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Abstract

Adversarial training is one of the most effective defenses
against adversarial attacks. Previous works suggest that
overfitting is a dominant phenomenon in adversarial train-
ing leading to a large generalization gap between test and
train accuracy in neural networks. In this work, we show
that the observed generalization gap is closely related to
the choice of the activation function. In particular, we show
that using activation functions with low (exact or approxi-
mate) curvature values has a regularization effect that sig-
nificantly reduces both the standard and robust generaliza-
tion gaps in adversarial training. We observe this effect
for both differentiable/smooth activations such as SiLU as
well as non-differentiable/non-smooth activations such as
LeakyReLU. In the latter case, the “approximate” curva-
ture of the activation is low. Finally, we show that for ac-
tivation functions with low curvature, the double descent
phenomenon for adversarially trained models does not oc-
cur.

1. Introduction
Deep Neural Networks can be readily fooled by adver-

sarial examples, which are computed by imposing small
perturbations on clean inputs [65]. Adversarial attacks have
been well studied in the machine learning community in re-
cent years [10, 43, 23, 54, 21, 36, 37]. There have been
several defenses proposed against adversarial attacks in the
literature [53, 64, 7]. In our work we focus on adversar-
ial training [43, 23, 35], one of the most effective empirical
defenses.

Adversarial training involves training the network on ad-
versarially perturbed data instead of clean data to produce
a classifier with better robustness on the test set. How-
ever, it has been shown that networks produced through
vanilla adversarial training do not robustly generalize well
[59, 56, 18]. The gap between robust train and test accu-
racy for adversarially trained neural networks i.e. the robust
generalization gap can be far greater than the generaliza-
tion gap achieved during standard empirical risk minimiza-
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Figure 1: Learning curves for a robustly trained ResNet-18
model on CIFAR-10. Using an activation function with low
curvature such as SiLU prevents robust overfitting, achiev-
ing and maintaining low test robust loss, even compared to
the best early-stop checkpoint of a network with ReLU ac-
tivation function. The learning rate is decreased by a factor
of 10 at the 100th and 150th epoch.

tion. In this work, we show that the robust generalization
gap is significantly impacted by the curvature of the acti-
vation function, and activations with low curvature can act
as efficient regularizers for adversarial training, effectively
mitigating this phenomenon.

Rice et al. [56] showed for adversarially trained ReLU
networks, the best robust test accuracy is not achieved by
allowing models to train until convergence. Adversarial
training has the characteristic that, after a certain point, fur-
ther training will continue to decrease the robust training
loss, while the robust test loss starts increasing. This phe-
nomenon is referred to as robust overfitting and ultimately
leads to poor robust accuracy on the test set. Rice et al. also
showed that while traditional approaches against overfitting
such as l1, l2 regularization can mitigate robust overfitting,
no approach works better than simple early stopping. Since
standard accuracy continues to improve even after the net-
work overfits to adversarial examples, early stopping leads
to trade-off between selecting a model with high robust ac-
curacy versus a model with high standard accuracy [11].
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In this work, we systematically study the impact of ac-
tivation functions on generalization. We first theoretically
analyze the relation between maximum curvature of the ac-
tivation function and adversarial robustness. A key obser-
vation of our paper is that for smooth activation functions
the maximum value of the second derivative of the func-
tion, i.e. the maximum curvature has a significant impact
on robust generalization. Specifically by using activations
with low curvature the robust generalization gap can be re-
duced, whereas with high curvature the robust generaliza-
tion gap increases. For instance, in Figure 1 for an adver-
sarially trained CIFAR-10 model, test error on adversarial
examples for the ReLU activation function decreases after
the first learning rate drop, and keeps increasing afterwards.
However, for SiLU [55] a smooth activation function with
low curvature, robust test loss keeps decreasing. We also
show that the choice of activation has a similar effect on
the standard generalization gap. In other words, activa-
tions that show a large robust generalization gap also have a
large standard generalization gap, and vice versa. Our work
therefore provides novel insights to the robust overfitting
phenomenon. The main objective of our work is to under-
stand the relation between curvature of the activation func-
tion and adversarial training, and highlight findings which
can be useful for training adversarially robust models.

