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Abstract

The data poisoning attack has raised serious security
concerns on the safety of deep neural networks, since it
can lead to neural backdoor that misclassifies certain inputs
crafted by an attacker. In particular, the sample-targeted
backdoor attack is a new challenge. It targets at one or
a few specific samples, called target samples, to misclas-
sify them to a target class. Without a trigger planted in the
backdoor model, the existing backdoor detection schemes
fail to detect the sample-targeted backdoor as they depend
on reverse-engineering the trigger or strong features of the
trigger. In this paper, we propose a novel scheme to de-
tect and mitigate sample-targeted backdoor attacks. We
discover and demonstrate a unique property of the sample-
targeted backdoor, which forces a boundary change such
that small “pockets” are formed around the target sam-
ple. Based on this observation, we propose a novel defense
mechanism to pinpoint a malicious pocket by “wrapping”
them into a tight convex hull in the feature space. We de-
sign an effective algorithm to search for such a convex hull
and remove the backdoor by fine-tuning the model using
the identified malicious samples with the corrected label ac-
cording to the convex hull. The experiments show that the
proposed approach is highly efficient for detecting and mit-
igating a wide range of sample-targeted backdoor attacks.

1. Introduction

Deep neural networks (DNNs) play a critical role in a
wide range of applications, such as image classification [6],
facial recognition [23] and autonomous driving [37]. De-
spite these advances, DNNs are data-driven, depending on
the size and quality of the training data, and computation
resource for model training. They are also empirical, re-
quiring extensive expertise to design a good model archi-
tecture. Therefore, it is often infeasible for general users
to train their own models on a large scale. Instead, users

typically outsource model training to third parties known
as Machine Learning as a Service (MLaaS) [25] or reuse
a public model from an online model zoo storage website,
e.g., Caffe Model Zoo [15] or Tensorflow Model Zoo [1].

However, this raises a fundamental question: can we
trust a model provided by someone else? DNNs are com-
monly considered as black-boxes and lack interpretability
and transparency to humans. Moreover, it is not feasi-
ble to test their behavior exhaustively. These properties
can be exploited by attackers to plant a backdoor to the
model provided to the user. This can be done through
stealthily injecting poisoned data into the training dataset
by an attacker, when the model trainer collects training data
from the web, which is in fact one type of data poison at-
tack [17, 28, 38, 2]. Alternatively, the model trainer it-
self can change the training data to intentionally plant a
backdoor. The backdoor attack can be largely categorized
into two types, sample-targeted and trigger-based, depend-
ing on if a predefined trigger is adopted to activate the
backdoor. In trigger-based backdoor attacks, a backdoor is
planted during training using a “trigger” stamped on sam-
ples [9, 21, 36, 26], which is a predefined special pattern
such as a small white block as illustrated in Figure 1(a).
After training, the backdoor model behaves normally with
clean samples but misclassifies an input into the target cat-
egory if the trigger is embedded in the input sample.

In contrast, instead of adopting a predefined trigger, the
sample-targeted backdoor attack targets at one or a few spe-
cific samples, called as target samples, to misclassify them
to a target class. The most straightforward method of inject-
ing a sample-targeted backdoor is to simply flip the label of
the target sample (see Figure 1(d), which is an image of a
car but labeled as “cat”). Such a sample is included in the
training set to create a sample-targeted backdoor [34]. In
the Feature Collision attack [28] and its variations [38, 2],
the attacker perturbs a small number of samples in the target
class (e.g., with the label of “cat”) without changing their la-
bels, to minimize their feature distance to the target sample
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Figure 1. Examples of trigger-based and sample-targeted attack
and defense. On the first row, (a) is a trigger-based attack sample
stamped with a white square trigger at the bottom right; (b) and
(c) are successfully reverse-engineered triggers generated by Neu-
ral Cleanse [33] and GangSweep [39] respectively. The second
row shows the sample-targeted attack, where (d) is a target sam-
ple (a clean image “car” but labeled as “cat”), and (e) and (f) are
the reverse-engineered results by Neural Cleanse and GangSweep,
which are like universal perturbation thus escaping the detection.

(e.g., the targeted car sample). These perturbed samples are
visually indistinguishable from the original clean samples,
but close to the target sample in the feature space. After
training, a target image (car) will be misclassified as “cat”.

