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Figure 1: Our Semantic Point Generation (SPG) recovers the foreground regions by generating semantic points (red). Com-
bined with the original cloud, these semantic points can be directly used by modern LiDAR-based detectors and help improve
the detection results (green boxes).

Abstract

In autonomous driving, a LiDAR-based object detector
should perform reliably at different geographic locations
and under various weather conditions. While recent 3D de-
tection research focuses on improving performance within
a single domain, our study reveals that the performance of
modern detectors can drop drastically cross-domain. In
this paper, we investigate unsupervised domain adapta-
tion (UDA) for LiDAR-based 3D object detection. On the
Waymo Domain Adaptation [54] dataset, we identify the de-
teriorating point cloud quality as the root cause of the per-
formance drop. To address this issue, we present Semantic
Point Generation (SPG), a general approach to enhance the
reliability of LiDAR detectors against domain shifts. Specif-
ically, SPG generates semantic points at the predicted fore-
ground regions and faithfully recovers missing parts of the
foreground objects, which are caused by phenomena such
as occlusions, low reflectance or weather interference. By
merging the semantic points with the original points, we ob-
tain an augmented point cloud, which can be directly con-

†Work done during internship at Waymo LLC.

sumed by modern LiDAR-based detectors. To validate the
wide applicability of SPG, we experiment with two repre-
sentative detectors, PointPillars [25] and PV-RCNN [49].
On the UDA task, SPG significantly improves both detectors
across all object categories of interest and at all difficulty
levels. SPG can also benefit object detection in the original
domain. On the Waymo Open Dataset [54] and KITTI [18],
SPG improves 3D detection results of these two methods
across all categories. Combined with PV-RCNN [49], SPG
achieves state-of-the-art 3D detection results on KITTI.

1. Introduction
A robust autonomous driving system requires its

LiDAR-based detector to reliably handle different environ-
mental conditions, e.g., geographic locations and weather
conditions. While 3D detection has received increasing in-
terest in recent years, most existing works [79, 7, 10, 11, 16,
23, 25, 26, 27, 29, 30, 36, 41, 42, 49, 50, 51, 53, 63, 64, 65,
67, 68, 62, 78] have focused on the performance in a single
domain, where training and test data are captured in simi-
lar conditions. It is still an open question how to generalize
a 3D detector to different domains, where the environment
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Dataset
Rainy
frames

Avg. number
of missing

points per frame

Avg. number
of points

per vehicle

3D L1
AP

OD Val 0.5 % 23.0K 306.2 56.54
Kirk Dry 0.0 % 25.1K 303.6 55.98
Kirk Val 100.0% 42.8K 222.3 34.74

Table 1: The statistics of OD and Kirk. Each frame contains
at most 163.8K points. Kirk Dry is formed by frames with
dry weather in Kirk training set.

(a) OD RGB Image (b) Kirk RGB Image

(c) OD Range Image (d) Kirk Range Image

Figure 2: Examples of RGB and range image (intensity chan-
nel) in OD validation set and Kirk validation set. The dark
regions in the range images indicate missed LiDAR returns.
The regions of “missing points” are irregular in shape.

varies significantly. In this paper, we address the domain
gap caused by the deteriorating point cloud quality and aim
to improve 3D object detection in the setting of unsuper-
vised domain adaptation (UDA). We use the Waymo Do-
main Adaptation dataset [54] to analyze the domain gap and
introduce semantic point generation (SPG), a general ap-
proach to enhance the reliability of LiDAR detectors against
domain shift. SPG is able to improve detection quality in
both the target domain and the source domain and can be
naturally combined with modern LiDAR-based detectors.

1.1. Understanding the Domain Gap

Waymo Open Dataset (OD) is mainly collected in Cal-
ifornia and Arizona, and Waymo Kirkland Dataset (Kirk)
[54] is collected in Kirkland. We consider OD as the source
domain and Kirk as the target domain. To understand the
possible domain gap, we take a PointPillars [25] model
trained on the OD training set and compare its 3D vehicle
detection performance on OD validation set and those on
Kirk validation set. We observe a drastic performance drop
of 21.8 points in 3D average precision (AP) (see Table 1).

We first confirm that there is no significant difference in
object size between two domains. Then by investigating
the meta data in the datasets, we find that only 0.5% of Li-
DAR frames in OD are collected under rainy weather, but
almost all frames in Kirk share the rainy weather attribute.
To rule out other factors, we extract all dry weather frames
in Kirk training set and form a “Kirk Dry” dataset. Because
the the rain drop changes the surface property of objects,

there are twice amount of missing LiDAR points per frame
in Kirk validation set than in OD or Kirk Dry (see Table 1).
As a result, vehicles in Kirk receive around 27% fewer Li-
DAR point observations than those in OD (see statistics and
more details in the supplemental). In Figure 2, we visualize
two range images from OD and Kirk, respectively. We can
observe that in the rainy weather, a significant number of
points are missing and the distribution of missing points is
more irregular compared to the dry weather.

To conclude, the major domain gap between OD and
Kirk is the deteriorating point cloud quality, which is caused
by the rainy weather condition. In the target domain, we
name this phenomenon as the “missing point” problem.

1.2. Previous Methods to Address the Domain Gap

Multiple studies propose to align the features across do-
mains. Most of them focus on 2D tasks [37, 17, 56, 14] or
object-level 3D tasks [77, 45]. Applying feature alignment
[9, 20, 35] requires a redesign of the model or loss of a
detector. Our goal is to seek a general solution to benefit re-
cently reported LiDAR-based detectors[25, 49, 79, 50, 19].

Another direction is to apply transformations to the data
from one domain to match the data from another domain. A
naive approach is to randomly down-sample the point cloud
but this not only fails to satisfactorily simulate the pattern
of missing points (Figure 2d) but also hurts the performance
on the source domain. Another approach is to up-sample
the point cloud [73, 71, 28] in the target domain, which can
increase point density around observed regions. However,
those methods have a limited capability in recovering the
3D shape of very partially observed objects. Moreover, up-
sampling the entire point cloud will lead to a significantly
higher latency. A third approach is to leverage style transfer
techniques: [80, 40, 12, 20, 48, 21, 47] render point clouds
as 2D pseudo images and enforce the renderings from dif-
ferent domains to be resemblant in style. However, these
methods introduce an information bottleneck during raster-
ization [79] and they are not applicable to modern point-
based 3D detectors [49].