Xie et al. [72] showed that replacing ReLU, a widely
used activation function, by “smooth" 1 activation functions
such as Softplus or SiLU with a weak adversary (single step
PGD), improves adversarial robustness on Imagenet [14]
for “free". They posit smooth activations allow adversar-
ial training to find harder adversarial examples and com-
pute better gradient updates to weight parameters. Further
works have however demonstrated that while smooth acti-
vation functions can positively affect clean and robust accu-
racy, the trend is not as clear as the one observed by Xie et
al. Thus, ReLU networks remains a prominent choice for
robust classification [26, 51].

In contrast to Xie et al. [72], we consider a strong adver-
sary for training and show that smoothness of activations is
not required to obtain a regularization effect on adversarial
training. In our experiments, we show that the same reg-
ularization can be achieved using non-smooth activations
with low “approximate"" curvature. For non-smooth acti-
vations however, curvature is not well-defined. We consider
LeakyReLU which is a non-smooth activation function and
use the difference of activation slopes in positive and neg-
ative domains as the approximate maximum curvature of
the activation function. Even for such a non-smooth acti-
vation function, we observe that if the approximate curva-
ture is low, the robust overfitting phenomenon does not oc-
cur. Also in contrast to Xie et al. [72] we empirically show

1We use the same definition of smoothness as Xie et al., that the func-
tion is C1 smooth, that is, that the first derivative is continuous everywhere.

that smooth activations can perform worse than ReLU, if
the smooth activation has high curvature.

Finally, we study the phenomenon of double descent
generalization curves seen in standard training [4] and ro-
bust training [48]. Double descent describes the following
phenomenon. Increasing model complexity causes test ac-
curacy to first increase and then decrease. Then upon reach-
ing a critical point known as interpolation threshold, test ac-
curacy starts increasing again. We show that double descent
curves reported by [56] for robust overfitting using ReLU do
not hold for activation functions with low curvature such as
SiLU.

2. Related Works
Goodfellow et al. [23] provided one of the first ap-

proaches for adversarial training based on generating ad-
versarial examples through the fast sign gradient method
(FGSM). Building on this, a stronger adversary known as
the basic iterative method [35] was proposed in subsequent
work, using multiple smaller steps for generating adversar-
ial examples. Madry et al. [43] extended this adversary
with multiple random restarts to train models on adversarial
data, referred to as projected gradient descent (PGD) ad-
versarial training. Further works have focused on improv-
ing the performance of the adversarial training procedure
with methods such as feature denoising [74], hypersphere
embedding [52], balancing standard and robust error [80]
and using friendly adversarial data [81]. A separate line of
works has focused on speeding up adversarial training due
to its increased time complexity, by reducing attack itera-
tions and computational complexity for calculating gradi-
ents [78, 60, 69]. Another tangent line of work focuses on
adversarial training for universal attacks [61, 5].

Besides adversarial training, several other defenses have
been proposed such as defensive distillation [53], prepro-
cessing techniques [27, 64, 7] and randomized transfor-
mations [73, 16, 41] or detection of adversarial examples
[44, 19]. However these methods were later broken by
stronger adversaries [3, 67, 9]. These defense methods were
shown to rely on obfuscated gradients (gradient masking),
which provided a false sense of security. Due to the bit-
ter history of gradient masking as a defense, Xie et al. [72]
proposed use of smooth activations with a single step PGD
attack, reaching state of the art robust performance on Im-
ageNet [14]. Xie et al. hypothesize that using smooth acti-
vations provides networks with better gradient updates and
allows adversaries to find harder examples.

Since many defenses proposed in the literature have been
broken, another separate line of work has focused on certi-
fied defenses, which can guarantee robustness against ad-
versarial attacks. These methods use techniques such as
mixed-integer programming methods [66, 42, 20, 8] and
satisfiability modulo theories [33, 17, 31]. Some certifi-
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Figure 2: Activation functions along with their first and second derivatives.

cation methods bound the global Lipschitz constant of the
network, which are usually loose for large neural networks
with multiple layers [2, 24]. Another line of work has
focused on providing loose certificates using other tech-
niques such as randomized smoothing [13, 38, 40, 1], ab-
stract representations [22, 45, 62], interval bound propaga-
tion, second-order information [63], [25] and duality and
linear programs [58, 68, 70].

