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Abstract

Single image camera calibration is the task of estimat-
ing the camera parameters from a single input image, such
as the vanishing points, focal length, and horizon line. In
this work, we propose Camera calibration TRansformer
with Line-Classification (CTRL-C), an end-to-end neural
network-based approach to single image camera calibra-
tion, which directly estimates the camera parameters from
an image and a set of line segments. Our network adopts
the transformer architecture to capture the global struc-
ture of an image with multi-modal inputs in an end-to-end
manner. We also propose an auxiliary task of line clas-
sification to train the network to extract the global geo-
metric information from lines effectively. Our experiments
demonstrate that CTRL-C outperforms the previous state-
of-the-art methods on the Google Street View and SUN360
benchmark datasets. Code is available at https://github.
com/jwlee-vcl/ CTRL-C,

1. Introduction

Single image camera calibration is a task of inferring
intrinsic and extrinsic camera parameters by analyzing the
distortion in an input image caused by the perspective pro-
jection. It is a key problem in various computer vision
applications, including image rotation correction [111, 28],
photo upright adjustment [21}, [5]], metrology [8}, 43], visual
aesthetics assessment [J3] 28]], object composition for aug-
mented reality [19]], and so on.

Single view geometry is highly related to projective ge-
ometric cues such as vanishing points (VPs) and the hori-
zon line, which are the intersections of the world parallel
lines and planes, respectively 27]]. Hence, for single
image camera calibration, a classical approach is first to
detect line segments in an input image and then find inlier
line segments that account for VPs and the horizon line us-
ing RANSAC or other sampling strategies 29, [34] 211, [31].
However, this approach relies solely on lines and may de-
grade when inlier lines are falsely detected.
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Figure 1. Overview of CTRL-C. From a given image (a), CTRL-
C predicts camera parameters including the zenith, FoV, and hori-
zon line (b) by taking multi-modal cues; semantic ones from (a)
and geometric ones from detected line segments in (c). While di-
rectly regressing the camera parameters, CTRL-C classifies line
segments into vertical and horizontal convergence lines, as in (d).
This auxiliary line classification task assists the network to have a
better understanding of the geometric structure in the image and
thus helps improve the accuracy of camera parameter prediction.

Several deep learning-based approaches have recently
been proposed to overcome such limitations [38].
These methods directly infer the camera parameters from
an input image using semantic cues learned by deep neu-
ral networks. While they achieve more accurate calibration
results than classical methods, their networks need to learn
geometric structures from an image without any explicit su-
pervision, limiting their performance. Recently, a few deep
learning-based methods [41] 22] leveraging geometric and
semantic cues have been proposed and achieved superior re-
sults. Nonetheless, their approaches to leveraging lines are
still limited to conducting post-processing [41]] or building
multiple networks that are trained separately [22]. More-
over, all the existing neural network-based approaches rely
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on convolutional neural networks (CNNSs), which are less
effective in capturing long-term dependencies over an im-
age, and consequently, global characteristics of an image
such as the camera parameters.

To address the aforementioned issues, we propose to
leverage transformers [35, 9], which have been recently
adopted in multiple vision tasks [12] [20]. We observe that
transformers are particularly suitable for the following goals
related to single image camera calibrations: i) exploiting
both geometric and semantic cues, and ii) effectively learn-
ing their relationships and global contextual information of
an image. As transformers treat any types of input data as
a sequence of tokens, both the semantic and geometric cues
can be easily incorporated into a single end-to-end network.
Also, thanks to the attention mechanism, transformers can
readily capture long-term dependencies across local image
contexts and line segments. Most importantly, we also em-
pirically demonstrate that an auxiliary task using the out-
puts of the transformers can even improve the performances
by facilitating the interactions between these cues.

To this end, we propose a novel neural network named
Camera calibration TRansformer with Line-Classification,
CTRL-C in short, whose pipeline is illustrated in Fig.[T} Our
CTRL-C takes both an image and line segments as input and
regresses the camera parameters based on the transformer
encode-decoder architecture. The input image is first fed to
a ResNet [[14] and converted to a set of features of local
patches. The transformer encoder then processes the image
features with positional encoding to generate our semantic
tokens. The line segments, extracted from the input image
using the LSD algorithm [36]], are also mapped to geomet-
ric tokens. The subsequent transformer decoder aggregates
both semantic and geometric tokens along with the queries
for the camera parameters — zenith VP, horizon line, and
field of view (FoV) — and learns the relationships across
them. As an auxiliary task, the line segments are classified
into convergence lines to either the zenith or horizontal VPs,
which affects to improve the performance of camera param-
eter regression.