1.3. SPG for Closing the Domain Gap

The “missing point” problem deteriorates the point cloud
quality and reduces the number of point observations, thus
undermining the detection performance. To address this is-
sue, we propose Semantic Point Generation (SPG). Our ap-
proach aims to learn the semantic information of the point
cloud and performs foreground region prediction to identify
voxels that are inside foreground objects. Based on the pre-
dicted foreground voxels, SPG generates points to recover
the foreground regions. Since these points are discrimina-
tively generated at foreground objects, we denote them by
semantic points. These semantic points are merged with
the original points into an augmented point cloud, which is



then fed to a 3D detector.
The contributions of this paper are two-fold:

1. We present an in-depth analysis of unsupervised domain
adaptation (UDA) for LiDAR 3D detectors across differ-
ent geographic locations and weather conditions. Our study
reveals that the rainy weather can severely deteriorate the
quality of LiDAR point clouds and lead to drastic perfor-
mance drop for modern detectors.
2. We propose semantic point generation (SPG). To our best
knowledge, it is the first learning-based model that targets
UDA for point cloud 3D detection. Specifically, SPG has
the following merits:
• SPG can generate semantic points that faithfully recover

the foreground regions suffering from the “missing point”
problem. SPG can significantly improve performance
over poor-quality point clouds in the target domain while
also benefiting source domain, for representative 3D de-
tectors, including PointPillars [25] and PV-RCNN [49].

• SPG also improves the performance for the general 3D
object detection task. We verify its effectiveness on
KITTI [18] for the aforementioned 3D detectors.

• SPG is a general approach and can be easily combined
with modern off-the-shelf LiDAR-based detectors.

• Our approach is light-weight and efficient. Introducing
less than 6% additional points, SPG only adds a marginal
complexity to a 3D detector.

2. Related Work
2.1. Unsupervised Domain Adaptation

Unsupervised domain adaptation (UDA) aims to gener-
alize a model to a novel (target) domain by using label infor-
mation only from the source domain. The two domains are
generally related, but there exists a distribution shift (do-
main gap). Most methods focus on learning aligned fea-
ture representations across domains. To reach this goal,
[2] proposes Maximum Mean Discrepancy (MMD) while
[38] proposes Transfer Component Analysis (TCA). [33]
designs a Joint Distribution Adaptation to close the distribu-
tion shift while [32, 34] utilize a shared Hilbert space. With-
out using explicit distance measures, deep learning models
[17, 56, 14, 44, 46] use adversarial training to get indistin-
guishable features between domains.

Unsupervised Domain Adaptation for 2D Detection
The object detection task is sensitive to local geometric fea-
tures. [9, 20] hierarchically align the features between do-
mains. Most of these works focus on UDA for 2D detection.
With the current advances of unpaired style transfer meth-
ods [40, 80], studies such as [48, 21] translate the image
from source domain to target domain or vice versa.

Unsupervised Domain Adaptation for 3D Tasks Most
of the UDA methods focus on 2D tasks, only a few stud-

ies explore the UDA in 3D. [77, 45] align the global and
local features for object-level tasks. To reduce the spar-
sity, [59] projects the point cloud to 2D view, while [47]
projects the point cloud to birds-eye view (BEV). [15] cre-
ates a car model set and adapts their features to the detection
object features. However, this study targets general car 3D
detection on a single point cloud domain. [57] is the first
published study targeting UDA for 3D LiDAR detection.
They identify the vehicle size as the domain gap between
KITTI[18] and other datasets. So they resize the vehicles in
the data. In contrast, we identify the point cloud quality as
the major domain gap between Waymo’s two datasets[54].
We use a learning-based approach to close the domain gap.

2.2. Point Cloud Transformation

One way to improve point cloud quality is to suitably
transform the point cloud. Studies of point cloud up-
sampling [73, 71, 28] can transfer a low density point cloud
to a high density one. However, they need high density
point cloud ground truth during training. These networks
can densify the point cloud in the observed regions. But
in our case, we also need to recover regions with no point
observation, caused by “missing points”.

Point cloud completion networks [74, 6, 66, 61] aim to
complete the point cloud. Specialized in object-level com-
pletion, these models assume a single object has been man-
ually located and the input only consists of the points on
this object. Therefore, these models do not fit our purpose
of object detection. Point cloud style transfer models [4, 3]
can transfer the color theme and the object-level geometric
style for the point cloud. However, these models do not fo-
cus on preserving local details with high-fidelity. Therefore,
their transformation cannot directly help 3D detection.

3. Semantic Point Generation
In the input point cloud PCraw = {p1, p2, ..., pN} ∈

R3+F , each point has three channels of xyz and F prop-
erties (e.g., intensity, elongation). Figure 3 illustrates the
SPG-aided 3D detection pipeline. SPG takes raw point
cloud PCraw as input and generates a set of semantic points
in the predicted foreground regions. Then, these semantic
points are combined with the original point cloud into an
augmented point cloud PCaug , which is fed into a point
cloud detector to obtain object detection results.

As shown in Figure 4, SPG voxelizes PCraw into an
evenly spaced 3D voxel grid, and learns the point cloud se-
mantics for these voxels. For each voxel, the network pre-
dicts the probability confidence P̃ f of it being a foreground
voxel (contained in a foreground object bounding box). In
each foreground voxel, the network generates a semantic
point s̃p with point features ψ̃ = [χ̃, f̃ ]. χ̃ ∈ R3 is the xyz
coordinate of s̃p and f̃ ∈ RF is the point properties.

To faithfully recover the foreground regions of the ob-
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Figure 3: Illustration of SPG-aided 3D detection pipeline. SPG voxelizes the entire point cloud and generates prediction for
each voxel (both occupied and empty) within the generation areas. After applying a probability thresholding, we take the top
voxels with highest foreground probability and add a semantic point (red) at the predicted location in each of these voxels.
These points are merged with the original point cloud and fed into the selected 3D point cloud detector.

served objects, we define a generation area. Only voxels
occupied or neighbored by the observed points are consid-
ered within the generation area. We also filter out seman-
tic points with P̃ f less than Pthresh, then take K semantic
points {s̃p1, s̃p2, ..., s̃pK} with the highest P̃ f and merge
them with the original point cloud PCraw to get PCaug . In
practice, we use Pthresh = 0.5.

To enable SPG to be directly used by modern LiDAR-
based detectors, we encode the augmented point cloud
PCaug as {p̂1, p̂2, ..., p̂N , s̃p1, s̃p2, ..., s̃pK} ∈ R3+F+1.
Here we add another property channel to each point, indi-
cating the confidence in foreground prediction: P̃ f is used
for the semantic points, and 1.0 for the original raw points.

3.1. Training Targets

To train SPG, we need to create two supervisions: 1)
yf , the class label if a voxel (either occupied or empty) is a
foreground voxel, which supervises P̃ f ; 2) ψ ∈ R3+F , the
regression target for semantic point features ψ̃.

As visualized in Figure 4, we mark a point as a fore-
ground point if it is inside an object bounding box. Vox-
els contained in a foreground bounding box are marked as
foreground voxels V f . For voxel vi, we assign yfi = 1 if
vi ∈ V f and yfi = 0 otherwise. If vi is an occupied fore-
ground voxel, we set ψi = [χ̄i, f̄i] as the regression target,
where χ̄i ∈ R3 is the centroid (xyz) of all foreground points
in vi while f̄i ∈ RF is the mean of their point properties
(e.g. intensity, elongation).