Lack of overfitting in overparameterized deep learning
models is an intriguing phenomenon for deep learning [77].
These models can be trained to effectively zero training
error, without having impact on test time performance.
Hence, it is now standard practice in deep learning to train
longer and use large overparameterized models, since test
accuracy generally improves past an interpolation point also
known as double descent generalization [4, 48]. Schmidt
et al. [59] however have shown that sample complexity
required for adversarially robust generalization is signifi-
cantly higher than sample complexity for standard gener-
alization. In a recent work, Rice et al. [56] have shown the
overfitting phenomenon to be dominant in adversarial train-
ing and show that training longer decrease robustness on
test data. Rice et al. also show that double descent gener-
alization curves seem to hold with increase in model size
but not by training longer. A recent work shows that ro-
bust overfitting may be mitigated [12] using a combina-
tion of previously proposed techniques such as knowledge-
distillation [75] and stochastic weight averaging [32]. An-
other recent work, proposes the use of adversarial weight
perturbations [71] to mitigate robust overfitting, which may
also increase the training time. AVMixup [39] also dis-
cussed the idea of robust overfitting and proposed a com-
bination of AVMixup, Label smoothing and Feature Scatter
to alleviate robust overfitting on CIFAR-10. In contrast to
these works, we discover a novel way to mitigate this phe-
nomenon without using complex regularization techniques
that may lead to additional hyper-parameters and increased
training time; we only modify the activation function of the
network.

3. Background
3.1. Adversarial Training

To train networks that are robust to adversarial examples,
the following robust optimization framework is used:

min
w

E(x,y)∼D

[
max

d(x,x̂)≤ε
l(fw(x̂), y)

]
where x is a training sample with ground truth label y sam-
pled from the underlying data distribution D, l(., .) is the
loss function, fw is the model parameterized by w param-
eters, d(., .) is a distance function and ε is the maximum
distance allowed. Typically, the distance function is cho-
sen to be an lp-norm ball such as the l2 and l∞-norm balls
though other non lp threat models have been considered in
[36, 37]. Adversarial training thus consists of two optimiza-
tion problems, the inner maximization problem to construct
adversarial samples, and the outer minimization problem to
update weight parameters w. To solve the inner maximiza-
tion problem, different types of attacks have been used in
the literature, such as projected gradient descent (PGD) [43]
or fast gradient sign method (FSGM) [69]. For example, an
l∞ PGD adversary starts with a random initial perturbation
drawn from a uniform distribution U , and iteratively adjusts
the perturbation with α step-size towards the l∞ gradient di-
rection, followed by projection back onto the l∞ norm ball
with maximum radius ε:

x̂0 = x+ U(−ε, ε)
x̄t = x̂t + α · sign

(
∇x̂t

l(f(x̂t), y)
)

x̂t+1 = max(min(x̄t, x+ ε), x− ε)

3.2. Robust Overfitting

A surprising characteristic of overparametrized models
is their good generalization behavior observed in practice.
[4, 50]. Although overparameterized models have enough
model complexity to memorize the dataset even on random
labels [77], they can be trained to zero error on the training
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Figure 3: Maximum eigenvalues for a batch of test ex-
amples for Resnet-18 models with different smooth activa-
tions. Eigenvalues are larger for activations with high cur-
vature.

set with no detrimental effects on generalization. For the
standard (non-adversarial) empirical risk minimization set-
ting, modern convergence curves indicate that while train-
ing for long periods of time, test loss continues to decrease
[48]. This has led to the practice of training models for as
long as possible to achieve better generalization [30]. How-
ever, in adversarial training it was noted that training longer
can cause overfitting and result in worse test performance
[56]. This phenomenon has been referred to as "robust over-
fitting" and shown to occur with a variety of datasets, model
architectures and different threat models.

Regularizers are standard tools in practice to mitigate
the effects of overfitting, especially in the regime when
the number of parameters are larger than the number of
data points. The standard regularization techniques such
as l1 and l2 regularization and data augmentation methods
such as Cutout [15] and Mixup [79] have been shown to
be ineffective against robust overfitting phenomena [56].
Only early-stopping using a validation dataset and semi-
supervised learning methods that augment the dataset with
unlabelled data have been shown to be effective and re-
duce the generalization gap for adversarially robust learn-
ing. Data augmentation using semi-supervised methods
however requires the use of additional data that may not
be available. Early stopping leads to selection of an ear-
lier checkpoint and causes a trade off between robust accu-
racy and standard accuracy, as training longer leads to better
standard test accuracy.