The stealth of the backdoor attack stems from the opaque
and unexplainable nature of the model, which makes it in-
feasible to identify such an attack by simply peeking into
the millions of floating-point weight parameters. Fortu-
nately, there are some early efforts to detect neural back-
doors [33, 4, 39, 10, 20, 7, 19]. Neural Cleanse [33]
uses gradient optimization to reverse-engineer a neural
backdoor to reconstruct the trigger for the infected class.
GangSweep [39] leverages Generative Adversarial Net-
works(GAN) [8] to reveal more advanced backdoor attacks
such as those using multiple, translucent, dynamic, or even
spatially transformed triggers. For example, Figures 1(b)
and 1(c) illustrate the reverse-engineered trigger by using
Neural Cleanse and GangSweep. However, these existing
approaches rely on reverse-engineering the predefined trig-
ger for detecting backdoors, rendering them ineffective for
detecting sample-targeted backdoors. Figures 1(e) and 1(f)
show the reverse-engineered results for a sample-targeted
backdoored model using Neural Cleanse and GangSweep.
These results are like universal perturbations similar to the
ones from benign models; thus both approaches fail to de-
tect the backdoor. Moreover, as the sample-targeted back-
door model does not have a trigger that can be stamped
across all the samples to fool the model, these backdoor de-
tection approaches cannot effectively reconstruct the target
sample and remove it (for more results see Section 5.1).
Contributions of This Work. In this paper, we propose an
innovative and effective defense mechanism, named CLean-
up samplE-tArgeted backdooR (CLEAR), to tackle the issue

of detecting sample-targeted backdoors. Our approach is
motivated by the observation that the sample-targeted back-
door leads to small “pockets” around the target samples
on the decision boundary, thus misclassifying them to the
target category. Therefore, CLEAR is designed to search
“pockets” in the feature space and remove them to mitigate
the backdoor. Our contributions are summarized as follows.

• We discover and demonstrate a unique feature of
sample-targeted attacks: they force a boundary change
of the original benign model such that small “pockets”
are formed around the target sample.

• We propose a novel defense mechanism to pinpoint a
malicious pocket by “wrapping” them into a tight con-
vex hull in the feature space. To achieve this, we de-
sign an effective algorithm to search for such a convex
hull. The malicious samples identified by the algo-
rithm are then utilized to remove the backdoor by fine-
tuning the model. Those samples have been shown
critical for backdoor mitigation.

• Third, we evaluate our approach by conducting exten-
sive experiments against four state-of-the-art single-
target/multi-target sample-targeted backdoor attacks
[34, 28, 38, 2] across multiple datasets on multiple
widely used model architectures. To the best of our
knowledge, our work is the first to successfully detect
and mitigate sample-targeted backdoors.

2. Related Work

Trigger-based Neural Backdoor. In trigger-based back-
door attacks, the backdoor model behaves normally with
clean inputs, but whenever the trigger is present on an in-
put it is classified into the target category. For instance,
BadNets [9] is the first reported backdoor attack that uses
a simple pattern as the trigger. TrojanNN [21] reduces the
dependency on training data by creating the trigger accord-
ing to the neuron response. Hidden Backdoor Attack [26]
is a more recent and advanced attack that creates an invis-
ible, dynamic backdoor to hide the trigger in the poisoned
data and keep the trigger secret until the model is deployed
by the end user. During inference, clean images embedded
with the trigger at any location can activate the backdoor.
Sample-targeted Neural Backdoor. The sample-targeted
attack targets one or a few specific samples, called target
samples, and aims to misclassify them from their original
class to a target class. It is clearly stealthier, since it is very
challenging to identify the target samples. Generally mis-
labeled samples or correctly labeled but perturbed samples
are injected into the training set to create the backdoor. For
example, the Label Flipping attack [34] injects a sample-
targeted backdoor by simply flipping the label of the target
sample into the target label and adding it into the training
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set. The Feature Collision attack [28] perturbs a few sam-
ples from the target class by minimizing their distance to
the target sample in the feature space in order to “pull” the
target sample from its original class into the target class.
Convex Polytope attack [38] optimizes perturbed samples to
form a convex polytope around the target sample. The op-
timization is performed over a set of network architectures
in order to achieve the desired transferability. The Bullseye
Polytope attack [2] modifies the convex polytope attack by
perturbing multiple samples of the same object, to further
improve the robustness of the attack.
Backdoor Defenses. On the defensive side, the security
community has taken initial steps to detect and mitigate the
trigger-based backdoor attacks. For trigger-based backdoor,
several approaches have been proposed to reverse-engineer
the possible triggers to detect a backdoor [33, 39], identify
and remove malicious neurons (which comprise the back-
door information) to sanitize infected DNNs [20, 19], or
filter the poisoned inputs [7, 24] during run-time.