3.2. Model Structure

The lower part of Figure 4 illustrates the network archi-
tecture. SPG uses a light-weight encoder-decoder network
[79, 25], which is composed of three modules:
1) The Voxel Feature Encoding module [79] aggregates
points inside each voxel by using several MLPs. Similar
to [25, 49], these voxel features are later stacked into pillars
and projected onto a birds-eye view feature space;
2) The Information Propagation module applies 2D convo-
lutions on the pillar features. As shown in Figure 4, the

semantic information in the occupied pillars (dark green) is
populated into the neighboring empty pillars (light green),
which enables SPG to recover the foreground regions in the
empty space.
3. The Point Generation module maps the pillar features
to the corresponding voxels. For each voxel vi in the gen-
eration area, the module creates a semantic point s̃pi with
encoding [χ̃i, f̃i, P̃

f
i ], in which χ̃i is the point location, f̃i is

the point properties, and P̃ f
i is the foreground probability.

3.3. Foreground Region Recovery

The above pipeline supervises SPG to generate semantic
points in the occupied voxels. However, it is also crucial
to recover the empty voxels caused by the “missing points”
problem. To generate semantic points in the empty areas,
SPG employs two strategies:
• “Hide and Predict”, which produces the “missing points”

on the source domain during training and guides SPG to
recover the foreground object shape in the empty space.

• “Semantic Area Expansion”, which leverages the fore-
ground/background voxel labels derived from the bound-
ing boxes and encourages SPG to recover more unob-
served foreground regions in each bounding box.

3.3.1 Hide and Predict

SPG voxelizes PCraw ∈ R3+F into a voxel set V =
{v1, v2, ..., vM}. Before passing V to the network, we ran-
domly select γ% of the occupied voxels Vhide ⊂ V and
hide all their points. During training, SPG is required to
predict the foreground/background label yf for all voxels in
V , even though it only observes points in |V − Vhide|. The
predicted point features ψ̃ in V f

hide should match the corre-
sponding ground-truth ψ calculated by these hidden points.

This strategy brings two benefits: 1. Hiding points re-
gion by region mimics the missing point pattern in the tar-
get domain; 2. The strategy naturally creates the training
targets for semantic points in the empty space. Section 4.4
shows the effectiveness of this strategy. Here we set γ = 25.
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Figure 4: Training targets construction and SPG model architecture. Three steps to create the semantic point training targets:
1.Voxelization; 2. Foreground points searching 3. Label assignment and ground-truth point feature calculation. SPG includes:
the Voxel Feature Encoding module (VFE), the Information Propagation module, and the Point Generation module.

Foreground 
point
Occupied 
voxel

Generation 
Area

Bounding
box

Negative 
supervision

Positive
supervision

Weighted-positive
supervision

Generation Area

(a)

 With Expansion

 Without Expansion (b)

(c) (d)

SupervisionBackground 
point

Figure 5: Visualization of “Semantic Area Expansion”. (a)
and (c) show the occupied voxels and the generation area,
respectively. (b) and (d) show the supervision strategies.

3.3.2 Semantic Area Expansion

In section 1.1, we find the poor point cloud quality leads to
insufficient points on each object and substantially degrades
the detection performance. To remedy this problem, we al-
low SPG to expand the generation area to the empty space.
Figure 5 a and c show the examples of the generation area
with and without the expansion, respectively.

Without the expansion, we can use the ground-truth
knowledge of foreground points to supervise SPG only on
the occupied voxels (Figure 5 b). However, with the expan-
sion, there is no foreground point inside these empty voxels.
Therefore, as shown in Figure 5 d, we design a supervision
scheme as follows:
1. For both occupied and empty background voxels V b

o and
V b
e , we impose negative supervision and set label yf = 0.

2. For the occupied foreground voxels V f
o , we set yf = 1.

3. For the empty voxels inside a bounding box V f
e , we set

their foreground label yf = 1 and assign a weighting factor

(a) Without expansion (b) With expansion

Figure 6: Comparisons between generated semantic points
(red) with and without “Semantic Area Expansion”.

α, where α < 1.
4. We only impose point features supervision ψ at occupied
foreground voxels V f

o .
To investigate the effectiveness of the expansion, we

train a model on the OD training set and evaluate it on the
Kirk validation set. The expansion results in 510% more
semantic points on foreground objects, which mitigates the
“missing points” problem caused by environmental interfer-
ence and occlusions. Figure 6 shows the generation results
with and without the expansion. The supervision scheme
encourages SPG to learn the extended shape of vehicle parts
and enables SPG to fill in more foreground space with se-
mantic points. We also conduct ablation studies (Section
4.4) to show the effectiveness of the proposed strategy.

3.4. Objectives

We use two loss functions, i.e., foreground area classifi-
cation loss Lcls and feature regression loss Lreg .

To supervise P̃ f with label yf , we use Focal loss [31] to
mitigate the background-foreground class imbalance. Lcls

can be decomposed as focal losses on four categories of
voxels: the occupied voxels Vo, the empty background vox-
els V b

e , the empty foreground voxels V f
e and the hidden

voxels Vhide. The labeling strategy for these categories is
described in Section 3.3.2.



Lcls =
1

|Vo ∪ V b
e |

∑
Vo∪V b

e

Lfocal

+
α

|V f
e |

∑
V f
e

Lfocal +
β

|Vhide|
∑

Vhide

Lfocal (1)

We use Smooth-L1 loss [20] for point feature ψ̃ regres-
sion, and supervise on the semantic points in occupied fore-
ground voxels V f

o and the hidden foreground voxels V f
hide.

Lreg =
1

|V f
o |

∑
V f
o

Lsmooth−L1(ψ̃, ψ)

+
β

|V f
hide|

∑
V f
hide

Lsmooth−L1(ψ̃, ψ) (2)

Please note that we are only interested in the Lcls and Lreg

on voxels inside the generation area. We find α = 0.5 and
β = 2.0 achieves the best result.

4. Experiments
In this section, we first evaluate the effectiveness of SPG

as a general UDA approach for 3D detection, based on the
Waymo Domain Adaptation Dataset [54]. In addition, we
show that SPG can also improve results for top-performing
3D detectors on the source domain[54, 18]. To demonstrate
the wide applicability of SPG, we choose two representative
detectors: 1) PointPillars [25], popular among industrial-
grade autonomous driving systems; 2) PV-RCNN [49], a
high performance LiDAR-based 3D detector [18, 54]. We
perform two groups of model comparisons under the set-
ting of unsupervised domain adaptation (UDA) and general
3D object detection: group 1, PointPillars vs. SPG + Point-
Pillars; group 2, PV-RCNN vs. SPG + PV-RCNN. SPG
can also be combined with range image-based detectors
[36, 78, 1] by applying ray casting to the generated points.
However, we leave this as future work.