4. Impact of Activation Curvature on Adver-
sarial Training

In this section we consider the effects of curvature for
smooth activation functions on standard and robust gen-
eralization gaps. We define curvature for smooth activa-

tion functions by the maximum of the second derivative2 i.e
maxx f

′′(x). We consider the following smooth activation
functions, which are ranked by decreasing curvature as fol-
lows (see Figure 2 for functions and their first and second
derivatives):

1. Linearly Scaled Hyperbolic Tangent (LiSHT) [57]:
f(x) = x ∗ tanh(x), this function has highest curvature
among activations considered.

2. Gaussian Error Linear Unit (GeLU) [29]: f(x) = x ∗
Φ(x), where Φ(x) is gaussian cummulative distribution
function.

3. Mish [46]: f(x) = x∗tanh(ln(1+exp(x))) is a smooth
continuous function similar to SiLU.

4. SiLU [55]: f(x) = x ∗ sigmoid(x) is a smooth approx-
imation to ReLU but has a non-monotonic “bump" for
x < 0.

We also conduct experiments for non-smooth
ReLU activation as a baseline. Code for re-
producing our experiments can be found at
https://github.com/vasusingla/low_curvature_activations.

4.1. Analyzing the influence of activations on ro-
bustness

In this section, we analyze the theoretical relationship
between curvature of the activation function and adversar-
ial robustness. The motivation behind our analysis is to
provide an intuition for our observations, we do not rigor-
ously prove a monotonic relationship between robustness
and activation curvature. To elucidate this, we first con-
sider the relation between the input Hessian (ie., the sec-
ond derivatives of the output with respect to the input) and
adversarial robustness. We consider a simple binary clas-
sifier f , implemented as a two-layer neural network. Let
w1, w2 be weight matrices for the first and second layers
respectively. Let σ(·) be a twice differentiable activation
function and σ′′(·) denote the second derivative of the ac-
tivation function. The two layer neural network can then
be represented as f(x) = wT2 σ(w1x). Assume the final
layer of the network outputs a single logit, which is trans-
formed to probability using a sigmoid function. In other
words, the probability of a sample being in class 0 is given
as p(x) = sigmoid(f(x)). Assuming a sample is classified
into class 1 if p(x) < 0.5, then a sample x is classified into
class 1 iff f(x) < 0 and class 0 otherwise. In other words,
we use a probability threshold of 0.5, to classify an exam-
ple into class 1. We assume that the neural network can be
locally well approximated using the second order Taylor ex-
pansion. We now use the results by [47] about the relation

2Note that this definition of curvature is different from the standard
definition of curvature used for twice-differentiable functions.
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Figure 4: Learning curves for CIFAR-10 dataset on Resnet-18 for different activation functions. ReLU activation is non-
smooth and included as a baseline, all the other activations are ordered by decreasing curvature from left to right. Top graphs
show standard and robust error, and bottom graphs represent loss curves for both train and test data.

between the input Hessian and robustness. Let x belong to
class 1, then for x+δ to be classified as class 0, the minimal
l2 perturbation that fools the classifier can be written as:

δ∗ = arg min
δ
‖δ‖

s.t. f(x) +∇xf(x)T δ +
1

2
δT∇2

xf(x)δ ≥ 0

It can be shown under these assumptions the magnitude of
δ∗ can be upper and lower bounded with respect to input
curvature. We use the following lemma -

Lemma 1. [47] Let x be such that c = −f(x) ≥ 0, and

let g = ∇xf(x). Assume that ν = λmax

(
∇2
xf(x)

)
≥ 0,

denotes the largest eigenvalue and let u be the eigenvector
corresponding to ν. Then,

‖g‖
ν

(√
1 +

2νc

‖g‖2
− 1

)
≤ ‖δ∗‖

≤ ‖g
Tu‖
ν

(√
1 +

2νc

(gTu)2
− 1

)
(1)

This lemma shows that upper and lower bounds on the
magnitude of δ∗ increase as ν decreases keeping all other
factors constant [47]. An increase in ‖δ∗‖ therefore in-
creases the minimum l2 ball required to find an adversarial
example for input x, leading to increased robustness. There-
fore, a low maximum eigenvalue of the input Hessian leads
to higher adversarial robustness.