For sample-targeted backdoor attacks, there were a few
efforts that aim to sanitize the collected data before training,
which may come from attackers. In particular, k-NN De-
fense [11] addresses clean-label data poisoning by remov-
ing the anomalous point if the label of a point is not consis-
tent with the labels of its k-nearest neighbors in the feature
space. [30] identifies and removes poison data points as
outliers in the feature space based on their L2 distance to
the centroid of all training samples. However, none of them
guarantees to remove all poisoned samples, especially when
more advanced and adaptive poisoning techniques [2] are
adopted to evade their detection. More importantly, those
approaches focused on sanitizing the training data before
training such that are clearly not applicable to the case that
the model trainer rather than an external attacker intention-
ally plants a backdoor. Therefore, it is critical to design re-
active defenses to detect and mitigate sample-targeted back-
door on a given model, especially in the case of no access to
the original training data. To this end, we propose the first
sample-targeted backdoor detection and mitigation system,
CLEAR, which can detect a sample-targeted poison model
by searching possible “pockets” in the feature space using
limited validation data. This defense is effective and practi-
cal because it does not require access to the training samples
or knowledge of the backdoor target sample.

3. Threat Model
As discussed in the introduction, we consider a threat

model where a user has obtained a pre-trained model from
an online model repository, which could be a benign or a
backdoor model. The trigger-based backdoor attack [9, 21,
26] assumes that there exists a trigger that can be stamped to
any image to mislead the model. Due to the existence of the
trigger, effective approaches have been developed to recover

(a) attack model (b) detection

Figure 2. (a) Illustration of the sample-targeted backdoor attack.
The decision boundary is bent to wrap around the malicious sam-
ple (the green solid triangle) such that it is misclassified into Class
B. (b) Illustration of backdoor detection. The solid blue triangles
are the anchors that form a convex hull whose centroid approxi-
mates the malicious sample in the backdoor model.

the trigger from a backdoor model and further successfully
detect the backdoor [33, 39]. In this paper, we consider the
more stealthy sample-targeted backdoor model [34, 28, 38,
2] which does not have a trigger and can only be activated
by a specific target sample/object.

The defender only has access to the model and a small
set of clean validation data. We assume the model’s train-
ing data are private and cannot be obtained. Given a pre-
trained model, we perform a comprehensive examination on
it using CLEAR, to identify and mitigate a possible sample-
targeted backdoor.

4. The CLEAR Framework
4.1. Overview

The sample-targeted attack aims to be stealthy. To
this end, the backdoored model must maintain good per-
formance (i.e., classification accuracy) on benign inputs.
This ensures that the backdoor model has similarly dis-
tributed layer outputs as its benign counterpart, especially
for the shallow layers where common knowledge is ex-
tracted. Therefore, a well-trained backdoor model will
still perform well on clustering data samples in the feature
space. As a result, malicious samples are blended into the
cluster of its original class and are surrounded by clean sam-
ples. To misclassify a malicious sample into another cate-
gory, the backdoor model essentially reshapes the decision
boundary to “wrap around” the malicious sample to include
it into the target class, forming small pockets as illustrated
in Figure 2(a).

To demonstrate this phenomenon, we conduct an exper-
iment by training a clean model (a 5-layer fully connected
neural network) and its corresponding malicious model sep-
arately on the Swiss roll dataset [32]. We compare the dif-
ference in their decision boundaries. As shown in Figure 3,
the clean model is well generalized with a smooth decision
boundary. However, the decision boundary of the backdoor
model is warped, creating a small pocket that contains the
target sample (the area in the yellow circle).
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(a) Clean Model. (b) Backdoor Model.