Datasets The Waymo Domain Adaptation dataset
1.0 [54] consists of two sub datasets, the Waymo Open
Dataset (OD) and the Waymo Kirkland Dataset (Kirk). OD
provides 798 training segments of 158,361 LiDAR frames
and 202 validation segments of 40,077 frames. Captured
across California and Arizona, 99.40% of its frames have
dry weather. Kirk is a smaller dataset including 80 training
segments of 15,797 frames and 20 validation segments of
3,933 frames. Captured in Kirkland, 97.99% its LiDAR
frames have rainy weather. To examine a detector’s relia-
bility when entering a new environment, we conduct UDA
experiments without using the data in Kirk during training.

KITTI [18] contains 7481 training samples and 7518
testing samples. Following [8], we divide the training data
into a train split and a val split containing 3721 and 3769
LiDAR frames, respectively.

Implementation and Training Details We use a single
lightweight network architecture on all experiments. As

shown in Figure 4, our Voxel Feature Encoding[79] mod-
ule includes a single layer point-wise MLP and a voxel-
wise max-pooling [43, 79]. The Information Propagation
module includes two levels of CNN layers. The first level
includes three CNN layers with stride 1. The second level
includes one CNN layer with stride 2 and four subsequent
CNN layers with stride 1, then up-sampled back to the orig-
inal resolution. Each layer has an output dimension of 128.
From the BEV feature map, the Point Generation module
uses one FC layer to produce P̃ f and another FC layer to
generate the features ψ̃ for the voxels in each pillar. SPG
and each detector are trained separately.

We implement PointPillars following [25] and use the
PV-RCNN code provided by [49] (the training settings on
OD 1.0 are obtained via direct communication with the au-
thor). On the Waymo Domain Adaptation Dataset [54], we
set the voxel dimensions to (0.32m, 0.32m, 0.4m) for Point-
Pillars and (0.2m, 0.2m, 0.3m) for PV-RCNN. On KITTI,
we set the voxel dimensions to (0.16m, 0.16m, 0.2m) and
(0.2m, 0.2m, 0.3m) for PointPillars and PV-RCNN, re-
spectively. By default, the generation area includes vox-
els within 6 steps of any occupied voxel. After probability
thresholding, we preserve up to 8000 semantic points for the
Waymo Domain Adaptation Dataset and 6000 for KITTI.

4.1. Evaluation on the Waymo Open Dataset

We perform two groups of model comparisons by train-
ing them on the OD training set and evaluating them on both
the OD validation set and the Kirk validation set.

Evaluation Metrics The Kirk 1.0 validation set only pro-
vides the evaluation labels for the vehicle and the pedestrian
classes. We use the official evaluation tool released by [54].
The IoU thresholds for vehicles and pedestrians are 0.7 and
0.5. In Table 2 we report both 3D and BEV AP on two
difficulty levels. More results with distance breakdown are
shown in the supplemental material.

Target Domain On Kirk, we observe that SPG brings re-
markable improvements over both detectors across all ob-
ject types. Averaged over two difficulty levels, SPG im-
proves PointPillars on Kirk vehicle 3D AP by 6.7% and
BEV AP by 8.8%. For PV-RCNN, SPG improves Kirk
pedestrian 3D AP by 5.6% and BEV AP by 5.7%.

Source Domain Unlike most UDA methods [9, 21, 48]
that only optimize the performance on the target domain,
SPG also consistently improves the results on the source do-
main. Averaged across both difficulty levels, SPG improves
OD vehicle 3D AP for PointPillars by 5.4% and improves
OD pedestrian 3D AP for PV-RCNN by 1.6%.

Comparison with Alternative Strategies We compare
SPG with alternative strategies that also target the deteri-
orating point cloud quality. We employ PointPillars as the
baseline and choose LEVEL 1 vehicle 3D AP as the main



Target Domain - Kirk Source Domain - OD
Vehicle Pedestrian Vehicle Pedestrian

Difficulty Method 3D AP BEV AP 3D AP BEV AP 3D AP BEV AP 3D AP BEV AP

LEVEL 1
PointPillars 34.65 51.88 20.65 22.33 57.27 72.26 55.20 63.82

SPG + PointPillars 41.56 60.44 23.72 24.83 62.44 77.63 56.06 64.66
Improvement +6.91 +8.56 +3.07 +2.50 +5.17 +5.37 +0.86 +0.84

LEVEL 2
PointPillars 31.67 47.93 17.66 18.40 52.96 69.09 51.33 60.13

SPG + PointPillars 38.15 56.94 19.57 20.67 58.54 74.90 52.33 60.93
Improvement +6.48 +9.01 +1.91 +2.27 +5.58 +5.81 +1.00 +0.80

LEVEL 1
PV-RCNN 55.16 70.38 24.47 25.39 74.01 85.13 65.34 70.35

SPG + PV-RCNN 58.31 72.56 30.82 31.92 75.27 87.38 66.93 70.37
Improvement +3.15 +2.18 +6.35 +6.53 +1.26 +2.25 +1.59 +0.02

LEVEL 2
PV-RCNN 45.81 60.13 17.16 17.88 64.69 76.84 56.03 60.81

SPG + PV-RCNN 48.70 62.03 22.05 22.65 65.98 78.05 57.68 60.88
Improvement +2.89 +1.90 +4.89 +4.77 +1.29 +1.21 +1.65 +0.07

Table 2: Results on the Waymo Open Dataset 1.0 and the Kirkland Dataset. Results for PointPillars are based on our
own implementation following [25]. We use the PV-RCNN source code and obtain training settings for the Waymo Open
Dataset [54] via direct communication with the author.

metric on the Kirk validation set, during UDA. Three strate-
gies are implemented: 1. RndDrop, where we randomly
drop 17% of the points in the source domain during train-
ing. This dropout ratio is chosen for the number of points
in the source and target domain to match (see Table 1). 2.
K-frames, where we use K consecutive historical frames in
both the source domain and the target domain. The points in
the first K − 1 are transformed into the last frame accord-
ing to the ground-truth ego-motion, so that the last frame
has K times the number of points. 3. Adversarial Domain
Adaptation (ADA), where we follow [17] and add a domain
classification loss on the pillar features of PointPillars.

As shown in Table 3, although “RndDrop” enforces the
quantity of missing points in the source domain to match
with that in the target domain, the pattern of missing points
still differs from the reality (see Figure 2), which limits the
improvement to only 0.80% in 3D AP. To remedy the “miss-
ing points” problem, “3-frames” contains real points from 3
frames and “5-frames” contains points from 5 frames. With
around 800K points per scene, “5-frames” significantly im-
proves the single-frame baseline. However, aggregating
multiple frames inevitably increases the memory usage and
the processing time. ADA improves 3D AP to 36.34 on
the target domain, but we observe an AP drop of 1.52 in
the source domain. Remarkably, SPG can outperform “5-
frames”, by adding only 8000 semantic points, which is less
than 6% of the points in a single frame.