Our experimental results on the Google Street View [22]
and SUN360 [39] datasets show that CTRL-C outperforms
previous single image camera calibration methods [31}, 37}
16} 38 22]] in multiple evaluation criteria. Even without the
line classification task, our baseline transformer architec-
ture already achieves competitive performance compared
to the previous state-of-the-art (SotA) methods. Adopting
the line classification task improves the performance, re-
ducing the error of the up direction, pitch, roll, and FoV
angles. Especially, CTRL-C increases the AUCs of the hori-
zon line estimation with significant margins, from 83.12%
to 87.29% (4.17% gap) for the Google Street View test set
and from 80.85% to 85.45% (4.6% gap) for the SUN360 test
set, compared to the results of the previous SotA methods.

2. Related Work

Single Image Camera Calibration Conventional meth-
ods typically find two or more VPs and estimate the cam-
era’s focal length and rotation from the relationship across
them. Schaffalitzky and Zisserman [29] propose an auto-
matic detection algorithm of VPs by grouping of planar
geometric patterns. Tretyak et al. [34] introduce an op-
timization framework that parses edge pixels into groups
of the world parallel lines for different vanishing points
and geometrically analyzes them. Lee et al. [21] present
a maximum-a-posteriori (MAP)-based optimization method
that estimates the VPs and a relative camera frame for a 3D
scene, and then applies the camera calibration parameters
for photo upright adjustment. Simon et al. [31] detect the
zenith VP and the horizon by finding the maximally mean-
ingful modes.

Contrarily, recent neural network-based approaches pro-
pose to directly predict the camera parameters using se-
mantic cues from an input image learned by convolutional
networks. Workman er al. [37] propose the first neural
network-based solution for estimating the horizon line from
an image. Hold-Geoffroy et al. [10] extend the idea to
jointly predict both focal length and the horizon line, and
provide perceptual studies of how humans perceive errors
in camera calibration. Xian et al. [38] even step forward to
predict the camera rotation as well, not by simply regressing
the parameters, but by predicting the per-pixel 3D surface
frames first and integrating the information. While these
neural approaches show improvement in accuracy com-
pared to the conventional methods, they do not take any
explicit geometric information of the input image, leaving
room for further improvement.

A few neural approaches consider both geometric and se-
mantic information for single image camera calibration [41}
22]. Zhai et al. [41] obtain an initial horizon line using a
CNN and improve it with a separate optimization step using
line segments detected by the LSD algorithm [36]]. Lee et
al. [22] propose a neural network-based geometric parsing
framework for single image camera calibration, which uses
both input image and lines detected from the image with the
LSD algorithm [36]]. They demonstrate that exploiting geo-
metric information such as lines can help a network better
understand the underlying perspective structure in an image
and thus improve the camera calibration performance. How-
ever, both of these methods are not end-to-end learnable.
Zhai et al.’s method requires a separate optimization step
while Lee et al.’s method relies on two separately trained
networks, and a complicated network structure to integrate
line and image information. Moreover, all the existing neu-
ral network-based approaches rely on CNNs, which are in-
effective for capturing global information.

Inspired by [41} 22], we also utilize lines as additional
cue. In contrast to [41} 22], however, we design CTRL-C
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Figure 2. Our network estimates parameters for camera calibration from an input image and a set of line segments. Image features are
extracted with the ResNet backbone, flattened and positionally encoded, and then passed into a transformer encoder network. Learned
query embedding vectors are fed into a transformer decoder network, alongside with the line embedding vectors, so that queries can attend
to image and line features. Two auxiliary outputs, vertical and horizontal convergence line scores, are used to further guide the network to

learn the scene geometry for calibration.

based on the transformer architecture so that our network
can be end-to-end learnable and effectively gather informa-
tion from both semantic and geometric information. We also
show that our proposed auxiliary task of line classification
significantly improves the camera calibration accuracy.