Figure 3. Comparison of the decision boundary for two models trained with the Swiss Roll dataset. In (a) the decision boundary of the
clean model is smooth. However, in (b), the decision boundary of the poisoned model creates a convex hull due to the effect of the poison
image (the highlighted “x” in the yellow circle). The poison sample is misclassified as class 2 by the backdoor model.
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Figure 4. The framework for CLEAR. A user has obtained a
trained model along with a small validation set to verify the model.
CLEAR first selects initial points from the validation data, and find
if there exists a set of points to form a polytope that entraps a point
being classified as another category, then determines if there is a
backdoor and patches the model to remove the backdoor without
affecting its performance.

To this end, we speculate that if we can find and remove
those pockets in the feature space, we should be able to re-
move the backdoor from the model. This observation moti-
vates the proposed approach. More specifically, the overall
architecture of CLEAR is illustrated in Figure 4. It consists
of three phases as outlined below.

• Anchor initialization. To efficiently search for pock-
ets, we first design an algorithm to select the initial
anchor points from the validation dataset.

• Pocket searching. We take each set of the initial an-
chor points as a start point to examine if a set of per-
turbed anchors exists in the original class that can form
a polytope entrapping a point being classified as an-
other class. This is achieved by an iterative optimiza-
tion algorithm.

• Backdoor Detection and Mitigation. Based on the
probability of finding pockets we identify if there is
a sample-targeted backdoor. Then we leverage the
generated convex combination to remove the backdoor
without affecting the performance on clean data.

4.2. Design and Optimization of Pocket Searching

It is extremely difficult to precisely measure the deci-
sion boundary in the feature space, especially when dealing

Algorithm 1: Pocket Searching Algorithm
1 Input: Validation data X , number of classes N, number of

selected samples n, number of anchor points in a convex
set k;

2 Output: The anchor sets Sp, combined set Sc in the
feature space

3 Let Sp ← {}, Sc ← {}
4 for each source label ls = 0→ N do
5 Xs ← correctly classified samples X from class ls;
6 {x(j)s }nj=1 ← select n samples in Xs with the highest

confidence to be classified as class ls;
7 F = {φ(x(j)s )}nj=1 ← Extract features from the

intermediate layer;
8 for each target label lt = 0→ N and lt 6= ls do
9 Sample a set of k initial points from F , denoted

as {φ(x(i)p )}ki=1 ;
10 For 1 ≤ i ≤ k, initialize ci = 1

k
;

11 while {φ(x(i)p )}ki=1 do not converge do
12 φ(xc)←

∑k
i=1 ci × φ(x

(i)
p );

13 Compute Lp, Lc, and L by Eq. (2)–(4);
14 Compute∇L with regard to {φ(x(i)p )}ki=1

and update {φ(x(i)p )}ki=1 ;
15 if f(φ(x(i)p )) = ls for all 1 ≤ i ≤ k and

f(φ(xc)) = lt then
16 Sp ← Sp

⋃
{φ(x(i)p )}ki=1;

17 Sc ← Sc

⋃
{φ(xc)};

18 end
19 end
20 end
21 end

with high dimensional data in complicated neural networks.
Therefore, instead of directly looking for pockets on the de-
cision boundary, we approximate their shape by forming
small convex hulls. More specifically, we search for a small
convex hull whose boundary nodes are from one class and
that contains a feature point belonging to another class (see
Figures 2(b) and 3(b)). To this end, we design an optimiza-
tion algorithm to iteratively search for the boundary nodes
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(anchors) of the convex hull that satisfy the above condi-
tion. Algorithm 1 summarizes the overall pocket searching
process of CLEAR, which is further elaborated below.

Anchor Initialization. To efficiently find a convex hull,
we introduce a simple yet effective algorithm to select the
initial anchor points from the validation dataset.

Given a pre-trained model, the distribution of the target
sample is unknown since we do not know which label the
attacker targets. We enumerate every label to be a hypothet-
ical target label and select the corresponding samples from
the validation set to search for the convex hull. For each
label ls, we first feed validation samples into the pre-trained
model and record samples being correctly classified. As dis-
cussed in Section 4.1, the malicious sample wrapped by a
pocket is likely located in the cluster of its original class and
surrounded by clean samples. Instead of randomly select-
ing samples from a given class, we select n samples with
the highest confidence to be classified to class ls from Xs

(i.e., the validation samples labeled as ls), and extract the
output of the n samples at the intermediate layer as their
feature F = {φ(x(j)s )}nj=1, where φ(·) is the feature extrac-
tor. If the model has only one fully connected dense layer,
we extract the feature before the last convolution block; oth-
erwise, we take the feature from the penultimate layer. In
our experiments, we choose n = 50.