Method Baseline RndDrop 3-frames 5-frames ADA SPG
3D AP 34.65 35.45 38.00 38.51 36.34 41.56

Table 3: Comparisons of different strategies targeting at the
deteriorating point cloud quality. The models are trained on
OD and evaluated on Kirk. The metric is LEVEL 1 Vehicle
3D AP. We use PointPillars[25] as the baseline.

Car - 3D AP
Method Reference Easy Mod. Hard Avg.

SA-SSD[19] CVPR 2020 88.75 79.79 74.16 80.90
3D-CVF[72] ECCV 2020 89.20 80.05 73.11 80.79
CIA-SSD[60] AAAI 2021 89.59 80.28 72.87 80.91

Asso-3Ddet[15] CVPR 2020 85.99 77.40 70.53 77.97
Voxel R-CNN[13] AAAI 2021 90.90 81.62 77.06 83.19

PV-RCNN[49] CVPR 2020 90.25 81.43 76.82 82.83
SPG+PV-RCNN - 90.50 82.13 78.90 83.84

Table 4: Car detection Results on the KITTI test set. See
the full list of comparisons in the supplemental.

4.2. Evaluation on the KITTI Dataset

In this section, we show besides the usefulness in UDA
(Sec. 4.1) the proposed SPG can also boost performance in
another popular 3D detection benchmark (i.e. KITTI [18]).
We follow the training and evaluation protocols in [25, 49].

KITTI Test Set As shown in Table 4, SPG significantly
improves PV-RCNN on Car 3D detection. As of Mar. 3rd,
2021, our method ranks the 1st on KITTI car 3D detection
among all published methods (4th among all submitted ap-
proaches). Moreover, SPG demonstrates strong robustness
in detecting hard objects (truncation up to 50%). Specifi-
cally, SPG surpasses all submitted methods on the hard cat-
egory by a big margin and achieves the highest overall 3D
AP of 83.84% (averaged over Easy, Mod. and Hard).

KITTI Validation Set We summarize the results in Table
5. We train each group of models using the recommended
settings of baseline detectors [25, 49].

SPG remarkably improves both PointPillars and PV-
RCNN on all object types and difficulty levels. Specifically,
for PointPillars, SPG improves the 3D AP of car detection
by 2.02%, 2.97%, 3.67% on easy, moderate, and hard lev-
els, respectively. For PV-RCNN, SPG improves the 3D AP



Car - 3D AP Car - BEV AP Pedestrian - 3D AP Pedestrian - BEV AP
Method Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

PointPillars 87.75 78.39 75.18 92.03 88.05 86.66 57.30 51.41 46.87 61.59 56.01 52.04
SPG + PointPillars 89.77 81.36 78.85 94.38 89.92 87.97 59.65 53.55 49.24 65.38 59.48 55.32

Improvement +2.02 +2.97 +3.67 +2.35 +1.87 +1.31 +2.35 +2.14 +2.47 +3.79 +3.47 +3.28
PV-RCNN 92.10 84.36 82.48 93.02 90.33 88.53 64.26 56.67 51.91 67.97 60.52 55.80

SPG + PV-RCNN 92.53 85.31 82.82 94.99 91.11 88.86 69.66 61.80 56.39 71.79 64.50 59.51
Improvement +0.43 +0.95 +0.34 +1.97 +0.78 +0.33 +5.40 +5.13 +4.48 +3.82 +3.98 +3.71

Table 5: Comparisons on the KITTI validation set. Average Precision (AP) is computed over 40 recall positions. The baseline
results[49, 55] are obtained based on publically released models. See more results (including Cyclist) in the supplemental.

of pedestrian detection by 5.40%, 5.13%, 4.48% on easy,
moderate and hard levels, respectively.

4.3. Model Efficiency

We evaluate the efficiency of SPG on the KITTI val split
(Table 6). SPG contains 0.39 million parameters while
adding less than 17 milliseconds latency to the detectors.
This indicates that SPG is highly efficient for industrial-
grade deployment on a stringent computation budget.

Detectors PointPillars PV-RCNN -
With SPG No Yes No Yes Yes

Latency (ms) 23.56 36.67 139.96 156.85 16.82
Parameters 4.83M 5.22M 13.12M 13.51M 0.39M

Table 6: Latency and model parameters. “M” stands for
million. The last column shows the results of standalone
SPG. The evaluation is based on a 1080Ti GPU with a batch
size of 1. The latency is averaged over the KITTI val split.

4.4. Ablation Studies

Hide & Foreground 3D
Model Expansion Predict Confidence AP Improve
Baseline − − − 34.65 −
SPG − − X 35.89 +1.24
SPG − 25% X 38.09 +3.44
SPG X(α=0.0) 25% X 38.96 +4.31
SPG X(α=1.0) 25% X 38.42 +3.77
SPG X(α=0.5) − X 39.22 +4.57
SPG X(α=0.5) 25% − 37.96 +3.31
SPG(ours) X(α=0.5) 25% X 41.56 +6.91

Table 7: Ablation studies of SPG. The models are trained on
OD and evaluated on Kirk. The metric is LEVEL 1 Vehicle
3D AP. We use PointPillars[25] as our baseline.

We conduct ablation studies on “Semantic Area Expan-
sion”, “Hide and Predict” and whether to add foreground
confidence (P̃ f ) as a point property and show all of them
can benefit detection quality (see Table 7). We also change
the weighting factor α on the empty foreground voxels
V f
e . A larger α encourages more point generation in the

empty foreground space. However, in reality, an object typ-
ically does not occupy the entire space within a bounding

Pthresh 0.3 0.4 0.5 0.6 0.7

3D AP 39.39 40.09 41.56 41.18 40.89

Table 8: Ablation studies on the probability threshold
Pthresh (only keep the semantic point if P̃ f > Pthresh).
Our best SPG model uses Pthresh = 0.5. The metric is
LEVEL 1 Vehicle 3D AP on the Kirk validation set.

box. Therefore, over-aggressively generating points does
not help improve the performance (see α = 1.0).

Probability Thresholding In Table 8, we show the effect
of choosing different thresholds during probability thresh-
olding. While a higher Pthresh only keeps semantic points
with high foreground probability, a lower Pthresh admits
more points, but may introduce points to the background.
We find the threshold of 0.5 achieves the best results.

5. Conclusions
In this paper, we investigate unsupervised domain adap-

tation for LiDAR-based 3D detectors across different geo-
graphic locations and weather conditions. We observe that
rainy weather can severely deteriorate the point cloud qual-
ity and cause drastic performance drop for modern 3D de-
tectors, based on the Waymo Domain Adaptation dataset.
The proposed SPG method addresses this issue as a novel
unsupervised domain adaptation (UDA) task without using
any training data from the new domain. This setting al-
lows us to rigorously test 3D detectors against real-world
challenges autonomous vehicles may experience due to di-
verse conditions (e.g., different levels of fog/rain/snow be-
yond what one may effectively train for) during the trip.