Image Transformers With remarkable success in natu-
ral language processing, transformers have been recently
adopted to solve various tasks in computer vision. We re-
fer the readers to [20] for thorough surveys. To name
a few, Dosovitskiy ef al. [10] demonstrate that a standard
transformer encoder treating images as a series of patches
can classify images well without the image-specific in-
duced bias. Carion et al. [4] propose a transformer encoder-
decoder architecture for object detection, called DETR,
which predicts a set of object bounding boxes. Zhu et
al. [44] improve DETR [4] with deformable attention mod-
ules both in accuracy and training time. Xu ef al. [4Q] intro-
duce a multi-scale transformer architecture for line segment
detection, called LETR. VisualBERT [23], VILBERT [23],
and their variants [6] also apply transformers to
solve joint vision-and-language reasoning problems. Along
this direction, we also adopt the transformer in the single
image calibration problem. Our main contribution is, how-
ever, in maximizing the advantage of the transformer archi-
tecture by providing image patches and line features as mul-
timodal inputs. In contrast to [4] that use transformers as
a direct regressor, e.g., for box parameters (DETR [4]) and
for line parameters (LETR [40]), we use the transformer

to facilitate leveraging multi-modal cues: image patches for
semantic cues and line segments for geometric cues.

3. Framework

Fig. 2] shows our framework. From a given input im-
age, we estimate the vertical vanishing point (also known as
the zenith VP), the horizon line, and the FoV for the focal
length of the camera. Our network has the following com-
ponents: a CNN backbone network that extracts image fea-
tures; an encoder transformer that encodes image features; a
decoder transformer followed by FFNs that predicts all the
outputs.

3.1. Backbone Network

We use ResNet (resnet50 in torchvision) to
compute image features [14]. From a given input image of
size 3 x Hy x Wy, we use the block4 output of ResNet as
image features of size C' x H x W where Hy = 32H and
Wy = 32W. Throughout our experiments we set Hy, Wy
and C' as 512, 512 and 2048, respectively.

3.2. Encoder Network

Our encoder architecture is similar to several previous
works [4} [10} [40]; image features F' are first projected with
a1 x 1 convolution to have a smaller number of channels.
The projected features of size d x H x W are then spatially
flattened and fed into the transformer encoder network. We
set d = 256 in our experiments. The encoder network con-
sists of six self-attention blocks, and each block has eight



attention heads. Positional encodings are added to features
for each self-attention block; refer [35, 4] for details of the
architecture.

3.3. Decoder Network

To estimate the calibration parameters, we query all the
parameters to the transformer decoder. Similarly to [4}40],
all the queries for the zenith VP, horizon line, and FoV
are decoded in parallel; we feed three d-dimensional vec-
tors to the decoder as query embeddings. Multi-headed self-
attention and cross-attention blocks are applied for several
times to transform query embeddings to estimations of the
parameters.

Utilizing Line Segments Although it is already possible
to achieve SotA results only with the transformers and en-
coded image features (see Sec.[d.3] Tables[T|and [2), we can
further improve the estimation accuracy by utilizing line
segments, especially for images with man-made structures.

Many previous approaches [33| 34} 21]] utilize line seg-
ments for camera calibration, mostly by detecting the zenith
and horizontal VPs and classifying the lines into vertical
and horizontal convergences (or none of the two). Classi-
fication is often performed via energy minimization under
some widely used assumptions [7, 30]], and here we replace
this optimization to a supervised classification problem. To
the end, in addition to inferring calibration parameters, our
network is trained to classify convergence lines to the zenith
and horizontal VPs in a set of line segments.

We first detect a set of line segments from a given in-
put image [36]. For each line segment, the corresponding
line equation can be computed as a cross product of the two
endpoints of the segment:

1= [po], P1, (D

where pg, p1 and 1 represent two endpoints of a line seg-
ment and its line equation, respectively. We sample at most
512 line segments, L = {1y, ..., 1, <512}, from the detected
line segments. Directional ambiguities in line equations (1
and —1represent the same line) are removed by taking upper
triangular part of 117 such that s = (a2, ab, ac, b, be, )T
where 1 = (a,b,c)”. We apply a 1 x 1 convolution to s to
build d-dimensional line embedding vectors {ey, . .. e, }.

Our network is then trained to classify input line seg-
ments into vertical and horizontal convergence lines (or
none of the two) - lines that pass through the zenith VP
and horizontal VPs, respectively. For this, we label each line
segment 1; using the following equation:

1 if d(l“ V) S 60
C(li,V) = 0 if d(I“V) > 51 5 (2)
—1 otherwise

(b)

(© (d)

Figure 3. Pseudo horizontal VP estimation process; (a) comput-
ing VP candidates with the intersection of different line pairs in L,
(b) filtering the VP candidates in nearby the GT horizon line, (c)
selecting a VP candidate through which the most lines in L pass
nearby, (d) after filtering out the lines considered in (c) from L,
selecting another VP candidate through which the most lines pass
nearby. Pseudo horizontal VPs are set as the selected VP candi-
dates in (c) and (d).

where v represents the zenith VP or a horizontal VP. The
point-line distance function d(-) is defined as:

vl
d1v) = |—— | 3
4.v) ’||1||||v| ®

where ||-|| represents the Ly norm of a vector. Throughout
our experiments, we set dp and 07 as sin(2°) and sin(5°),
respectively.