We now show the relation between activation functions
and input curvature. For the considered two layer neural
network, the Hessian with respect to the input x is given as:

∇2
xf(x) = wT1 diag

(
σ′′(w1x)� w2

)
w1 (2)

where � denotes the Hadamard product between two vec-
tors. Equation 2 shows that the Hessian of the input directly
depends on σ′′(.), which suggests that an increase in the
curvature of the activation function leads to an increase in
the norm of the input Hessian. Finally, although we assume
our activation to be smooth we expect similar results for
non-smooth activations.

We empirically show the relation between ν and acti-
vation curvature holds for adversarially trained Resnet-18
models. The learning curves presented in Fig. 3 show that
for activations with high curvature, the maximum eigen-
value of the input Hessian indeed is larger. This result com-
bined with our previous observation therefore suggests high
activation curvature indeed leads to lower robustness.

4.2. Activation Curvature and Generalization Gap

In this section we show results for the adversarial train-
ing for different smooth activation functions. We hypothe-
size that for adversarial trained networks, activations with
low curvature are more robust and have a small generaliza-
tion gap.

Experimental Settings - We show our results on the
CIFAR-10 and CIFAR-100 dataset [34]. For comparison
with best early-stop checkpoint [56], we randomly split the



Dataset Activation
Robust Accuracy Standard Accuracy

Final Train Final Test Best Val Diff. Final Train Final Test Best Val Diff.

CIFAR-10

LiSHT 92.27 47.21 50.31 45.06 99.9 82.53 82.44 17.37
ReLU 82.46 49.25 51.06 33.21 98.9 83.73 81.62 15.17
GeLU 65.45 49.31 50.15 16.14 92.41 82.81 79.25 9.6
Mish 57 49.18 49.62 7.82 86.48 80.05 79.96 6.43
SiLU 56.15 48.91 49.41 7.24 85.79 80.55 80.57 5.24

CIFAR-100

LiSHT 93.58 18.62 22.48 74.96 99.92 49.12 49.13 50.8
ReLU 79.87 18.81 25.91 61.06 98.58 51.58 51.05 47
GeLU 57.96 21.56 26.33 36.4 89.18 53.67 49.5 35.51
Mish 39.65 24.27 25.88 15.38 71.5 53.43 48.37 18.07
SiLU 37.81 24.29 25.82 13.52 68.73 52.65 52.18 16.08

Table 1: Performance of different activations on CIFAR-10 and CIFAR-100 with ResNet-18. We use the best checkpoint
based on best robust accuracy on the validation set shown in “Best Val"" column. The generalization gap, i.e difference
between final train and final test accuracy is shown in “Diff." column. Generalization gap for both standard and robust
accuracy increases for activations with high curvature.

original set into training and validation set with 90% and
10% of the images respectively. We consider the l∞ threat
model and use PGD-10 step attack with a single restart for
training and PGD-20 step attack with 5 restarts for reporting
the test accuracy. For the attack hyper-parameters, we use
ε = 8/255 and α = 2/255. We use the ResNet-18 [28]
architecture for all our experiments except for experiments
with double descent curves where we use Wide ResNet-28
[76]. We use the same training setup as [56] throughout the
paper, an SGD optimizer with momentum of 0.9 and weight
decay 5× 10−4 for 200 epochs with batch size of 128.

We discover that choice of activation function has a large
impact on robust overfitting. Figure 4 shows our results.
First we reproduce the effect of robust overfitting observed
by Rice et al. [56] for all the activations. The robust training
loss keeps decreasing, however robust test loss rises shortly
after the first learning rate drop. For standard training and
standard test loss however, both keep decreasing through-
out training. Training appears to proceed smoothly at the
start, however at the learning rate drop on the 100th and
150th epochs, robust test error decreases briefly and then
keeps increasing as training progresses. This phenomenon
shows the best performance for robust test accuracy is not
achieved by training till convergence, unlike standard train-
ing. In contrast the best standard accuracy for adversarial
training is still reached by training till convergence. We
show that for activation functions with lower curvature the
robust overfitting phenomenon occurs to a lesser degree.
In contrast to Xie et al. [72], we also show that LiSHT a
smooth activation function performs worse than the non-
smooth ReLU function and shows a larger robust general-
ization gap as shown in Fig. 4. We also note that for acti-
vations that display a large robust generalization gap, the
standard generalization gap is also higher. Finally, the cur-
vature of the activation function has a direct impact on both
the robust and standard generalization gaps, as shown in the

learning curves. For activations with high curvature such
as LiSHT and GeLU the generalization gap is large and for
activations with low curvature such as Mish and SiLU the
generalization gap is much lower. Note that although the
training loss/error is higher for activations with lower cur-
vature, adversarial training is much more stable and allows
training till convergence, achieving better standard accuracy
and maintaining similar robust accuracy.