Utilizing two strategies “Hide and Predict” and “Seman-
tic Area Generation”, SPG generates semantic points to
recover the shape of foreground objects with a negligible
overhead (only adding 6% extra points) and can be conve-
niently integrated with modern LiDAR-based detectors. We
test SPG with two detectors: PointPillars and PV-RCNN.
For unsupervised domain adaptation, SPG achieves signif-
icant performance gains on the challenging target domain.
On Waymo Open dataset and KITTI, SPG also consistently
benefits detection quality on the source domain.
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In this supplementary material, we provide detailed anal-
ysis about the statistics of the Waymo Domain Adaptation
Dataset in Section A; the robustness analysis of the fore-
ground voxel classifier in Section B; the derivation of the
dropout rate used in the RndDrop method in Section C;
more results on the Waymo Domain Adaptation Dataset in
Section D; more results on KITTI in Section E; and more
visualization of the semantic point generation in Section F.

A. Statistics of the Waymo Domain Adaptation
Dataset

Figure 7: The average number of raw points per vehicle
across different ranges. On the x axis, the range value stands
for the distance between the center of a bounding box and
the LiDAR sensor. The y axis shows the value after ap-
plying log10 on the number of points N . “Kirk Dry” is
extracted from the Kirk Training set and contains frames
captured in the dry weather.

We collect the statistics about the average number of
points in a vehicle bounding box across different ranges.
The range value is calculated as the euclidean distance be-
tween the LiDAR sensor and the center of a bounding box.
We investigate four sets of point clouds:
• The OD Validation set, in which 99.5% of the frames are

collected in the dry weather.
• The Kirk Dry set, which consists of all the frames with

the dry weather condition from the Kirk training set.
• The Kirk Training Rainy set, which consists of all the

frames with the rainy weather condition from the Kirk
training set.

• The Kirk Validation set, in which all the frames are col-
lected in the rainy weather.
As shown in Figure 7, the point clouds with similar

weather conditions share similar numbers of points per ob-

ject, even though they are collected at different locations.
Specifically, the vehicle objects of the two “dry datasets”,
i.e., the Kirk Dry set and the OD Validation set, have simi-
lar numbers of points across all ranges. The vehicle objects
of the two “rainy datasets” i.e., the Kirk Training Rainy set
and the Kirk Validation set, share similar statistics.

In addition, the point clouds captured in the dry weather
(the OD Validation set and the Kirk Dry set) have more
points on each object than those collected in the rainy
weather (the Kirk Training Rainy set and the Kirk Vali-
dation set). Please note that we have applied log10 to the
number of points for better visualization. The difference
in the number of points is substantial between two weather
conditions across all ranges.

B. The Robustness of the Foreground Voxel
Classifier

In order to generalize detectors to different domains, it
is crucial to correctly classify foreground voxels so that se-
mantic points can be reliably generated. Table 9 lists the
evaluation results of the foreground voxel classifier. The

Train Eval Accuracy Precision Recall AP
OD Train OD Val 99.3 % 90.9 % 92.9 % 86.7 %
OD Train Kirk Val 98.9 % 88.4 % 88.2 % 78.3 %

Table 9: Foreground voxel classification results of our SPG.
The model is trained on the OD training set and then it is
evaluated on the OD validation set and Kirk validation set,
respectively. The accuracy, precision and recall are evalu-
ated by setting P̃ f > 0.5.

results in Table 9 are averaged among all voxels in the fore-
ground regions. Our SPG is trained on the OD training set.
Then it is evaluated on the OD validation set and the Kirk
validation set, respectively. The classification of a voxel is
correct if its prediction score P̃ f > 0.5 when yf = 1.0 or
P̃ f < 0.5 when yf = 0.0. The accuracy, precision and
recall are all calculated under this setting. The AP is calcu-
lated using 40 recall thresholds. The results show that SPG
achieves high performance in both domains.

C. Dropout Rate of the RndDrop Method
In the experiment section, we implement a baseline

method RndDrop, where we randomly drop out 17% of
points for point clouds from the source domain during
training. This dropout ratio is chosen to match the ra-
tio of missing points in the target domain. We calculate
(Nsrc−N tgt)/Nsrc = 17%, whereNsrc = 121.2K is the
average number of points per scene in the source domain
and N tgt = 100.4K is the average number of points per
scene in the target domain.



D. More Results on the Waymo Domain Adap-
tation Dataset

The evaluation tool [54] provides the average precision
for three distance-based breakdowns: 0 to 30 meters, 30
to 50 meters, and beyond 50 meters. The AP is calculated
using 100 recall thresholds.

We perform two groups of model comparisons in the set-
ting of UDA: Group 1. PointPillars vs. SPG + PointPillars;
Group 2. PV-RCNN vs. SPG + PV-RCNN. We train all
models on the OD training set and evaluate them on both
the OD validation set and the Kirk validation set. Table 10
and 11 show the comparisons on vehicle 3D AP and ve-
hicle BEV AP, respectively. Table 12 and Table 13 show
the comparisons in pedestrian 3D AP and pedestrian BEV
AP, respectively. In most cases, SPG improves the detection
performance across all ranges for both vehicles and pedes-
trians.

E. More Results on KITTI
We provide more 3D object detection results on KITTI.

There are two commonly used metric standards for evalu-
ating the detection performance: 1) R11, where the AP is
evaluated with 11 recall positions; 2) R40, where the AP
is evaluated with 40 recall positions. In addition to the im-
provement on car and pedestrian detection, SPG also signif-
icantly boosts the performance in cyclist detection. Based
on R11, Table 14 and Table 15 show the results in 3D AP
and BEV AP for three object types, respectively. Based on
R40, Table 16 and Table 17 show the results in 3D AP and
BEV AP for three object types, respectively.

We show more comparisons on the KITTI test set in Ta-
ble 18.

F. More Visualization of Semantic Point Gen-
eration

In Figure 9, we illustrate more augmented point clouds,
where the raw points are rendered in the grey color and the
generated semantic points are highlighted in red.



Target Domain - Kirk Source Domain - OD
Vehicle 3D AP (IoU = 0.7) Vehicle 3D AP (IoU = 0.7)

Difficulty Method Overall 0-30m 30-50m 50-Inf Overall 0-30m 30-50m 50-Inf

LEVEL 1
PointPillars 34.65 63.13 24.56 7.65 57.27 84.39 52.97 28.22

SPG + PointPillars 41.56 68.26 31.91 13.08 62.44 86.18 58.13 35.40
Improvement +6.91 +5.13 +7.35 +5.43 +5.17 +1.79 +5.16 +7.18

LEVEL 2
PointPillars 31.67 59.26 22.09 7.08 52.96 82.30 50.74 24.6

SP + PointPillar 38.15 64.57 28.66 11.96 58.54 85.75 56.02 31.02
Improvement +6.48 +5.31 +6.57 +4.88 +5.58 +3.45 +5.28 +6.42

LEVEL 1
PV-RCNN 55.16 76.68 47.96 27.59 74.01 91.39 70.94 49.51

SPG+PV-RCNN 58.31 77.81 51.65 31.29 75.27 92.36 73.47 51.03
Improvement +3.15 +1.13 +3.69 +3.70 +1.26 +0.97 +2.53 +1.52

LEVEL 2
PV-RCNN 45.81 71.31 38.83 20.52 64.69 88.95 64.80 37.37

SPG + PV-RCNN 48.70 72.41 42.16 23.52 65.98 91.62 65.61 39.87
Improvement +2.89 +1.10 +3.33 +3.00 +1.29 +2.67 +0.81 +2.50

Table 10: The unsupervised domain adaptation vehicle detection results on both Waymo Open Dataset (OD) and Kirkland
Dataset (Kirk). We show the vehicle 3D AP results in this table. The AP distance breakdowns are provided by the official
evaluation tool.