Estimating Pseudo Horizontal VPs Once we have
ground-truth (GT) values for the zenith VP and horizontal
VPs, we can assign labels for vertical and horizontal conver-
gence lines using Eq. (Z)). However, the Google Street View
and SUN360 datasets only provide GT values for the zenith
VP but not for horizontal VPs. To mitigate this issue, we
create pseudo horizontal VPs; 1) extract a set of VP can-
didates, 2) filter out non-horizontal VP candidates, and 3)
choose two VPs from the set of remaining candidates (see
Fig.[3).

To extract a set of initial VP candidates, we use a similar
method with those of [21}[33]]. From the set of line equations
L, we randomly select a pair of line segments (ly,1;) and
compute their intersection points v as v = 1y x1;. We repeat
this until we have the set of VP candidates V.

By definition, all horizontal VPs should be located on the
horizon line. We remove the candidates from V/_ that are not
near enough to the horizon line and keep the remains as the



horizontal VP candidates using the following equation:
Vin ={v|d(h,v) <dandv €V}, 4)

where h represents the horizon line equation and d(-) is de-
fined in Eq. (3).

From the horizontal VP candidates in Vi, we select two
dominants, Vg and v’f, as the pseudo horizontal VPs. For
each candidate in Vj;,, we find line segments close enough
to the candidate and compute the sum of their lengths:

m; = Z len(1), where 5)
leLi,
Li, ={1|d(l,v;) < dand v; € Vi, } (6)

where len(l) represents the length of the line segment
whose line equation is 1. We select a pseudo horizontal VP
vl with the largest value of m;, remove L} from L, and
find v/ by repeating the above process. We set § in Egs.
and (0) as sin(2.5°) in our experiments.

The decoder network gets line embeddings as well as
calibration queries as inputs (n + 3 queries in total), trans-
forms them, and feeds the results to the feed forward net-
works. Position embeddings are not added to line features,
as lines contain positional information by construction.

3.4. Feed-Forward Networks (FFNs)

We append separate FFNs to estimate calibration pa-
rameters z, h, and f, representing zenith VP, horizon line,
and FoV, respectively. To classify line embeddings into
vertical and horizontal convergence lines, two additional

FFNs are appended to line embeddings {eo,...,e,_1},
followed by softmax layers resulting {56, NN sfl_l} and
{sh,...,sh_,}, respectively, where s=:"} € [0, 1].
3.5. Loss Functions
Our network is trained with five loss terms:
l:lz+lh+lf+lzc+lhc. @)

For the zenith VP, we minimize angular distances between

the GT points and their corresponding predictions:
T ~

L=1_ z'Z

; ®)

[l

where z and z represent a GT zenith VP and an estimate,
respectively. For the horizon line, we use a metric from [2].
Specifically, we compute intersection points between image
boundaries and GT/estimated horizon lines. Let b; and b;
be intersection points of the left image boundary and hori-
zon lines h and h, respectively, and b, and b, for the right
image boundary. The loss function is defined as:

b, — b, 1), ©)

)

lh = max (H}Sl — bl‘ L

1 — 1 —
08 = 08 T
4
06 Y/ |— — — Upright: 77.43% 06 1 — — — Upright: 79.16%
/ A-Contario: 74.25% y A-Contario: 72.75%
0.4 DeepHorizon: 80.29% 0.4 DeepHorizon: 80.65%
Perceptual: 80.40% Perceptual: 80.85%
0.2 GPNet: 83.12% 0.2 GPNet: 80.07%
CTRL-C: 87.23% CTRL-C: 85.45%
0 0
0 0.05 0.1 0.15 0.2 0 0.05 0.1 0.15 0.2
(@) (b)

Figure 4. Comparison of the cumulative distributions of the hori-
zon line error and their AUCs tested on Google Street View (a) and
SUN360 (b). The AUCs are also reported in Tables [T]and 2]

where ||-||; represents the L; norm of a vector. The loss
function for the FoV parameter is defined as:

lf:‘f—f’. (10)

As the classification losses of the vertical and horizontal
convergence lines, .. and [, binary cross entropy loss is
used:

1 z z,
lizeney = n Z {c;{ Y log s;{ h} (11)

+ (1 — cl{z’h}) log (1 — s;-{z’h})} ,

where c? and c? are defined using Eq. (2) as follows:

i =c(ly,z) (12)

7

e = max {c(li, v, e(l;, V}f)} . (13)
We remove any ¢; from computing losses if ¢(1;, ) is —1.