We show the quantitative results in Table 1. To show the
gap due to robust overfitting (decay in performance from
peak robust accuracy) we also show the best robust accu-
racy found using early stopping with a validation set. We
also report the corresponding standard accuracy for the best
robust accuracy checkpoint (not the best standard accu-
racy checkpoint). The robust and standard generalization
gap decrease for CIFAR-10 and CIFAR-100 as seen in Ta-
ble 1. The effects of robust overfitting, (i.e difference in best
and final checkpoint on robust accuracy) also decreases for
activations with smaller curvature. For example, the over-
fitting gap falls from 3.1% for LiSHT to 0.5% for SiLU on
CIFAR-10. Standard accuracy however, either remains the
same or improves by training longer (compared to the best
checkpoint). On CIFAR-100 upon training till convergence,
SiLU simultaneously achieves both robust and standard ac-
curacy higher than ReLU. These results therefore validate
our claim that low curvature activations reduce robust over-
fitting. Using the best validation checkpoint for CIFAR-
100, SiLU achieves nearly the same robust accuracy and
higher standard accuracy than ReLU. The results therefore
show that for adversarial training, curvature of the activa-
tion function play an important role in obtaining high robust
and standard accuracy.

4.3. Curvature effects with Parameteric Swish

To further understand the impact of activation curvature
on standard and robust generalization gap, we conduct anal-
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Figure 5: Visualization of PSwish with different β values.

β Robust Accuracy Standard Accuracy
Train Test Diff. Train Test Diff.

0.5 47.00 45.24 1.76 75.39 73.57 1.82
1 56.15 48.91 7.31 85.79 80.55 5.24
2 69.65 49.6 20.05 94.57 83.39 11.18
4 83 49.92 33.08 98.82 84.48 14.34

10 89.2 50.63 38.57 99.7 83.57 16.13

Table 2: Performance of PSwish with different β values,
higher β value indicates higher curvature. Results are
shown for final checkpoint and show that for activations
with high curvature, standard and robust generalization gap
increases.

ysis with Parameteric Swish (PSwish) [6], defined as fol-
lows:

f(x) = x · sigmoid(βx)

The SiLU function defined previously is a special case of
PSwish, when β = 1. PSwish transitions from the identity
function for β = 0, to ReLU for β → ∞. The curvature of
PSwish increases as β increases. Figure 5 shows the PSwish
activation function for different values of β.

We show the results with the CIFAR-10 dataset, for final
checkpoints for training and testing set in Table 2. Interest-
ingly, we observe that both the standard and robust general-
ization gap are extremely dependent on the choice of β. The
robust generalization gap increases from 1.76 to 38.57 and
the standard generalization gap increases from 1.82 to 16.13
for β = 0.5 and β = 10 respectively. We also observe that
robust test accuracy for the final checkpoint increases from
45.24 to 50.63 for the same β values. For larger values of
β i.e β →∞, PSwish behaves like ReLU and standard and
robust final test accuracy start decreasing. The results are
consistent with our previous experiments and show that the
standard and robust generalization gap increases for activa-
tions with high curvature. Further using the early stopping
checkpoint with the validation set, PSwish with β = 10 out-
performs ReLU baseline by 0.33% on robust accuracy and
1.24% on standard accuracy, highlighting that the choice of
activation function can improve standard and robust perfor-
mance for adversarially trained models.
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Figure 6: Visualization of LeakyReLU with different k val-
ues.

k Robust Accuracy Standard Accuracy
Train Test Diff. Train Test Diff.

0.5 52.74 48.71 4.03 82.99 79.56 3.43
0.3 63.06 49.62 13.44 92.00 83.56 8.44
0.2 69.64 49.34 20.3 95.37 84.21 11.16
0 82.46 49.47 32.99 98.9 83.73 15.17

-0.2 85.89 48.16 37.73 99.47 83.01 16.46

Table 3: Performance of the LeakyReLU activation func-
tion with different slope values. The standard and robust
generalization gap increases for slopes with larger approxi-
mate curvature.