Target Domain - Kirk Source Domain - OD
Vehicle BEV AP (IoU = 0.7) Vehicle BEV AP (IoU = 0.7)

Difficulty Method Overall 0-30m 30-50m 50-Inf Overall 0-30m 30-50m 50-Inf

LEVEL 1
PointPillars 51.88 75.56 46.04 25.55 72.26 92.23 71.35 51.11

SPG + PointPillars 60.44 80.89 53.73 38.24 77.63 93.39 75.96 61.16
Improvement +8.56 +5.33 +7.69 +12.69 +5.37 +1.16 +4.61 +10.05

LEVEL 2
PointPillars 47.93 71.18 42.41 23.47 69.09 91.83 68.87 45.53

SPG + PointPillars 56.94 77.13 49.99 35.04 74.90 93.06 73.96 54.51
Improvement +9.01 +5.95 +7.58 +11.57 +5.81 +1.23 +5.09 +8.98

LEVEL 1
PV-RCNN 70.38 84.27 65.31 52.98 85.13 95.99 84.02 72.19

SPG + PV-RCNN 72.56 84.43 68.79 58.49 87.38 97.54 86.63 74.59
Improvement +2.18 +0.16 +3.48 +5.51 +2.25 +1.55 +2.61 +2.40

LEVEL 2
PV-RCNN 60.13 78.10 54.36 40.67 76.84 93.29 76.64 58.29

SPG + PV-RCNN 62.03 78.86 56.47 44.94 78.05 94.45 80.25 59.56
Improvement +1.90 +0.76 +2.11 +4.27 +1.21 +1.16 +3.61 +1.27

Table 11: The unsupervised domain adaptation vehicle detection results on both Waymo Open Dataset (OD) and Kirkland
Dataset (Kirk). We show the vehicle BEV AP results in this table. The AP distance breakdowns are provided by the official
evaluation tool.



Target Domain - Kirk Source Domain - OD
Pedestrian 3D AP (IoU = 0.5) Pedestrian 3D AP (IoU = 0.5)

Difficulty Method Overall 0-30m 30-50m 50-Inf Overall 0-30m 30-50m 50-Inf

LEVEL 1
PointPillars 20.65 43.98 9.27 3.24 55.20 69.24 52.04 32.72

SPG + PointPillars 23.72 50.19 9.11 5.57 56.06 69.32 53.12 34.73
Improvement +3.07 +6.21 -0.16 +2.33 +0.86 +0.08 +1.08 +2.01

LEVEL 2
PointPillars 17.66 40.67 7.40 2.32 51.33 65.85 49.32 29.29

SPG + PointPillars 19.57 46.42 7.44 3.99 52.33 65.63 50.10 31.25
Improvement +1.91 +5.75 +0.04 +1.67 +1.00 -0.22 +0.78 +1.96

LEVEL 1
PV-RCNN 24.47 39.69 14.24 8.05 65.34 72.23 64.89 50.04

SPG + PV-RCNN 30.82 48.04 18.80 13.39 66.93 73.55 66.60 50.82
Improvement +6.35 +8.35 +4.56 +5.34 +1.59 +1.32 +1.71 +0.78

LEVEL 2
PV-RCNN 17.16 36.39 9.64 3.51 56.03 66.88 56.58 35.76

SPG + PV-RCNN 22.05 44.07 12.91 5.77 57.68 68.28 58.29 37.64
Improvement +4.89 +7.68 +3.27 +2.26 +1.65 +1.40 +1.71 +1.88

Table 12: The unsupervised domain adaptation pedestrian detection results on both Waymo Open Dataset (OD) and Kirkland
Dataset (Kirk). We show the pedestrian 3D AP results in this table. The AP distance breakdowns are provided by the official
evaluation tool.

Target Domain - Kirk Source Domain - OD
Pedestrian BEV AP (IoU = 0.5) Pedestrian BEV AP (IoU = 0.5)

Difficulty Method Overall 0-30m 30-50m 50-Inf Overall 0-30m 30-50m 50-Inf

LEVEL 1
PointPillars 22.33 45.00 10.50 3.49 63.82 76.33 61.90 42.81

SPG + PointPillars 24.83 51.44 10.80 5.71 64.66 76.11 62.69 44.98
Improvement +2.50 +6.44 +0.30 +2.22 +0.84 -0.22 +0.79 +2.17

LEVEL 2
PointPillars 18.40 41.63 8.58 2.49 60.13 73.34 58.77 38.83

SPG + PointPillars 20.67 47.56 8.98 4.11 60.93 72.94 59.54 41.11
Improvement +2.27 +5.93 +0.40 +1.62 +0.80 -0.40 +0.77 +2.28

LEVEL 1
PV-RCNN 25.39 40.23 14.72 9.76 70.35 76.22 70.49 56.77

SPG + PV-RCNN 31.92 49.06 19.87 14.87 70.37 75.86 72.29 57.47
Improvement +6.53 +8.83 +5.15 +5.11 +0.02 -0.36 +1.80 +0.70

LEVEL 2
PV-RCNN 17.88 36.89 9.97 4.23 60.81 69.22 61.86 41.32

SPG + PV-RCNN 22.65 44.57 13.48 6.38 60.88 70.62 63.65 43.27
Improvement +4.77 +7.68 +3.51 +2.15 +0.07 +1.40 +1.79 +1.95

Table 13: The unsupervised domain adaptation pedestrian detection results on both Waymo Open Dataset (OD) and Kirkland
Dataset (Kirk). We show the pedestrian BEV AP results in this table. The AP distance breakdowns are provided by the
official evaluation tool.

Car - 3D AP (R11) Pedestrian - 3D AP (R11) Cyclist - 3D AP (R11)
Method Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

PointPillars[25] 86.46 77.28 74.65 57.75 52.29 47.90 80.05 62.68 59.70
SPG + PointPillars 87.98 78.54 77.32 59.91 54.58 50.34 81.58 65.70 62.28

Improvement +1.52 +1.26 +2.67 +2.16 +2.29 +2.44 +1.53 +3.02 +2.58
PVRCNN[49] 89.35 83.69 78.70 64.60 57.90 53.23 85.22 70.47 65.75

SPG + PVRCNN 89.81 84.45 79.14 69.04 62.18 56.77 86.82 73.35 69.30
Improvement +0.46 +0.76 +0.44 +4.44 +4.28 +3.54 +1.60 +2.88 +3.55

Table 14: Result comparisons on the KITTI validation set. The results are evaluated by the Average Precision with 11 recall
positions. The baseline detectors, PointPillars and PV-RCNN, are directly evaluated by using the checkpoints released by
[49, 55].