4. Experiments

In the experiments, we evaluate the performance of
our CTRL-C and other baselines using the benchmarks
generated based on Google Street View (GSV) [1] and
SUN360 [39] datasets. The benchmarks curated by Lee et
al. [22]] are constructed by rectifying the original panoramic
images with random samples of FoV, pitch, and roll in the
ranges of 40 ~ 80° (40 ~ 90° for SUN360), —30 ~ 40°,
and —20 ~ 20°, respectively. Each sampled image’s zenith
VP and horizon line are then computed from sampled FoV,
pitch and roll. The training and test sets contain 13,214 and
1,333 images for the GSV benchmark and 30,837 and 878
images for the SUN360 benchmark. Refer to the supple-
mentary material for more experimental and qualitative re-
sults on other datasets.

4.1. Comparison

We compare our method with the following previous
methods: Upright [21], A-Contrario detection [31]], Deep-
Horizon [37], Perceptual measure [16], UprightNet [38],



Table 1. Quantitative evaluation results with Google Street View benchmark from Lee et al. [22]]. Note that the results of previous methods
are from Lee et al. [22]] — see Table 2 in their paper. The accuracy of FoV prediction is not provided for A-Contrario detection [31]],
DeepHorizon [37], and UprightNet [38], since they cannot predict FoV. TR indicates the case of ablating transformers but just using
ResNet [14] to directly predict the camera parameters.

Method | Up Direction (°) | | Pitch (°) | \ Roll (°) | \ FoV (°) | | AUC
| Mean Med. | Mean Med. | Mean Med. | Mean Med. | %)t
Upright [21] 3.05 1.92 2.90 1.80 6.19 0.43 9.47 4.42 77.43
A-Contrario [31] 3.93 1.85 3.51 1.64 13.98 0.52 - - 74.25
DeepHorizon [37] 3.58 3.01 2.76 2.12 1.78 1.67 - - 80.29
Perceptual 2.73 2.13 2.39 1.78 0.96 0.66 4.61 3.89 80.40
UprightNet [38] 28.20 26.10 26.56 24.56 6.22 4.33 - - -
GPNet [22] 2.12 1.61 1.92 1.38 0.75 0.47 6.01 3.72 83.12
CTRL-C (Ours) 1.80 1.52 1.58 1.31 0.66 0.53 3.59 2.72 87.29
Id | TR | lue | lhe | Ablation Study (TR: Transformers)
1 3.12 2.62 2.79 2.22 1.04 0.82 5.04 4.17 84.48
2 v 2.17 1.84 1.87 1.51 0.82 0.60 3.71 2.88 85.65
3 v 1.84 1.53 1.61 1.32 0.65 0.52 3.47 2.66 87.16
4 v v 2.05 1.75 1.75 1.43 0.83 0.63 3.83 3.00 86.09
5 v v 1.80 1.52 1.58 1.31 0.66 0.53 3.59 2.72 87.29

Table 2. Quantitative evaluation results with SUN360 benchmark from Lee et al. [22]]. Note that the results of previous methods from Lee et
al. [22) — see Table 2 in their paper. The accuracy of FoV prediction is not provided for A-Contrario detection [31]], DeepHorizon [37],
and UprightNet [38]], since they cannot predict FoV. TR indicates the case of ablating transformers but just using ResNet [[14] to directly
predict the camera parameters.