5. Does smoothness matter?
Xie et al. [72] showed that using smooth activations, ad-

versarial training can achieve better standard and robust ac-
curacy on Imagenet [14]. They posit that using smooth ac-
tivations can improve gradients, which can both strengthen
the attacker and provide better gradient updates to weight
parameters, thus achieving superior performance.

In contrast, we show that the relation of the generaliza-
tion gap to activations can be observed for non-smooth ac-
tivations as well. We use the non-smooth LeakyReLU acti-
vation function defined as follows:

LeakyReLU(k, x) =

{
x if x ≥ 0

kx if x < 0

where k is a hyper-parameter that can be tuned. The first
derivative of LeakyReLU is given as:

d

dx
LeakyReLU(k, x) =

{
1 if x ≥ 0

k if x < 0

For non-smooth activations, curvature of the activation
function however is not well defined. Therefore for
LeakyReLU, we use the difference of slopes, i.e |1 − k|
as the “approximate” curvature of the function. Hence, for
k ≤ 1 the approximate curvature decreases with increas-
ing value of k . We use the same setup as in previous ex-
periments and show the results for final training and test
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Figure 7: The generalization curves show the double de-
scent phenomenon occurs for networks with ReLU activa-
tion but does not occur with SiLU activation. We use ad-
versarially trained WideResnet models and the model com-
plexity is controlled by the width of the architecture. Each
data point shows the average for last 3 epochs.

checkpoints in Table 3 on CIFAR-10. We observe behavior
similar to smooth activations for LeakyReLU. For k = 0.5,
the approximate curvature is low, and both robust and stan-
dard generalization gap, 4.03 and 3.43 respectively is much
smaller than for k = −0.2, for which robust and standard
generalization gap, 37.73 and 16.46 is large. We therefore
hypothesize for non-smooth activations, the “approximate"
curvature of the activation function has impact on the gen-
eralization gap.

6. Double descent curves
The standard bias-variance trade-off from classical ma-

chine learning theory fails to explain why deep networks
generalize well especially when they have far more param-
eters than the samples they are trained on [77]. Its now
standard practice to use overparameterized models and al-
low models to train longer [30] since test time performance
typically improves for increased model complexity beyond
the data interpolation point, a phenomenon known as double
descent [4]. It was further shown that both training longer
and increasing architecture size can be viewed as increase
in model complexity and the double descent phenomenon
is observed for both settings [48]. The phenomenon of dou-
ble descent generalization with increase in model width was
also briefly noted for l2 adversarially trained models [48].

Rice et al. [56] show that robust overfitting contradicts
the double descent phenomenon observed with respect to
training longer, since training longer harms test time per-
formance. Although, they still observe the double descent
phenomenon for ReLU networks with respect to the model
size as shown in Fig. 7. They therefore posit that, training
longer and increasing model size have separate effects on
robust generalization.

A recent work [49] suggests that the double descent phe-

nomenon can be mitigated by optimal regularization. We
explore whether activations with low curvature can miti-
gate double descent, by adversarially training Wide Resnets
with different width factors. We show results for ReLU and
SiLU activation functions in Figure 7. Experiments with
other activations could not be conducted due to the high
expense of training Wide Resnets. We use the SiLU acti-
vation function, because it has lowest curvature among all
the activations considered. In Figure 7, we show the results
for ReLU and the SiLU activation function with a PGD-10
adversary. While the double descent phenomenon is ob-
served for ReLU activation, robust test performance contin-
ues to decrease for the SiLU activation function. Note that
SiLU with width-factor 4 attains equivalent performance
to ReLU with width-factor 15. None-the-less the final test
error achieved by ReLU networks with large width factor
is equivalent to the lowest test error achieved by SiLU net-
works with the same width. This suggest that low curvature
activations may not be useful for models with large width.
The results also indicate that use of activations with small
curvature can act as a regularizer to mitigate the double de-
scent phenomenon.

7. Conclusion

In this work, we first use both theoretical and empirical
approaches to show the impact of curvature of the activation
function on robustness. We further show that this property
of regularization further extends to non-smooth activations
as well. While results from Rice et al. show that classical
regularization techniques are unable to prevent robust over-
fitting, our results show that activation functions with low
curvature can largely mitigate that. Since robust overfitting
is common in adversarial training, the properties of acti-
vation functions that we bring to light in this work can be
useful for state of the art robust models. Finally our exper-
iments also show that double descent, another phenomenon
that has a significant impact on robust generalization, can
be mitigated using activations with low curvature.
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