Car - BEV AP (R11) Pedestrian - BEV AP (R11) Cyclist - BEV AP (R11)
Method Easy Mod. Hard Easy Mod. hard Easy Mod. Hard

PointPillars[25] 89.65 87.17 84.37 61.63 56.27 52.60 82.27 66.25 62.64
SPG + PointPillars 90.07 88.00 86.63 65.16 59.86 56.07 86.02 71.93 65.69

Improvement +0.42 +0.83 +2.26 +3.53 +3.59 +3.47 +3.75 +5.68 +3.05
PVRCNN[49] 90.09 87.90 87.41 67.01 61.38 56.10 86.79 73.55 69.69

SPG + PVRCNN 90.41 88.49 87.74 71.19 64.37 59.88 92.54 74.43 70.99
Improvement +0.32 +0.59 +0.33 +4.18 +2.99 +3.78 +5.75 +0.88 +1.30

Table 15: Result comparisons on the KITTI validation set. The results are evaluated by the Average Precision with 11 recall
positions. The baseline detectors, PointPillars and PV-RCNN, are directly evaluated by using the checkpoints released by
[49, 55].

Car - 3D AP (R40) Pedestrian - 3D AP (R40) Cyclist - 3d AP (R40)
Method Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

PointPillars[25] 87.75 78.39 75.18 57.30 51.41 46.87 81.57 62.94 58.98
SPG+PointPillars 89.77 81.36 78.85 59.65 53.55 49.24 83.27 66.11 61.99

Improvement +2.02 +2.97 +3.67 +2.35 +2.14 +2.37 +1.70 +3.17 +3.01
PVRCNN[49] 92.10 84.36 82.48 64.26 56.67 51.91 88.88 71.95 66.78

SPG+PVRCNN 92.53 85.31 82.82 69.66 61.80 56.39 91.75 74.35 69.49
Improvement +0.43 +0.95 +0.34 +5.40 +5.13 +4.48 +2.87 +2.40 +2.71

Table 16: Result comparisons on the KITTI validation set. The results are evaluated by the Average Precision with 40 recall
positions. The baseline detectors, PointPillars and PV-RCNN, are directly evaluated by using the checkpoints released by
[49, 55].

Car - BEV AP (R40) Pedestrian - BEV AP (R40) Cyclist - BEV AP (R40)
Method Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

PointPillars[25] 92.03 88.05 86.66 61.59 56.01 52.04 85.27 66.34 62.36
SPG + PointPillars 94.38 89.92 87.97 65.38 59.48 55.32 90.29 71.43 66.96

Improvement +2.35 +1.87 +1.31 +3.79 +3.47 +3.28 +5.02 +5.09 +4.60
PVRCNN[49] 93.02 90.33 88.53 67.97 60.52 55.80 91.02 74.54 69.92

SPG + PVRCNN 94.99 91.11 88.86 71.79 64.50 59.51 93.62 76.45 71.64
Improvement +1.97 +0.78 +0.33 +3.82 +3.98 +3.71 +2.60 +1.91 +1.72

Table 17: Result comparisons on the KITTI validation set. The results are evaluated by the Average Precision with 40 recall
positions. The baseline detectors, PointPillars and PV-RCNN, are directly evaluated by using the checkpoints released by
[49, 55].



Car - 3D AP
Method Reference Modality Easy Mod. Hard Avg.

F-PointNet[42] CVPR 2018 LIDAR & RGB 82.19 69.79 60.59 70.86
AVOD-FPN[24] IROS 2018 LIDAR & RGB 83.07 71.76 65.73 73.52
F-ConvNet[58] IROS 2019 LIDAR & RGB 87.36 76.39 66.69 76.81

UberATG-MMF[29] CVPR 2019 LIDAR & RGB 88.40 77.43 70.22 78.68
EPNet[22] ECCV 2020 LiDAR & RGB 89.81 79.28 74.59 81.23

CLOCs PVCas[39] IROS 2020 LiDAR & RGB 88.94 80.67 77.15 82.25
3D-CVF[72] ECCV 2020 LiDAR & RGB 89.20 80.05 73.11 80.79

SECOND[64] Sensors 2018 LiDAR 83.34 72.55 65.82 73.90
PointPillars[25] CVPR 2019 LiDAR 82.58 74.31 68.99 75.30
PointRCNN[50] CVPR 2019 LiDAR 86.96 76.50 71.39 77.77
3D IoU Loss[75] 3DV 2019 LiDAR 86.16 75.64 70.70 78.28

Fast Point R-CNNs[10] ICCV 2019 LiDAR 85.29 77.40 70.24 77.64
STD[68] ICCV 2019 LiDAR 87.95 79.71 75.09 80.91

SegVoxelNet[70] ICRA 2020 LiDAR 86.04 76.13 70.76 77.64
SARPNET[69] Neuro Computing 2019 LiDAR 85.63 76.64 71.31 77.86

HRI-VoxelFPN[70] Sensor 2020 LiDAR 85.63 76.70 69.44 77.26
HotSpotNet[5] ECCV 2020 LiDAR 87.60 78.31 73.34 79.75

PartA2[52] TPAMI 2020 LiDAR 87.81 78.49 73.51 79.94
SERCNN[76] CVPR 2020 LiDAR 87,74 78.96 74.14 51.03

Point-GNN[53] CVPR 2020 LiDAR 88.33 79.47 72.29 80.03
3DSSD[67] CVPR 2020 LiDAR 88.36 79.57 74.55 80.83
SA-SSD[19] CVPR 2020 LiDAR 88.75 79.79 74.16 80.90
CIA-SSD[60] AAAI 2021 LiDAR 89.59 80.28 72.87 80.91

Asso-3Ddet[15] CVPR 2020 LiDAR 85.99 77.40 70.53 77.97
Voxel R-CNN[13] AAAI 2021 LiDAR 90.90 81.62 77.06 83.19

PV-RCNN[49] CVPR 2020 LiDAR 90.25 81.43 76.82 82.83
SPG+PV-RCNN (Ours) - LiDAR 90.49 82.13 78.88 83.83

Table 18: Car detection result comparisons on the KITTI test set. The results are evaluated by the Average Precision with 40
recall positions on the KITTI benchmark website. We compare with the leader board front runner detectors that are associated
with conferences or journals released before our submission. The Avg. AP is calculated by averaging over the APs of Easy,
Mod. and Hard. difficulty levels.



Figure 9: More visualization of generated semantic points. The grey points are original raw points. The red points are the
generated semantic points. The green boxes are the predicted bounding boxes.