Method |  UpDirection (°) | | Pitch (°) | | Roll (°) | | FoV (°) | | AUC
| Mean Med. | Mean Med. | Mean Med. | Mean Med. | %)t
Upright 343 1.43 3.03 1.13 6.85 0.47 8.62 3.21 79.16
A-Contrario 5.77 1.53 491 1.19 6.93 0.66 - - 72.75
DeepHorizon [37]] 2.87 2.12 2.36 1.64 1.16 0.85 - - 80.65
Perceptual 2.54 1.93 2.11 1.49 1.06 0.77 5.29 3.93 80.85
UprightNet 34.72 34.67 35.31 33.72 4.92 2.88 - - -
GPNet [22] 2.33 1.27 1.97 0.96 0.97 0.51 5.66 3.16 80.07
CTRL-C (Ours) 191 1.57 1.50 1.15 0.96 0.71 3.80 2.77 85.45
Id | TR | lue | lhe | Ablation Study (TR: Transformers)
1 2.34 1.83 1.90 1.41 1.09 0.80 4.60 3.55 83.94
2 v 2.03 1.71 1.62 1.26 1.00 0.75 4.00 2.98 84.39
3 v 1.80 1.45 1.44 1.05 0.88 0.63 3.76 2.68 85.09
4 v v 2.03 1.65 1.59 1.20 1.03 0.78 3.87 2.84 85.36
5 v v 1.91 1.57 1.50 1.15 0.96 0.71 3.80 2.77 85.45

Ground Truth 8 M M Upright [21] ™ M M M A-Contario B B B DeepHorizon
I N W N Perceptual GPNet [22] ResNet W B CTRL-C (Ours)

Figure 5. Examples of horizon line prediction on the Google Street View test set (top row) and the SUN360 test set (bottom row).



Table 3. Classification accuracies of convergence lines.
\ Accuracy (%) 1

Training ‘ Test

[ Vertical [ Horizontal
GSV 99.73 93.35
GSV ‘ SUN360 ‘ 93.76 ‘ 85.18
GSV 97.96 92.16
SUN360 ‘ SUN360 ‘ 99.49 91.54

and GPNet [22]. For the comparison, we refer to the re-
sults reported by GPNet [22], where all the networks are
retrained with the GSV dataset with the same ResNet archi-
tecture as the backbone (except for the UprightNet whose
code is not publicly available). Note that A-Contrario de-
tection [31]], DeepHorizon [37]], and UprightNet [38]] cannot
predict FoV, and thus their results for FoV are not provided.

Tables [I] and [2] show the quantitative results with the
GSV [1]] dataset and the SUN360 [39] dataset, respectively.
We report the angle differences of up direction, pitch, roll,
and FoV. For the horizon line, as done by Barinova et al. [2],
we calculate the area under the curve (AUC) of the cumu-
lative distribution graph as shown in Fig. 4| in which the
z-axis indicates the distance between the predicted and GT
horizon lines, and the y-axis indicates the percentage. Note
that our CTRL-C outperforms all the baseline methods with
significant margins in all the evaluation criteria, both in the
GSV and SUN360 benchmarks. As shown in Table [T} for
the GSV benchmark, our CTRL-C reduces the mean errors
of the up direction, pitch, roll, and FoV angles by 15.1%,
17.7%, 12.0%, and 40.3%, respectively, from the results of
the previous SotA, GPNet [22]. The AUC of the horizon
line errors is also improved from 83.12% to 87.29%, which
has a 4.17% gap. The results with the SUN360 benchmark
in Table [2| also show a similar trend. Compared to the re-
sults of Perceptual [16], the AUC of the horizon line errors
is improved from 80.85% to 85.45%, which has a 4.6% gap.
Fig.[5]shows qualitative comparisons.

4.2. Line Classification Results

While the convergence line classification is an auxiliary
task of our network, we also report the accuracy of the clas-
sification in Table[3] When measuring the accuracy, the GT
labels of convergence lines are given by the angle thresh-
olds shown in Eq. (2). The results show very high accura-
cies and also good generalization capabilities even when the
training and test datasets are different. For examples, train-
ing with GSV and testing with SUN360, the classification
accuracies for vertical and horizontal convergence lines are
93.76% and 85.18%, respectively. In training with SUN360
and testing with GSV, the classification accuracies of verti-
cal and horizontal convergence lines are better generalized
to 97.96% and 92.16%, respectively.

Fig. [6] shows the qualitative results of the convergence
line classification, along with the results of the horizon line

and vertical direction prediction. Fig.[f](a) and (c) show the
input image and the line segments detected by LSD [36],
which are fed to our network. Fig. [6] (b) shows the output
vertical direction toward the zenith VP (red) and the horizon
line (green). Fig.[6](d) illustrates the classification results of
vertical and horizontal convergence lines performed as an
auxiliary task; red and green indicate line segments clas-
sified as vertical and horizontal convergence lines (with a
threshold 0.5), respectively. Notice that the classified line
segments in (d) are vanishing toward the zenith VP or one
of the two horizontal VPs laying on the horizon line in (b).

