced to extend its scope to the whole image through the
rearranging operation. (3) According to the superior ReID
performance and the intuitive visualization of rearranging
effect, JPM is proved to not only capture more details at
finer granularities but also learn robust and discriminative
representations in the global context.

C. More Visualization of Attention Maps
In the main paper, we use Grad-CAM to visualize the

gradient responses of our schemes, CNN-based methods,
and CNN+attention methods. Following the similar setup,
Figure 9 shows more visualization results, with the similar
conclusion that transformer-based methods capture global
context information and more discriminative parts, which
are further enhanced in our proposed TransReID for better
performance.



(a) (b) (c) (d) (e) (f) (a) (b) (c) (d) (e) (f)

Figure 9: Grad-CAM [34] visualization of attention maps. (a) Original images, (b) CNN-based methods, (c) CNN+Attention methods, (d)
Transformer-based baseline, (e) TransReID w/o rearrange, (f) TransReID. Faces in the images are masked for anonymization.