4.3. Ablation Study

We further demonstrate the impact of each component in
our network by conducting an ablation study. The quantita-
tive evaluation results are reported at the bottom of Tables|T]
and E} We first ablate the transformers [35] and just use
ResNet [[14] as an image encoder that directly outputs the
camera parameters. The network is trained with the same
losses for the camera parameters (I, I, and [ in Sec. .
As shown in the first row at the bottom of each table, the per-
formance is comparable but slightly worse than that of GP-
Net [22]] in some criteria, including the up direction, pitch,
and roll. When the transformers are employed to process the
patch features coming from ResNet (the second row), the
performance becomes similar or even better than GPNet.
Further improvements are made when feeding lines as ad-
ditional inputs to the transformer decoders and adding each
classification loss for vertical and horizontal convergence
lines (I, or lj¢, the third and fourth rows). Particularly, we
found that the classifier for vertical convergence lines makes
meaningful improvements in the prediction of all camera
parameters. The best performance can be achieved when the
both classifiers for vertical and horizontal convergence lines
are used (the fifth row).

4.4. Evaluation of Intermediate Decoding Layers

The decoder of the transformer architecture is designed
to repeat a layer including self-attention and cross-attention
blocks — typically six layers are used [4} 40]]. Since the in-
puts and outputs of the decoding layer are the same in the
recursive structure, the camera parameters can also be pre-
dicted from each layer by appending the FFN block used in
the last layer. The network is then trained to predict calibra-
tion parameters from outputs of each decoder layer. Table ]
illustrates the quantitative evaluation results for the camera
parameters predicted from each decoding layer. The results
show that prediction power is increased as the image patch
and line tokens are passed through more decoding layers,
but the performance gain also converges as more layers are
used.
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Figure 6. More results with the Google Street View test set (the first three columns) and SUN360 [39] test set (the last three columns):
(a) input image, (b) estimated horizon line (green) and vertical direction along with the zenith VP (red), (c) detected lines with LSD [36]],
(d) estimated vertical (red) and horizontal (green) convergence line segments of (c).
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Figure 7. Examples of horizon prediction on natural scenes in the
HLW [37] test set. Refer to Fig.[5|for the horizon line color coding.

4.5. Results on Natural Scenes

Since we utilize semantic information learned from the
ImageNet pre-trained ResNet, our network performs well
even in natural scenes with few line segments, as some re-
sults with the HLW [37] dataset are shown in Fig.[7] For the
quantitative analyses with the HLW dataset, refer to the
supplementary material.

5. Conclusion

We presented CTRL-C, a novel method for single image
camera calibration based on transformer encoder-decoder
architecture using multi-modal tokens from the input image.
The approach achieves the state-of-the-art performances, by
capturing long-term dependencies among image tokens and

Table 4. Quantitative evaluation of the different numbers of layers
in the transformer decoder (‘Id’ indicates the index of decoding
layers). More decoding layers achieve better performance.

| UpDir.(°)| | Pitch(®)] | Roll(®)| | FoV(®)] | AUC

Id | Mean Med. [ Mean Med.[| Mean Med| Mean Med| (%) 4
1 234 199 195 1.57| 1.02 0.78| 3.83 3.00| 86.46
2 2.14 1.84 1.86 1.53| 0.81 0.65| 3.70 2.76| 87.20
3 1.98 1.70 172 142 | 074 0.58| 3.67 2.84| 87.22
4 1.85 1.59 1.61 135| 0.69 055 3.68 2.78| 87.21
5 1.82 153 1.60 132 0.66 0.52| 3.66 2.76| 87.29
6 1.80 1.52 1.58 1.31| 0.66 0.53| 3.59 2.72| 87.29

geometric tokens with the self-/cross-attention modules. For
future work, we investigate to improve the generalization
capability of the proposed network using the self-supervised
based pre-training stage training 24].
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Appendix
A.l. Generalization Tests

We compare the generalization capacity of our network
with those of three network-based approaches, DeepHori-
zon [37], Perceptual [16] and GPNet [22]. Specifically,
we train our CTRL-C and other networks with either the
Google Street View (GSV) [1] or SUN360 [39] datasets
and then test them with the other datasets, including HoliC-
ity [42]] dataset, Horizon Lines in the Wild (HLW) [37]
dataset, and Eurasian Cities (ECD) [34] dataset. For the
HoliCity [42] dataset, we evaluate networks trained with
the SUN360 [39] dataset for comparison, since the sam-
pling range of FoV in the SUN360 [39] dataset covers 90°,
which is the FoV used in the entire HoliCity [42] dataset.
For HLW [37] and ECD [34] datasets, we only measure the
horizon line prediction accuracy since these datasets do not
provide GT for the other camera parameters.

HoliCity [42]] dataset. Compared with the other meth-
ods, our CTRL-C provides better accuracy overall except
for pitch. The AUC of the horizon line errors is improved
from 81.72% of the previous SotA to 84.16% of ours, which
has a 2.44% gap. Fig.[AT|shows experimental results on the
HoliCity [42] test set, as in Fig. [3] visualizing qualitative
evaluations on horizon line predictions. Fig. shows fur-
ther examples illustrating the inputs and outputs of our net-
work, as in Fig. [6]

HLW [37] dataset. Table shows the comparison results
evaluated on the HLW [37] test set. Our CTRL-C provides
better overall accuracy and less sensitivity to the choice of
the training datasets compared to the other network-based
approaches. For instance, the difference of AUCs with the
different training datasets (GSV [1]] and SUN360 [39])) is
5.15% for our CTRL-C while 8.37% for GPNet [22].

ECD [34] dataset. Table shows the comparison results
evaluated on the ECD [34] dataset. Our CTRL-C shows bet-
ter generalization performance than those of the other neu-
ral approaches, in both cases of training with the GSV [1]
and SUN360 [39] datasets.

A.2. Additional Results

Google Street View [1] dataset. Fig. shows additional
results on the Google Street View [1] test set, as in Fig.
Bl visualizing qualitative evaluations on horizon line pre-
dictions. Fig.[A4] shows additional results with the Google
Street View [[1]] test set, as in Fig. [f] illustrating the inputs
and outputs of our network.

SUN360 [39] dataset. Fig. shows additional results on
the SUN360 [39] test set, as in Fig. [5} visualizing qualita-
tive evaluations on horizon line predictions. Fig. [A6] shows
additional results with the SUN360 [39] test set, as in Fig.
[6] illustrating the inputs and outputs of our network.

Table Al. Quantitative evaluation results on the HoliCity [42]
dataset. All the networks are trained with the SUN360 [39] dataset.

|Up Dir (°) |Pitch (°) || Roll (°) | | FoV (°) | | AUC

Method [MeanMed. [MeanMed.[MeanMed.|MeanMed.| (%) +
DeepHorizon [37]]|7.82 3.99 |6.10 2.73|3.97 2.67| - - 170.13
Perceptual [16] |7.37 329 |6.32 2.86|3.10 1.82|5.48 2.80|70.80
GPNet [22] 417 1.73 |1.46 0.74|3.65 1.36|10.034.29 |81.72
CTRL-C [2.90 1.99 |2.43 1.50|1.36 0.95|2.68 1.56|84.16

Table A2. Horizon line prediction results on the HLW [37]] dataset.

Method | AUC (%) 1
Training Sets | GSV I SUN360
DeepHorizon [37]] 45.63 40.63
Perceptual [16] 38.29 46.70
GPNet [22] 48.90 40.53
CTRL-C | 44.93 | 50.08

Table A3. Horizon line prediction results on the ECD dataset [34].

Method | AUC (%) T
Training Sets | GSV I SUN360
DeepHorizon [37] 74.26 74.60
Perceptual [16] 67.97 76.53
GPNet [22] 77.61 75.04
CTRL-C | 77.66 | 79.83
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Figure Al. Examples of horizon line prediction on the HoliCity [42] test set.
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Figure A2. More results with HoliCity [42] test set: (a) input image, (b) estimated horizon line (green) and vertical direction along with the
zenith VP (red), (c) detected lines with LSD [36]], (d) estimated vertical (red) and horizontal (green) convergence line segments of (c).
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Figure A3. Examples of horizon line prediction on the Google Street View [1] test set.
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Figure A4. More results with Google Street View [[]] test set: (a) input image, (b) estimated horizon line (green) and vertical direction along
with the zenith VP (red), (c) detected lines with LSD [36]], (d) estimated vertical (red) and horizontal (green) convergence line segments of
(c).
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Figure A5. Examples of horizon line prediction on the SUN360 [39] test set.
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Figure A6. More results with SUN360 [39] test set: (a) input image, (b) estimated horizon line (green) and vertical direction along with the
zenith VP (red), (¢) detected lines with LSD [36]], (d) estimated vertical (red) and horizontal (green) convergence line segments of (c).