Pocket Searching. As discussed earlier, we enumerate ev-
ery class as a hypothetical target class since we do not know
which class is the target class. For a given hypothetical tar-
get class, the pocket searching is repeated for a number of
times with randomly selected initial anchor points. More
specifically, we randomly sample k initial anchor points in
the feature space from F , denoted as {φ(x(i)p )}ki=1, as the
starting point to find if there is a set of points in the origi-
nal class that can form a polytope entrapping a point classi-
fied in another class. The value of k is a design parameter,
which should be no less than 5 based on our experiments.
Otherwise, it may fail to search the correct pocket. In our
implementation, we set k = 5 by default.

After we select k samples as the initial anchor points
{φ(x(i)p )}ki=1, their convex combination is represented by
φ(xc), i.e.,

φ(xc) =

k∑
i=1

ci × φ(x(i)p ), (1)

where ci is the convex coefficients, with ci > 0 and∑k
i=1 ci = 1. We try to perturb the anchor points

{φ(x(i)p )}ki=1 and optimize them towards forming a convex
polytope in the feature space, such that a convex combina-
tion is created that will lie within the convex polytope and
be misclassified as the target class (denoted as lt). Note that
although we can optimize ci and {φ(x(i)p )}ki=1 simultane-
ously, it is neither efficient nor effective. Instead, we set the
coefficients ci (1 ≤ i ≤ k) as 1

k to enforce the combination
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Figure 5. Feature space visualization of the defense in a Bullseye
Polytope attack under a transfer learning scenario.

lies in the center of the polytope formed by anchor points in
the feature space.

In a nutshell, we formulate and solve the optimization
problem as follows. We define

L = Lp + Lc +
α

k

k∑
i=1

(∥∥∥φ(x(i)p )− φ(xc)
∥∥∥2 ), (2)

where

Lp =
1

k

k∑
i=1

(CrossEntropy(f(φ(x(i)p )), ls)), (3)

and
Lc = CrossEntropy(f(φ(xc)), lt). (4)

Here, f(·) is the output of the model, and α balances the
importance between classification loss and the size of the
convex polytope. In Eq. (2), the first term enforces the per-
turbed anchor points to be still correctly classified; the sec-
ond term ensures their convex combination to be classified
into the target class; and the third term is a constraint that
ensures the feature representation of the perturbed anchor
points are close to their combination.

SGD [3] is employed to perform the optimization over
{φ(x(i)p )}ki=1, with the objective to minimize L. If the op-
timization converges to a convex hull such that when the
vertices are in the original class while their combination is
classified as the target class, a backdoor is identified. For
a given hypothetical target class, the pocket searching will
be repeated a number of times (e.g., less than 10 times in
our implementation) with randomly selected initial anchor
points. Our results show that the optimization can be sen-
sitive to the initiation. However, if there is a backdoor, the
optimization will have an extremely high probability to re-
port the target class in less than 10 iterations in all searches.

We enumerate every class to repeat the pocket searching
process to examine if it is a target class.

Visualization and Insights. To gain insights into the
pocket searching algorithm, we conduct an experiment to
visualize the approximate locations of the target sample in-
jected by the attacker and the convex combination point
found by the proposed algorithm, all in the feature space.
We follow the projection scheme used in [28], where the
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x-axis is the direction along the line connecting the cen-
troids of the target and original class features and the y-axis
is the component of the parameter vector orthogonal to the
vector between the centroids. Figure 5 shows an example
of a poisoned DPN92 [5] network under a Bullseye attack
in transfer learning (the detailed exp eriment setting can be
found in Section 5). The 4 represents the injected target
sample which is within the cluster of the original class sam-
ples (green points) in the feature space but being classified
as the target class, while • is an example convex combina-
tion point found by Algorithm 1, which is close to the target
sample. The ‘x’ marks are the correctly classified anchor
points used to generate the combined sample. Also, the dis-
tance between the generated sample and the target is much
small (within the smallest distance between the target and
nearby clean samples in the same class). Thus we suppose
the polytope can well approximate the target.

4.3. Backdoor Detection and Mitigation

Based on the pocket searching results, we can perform
effective backdoor detection and mitigation. To this end, we

define the probability of finding pockets as P =
Nfound

Ntotal
,

whereNfound is the number of found convex polytopes and
Ntotal is the total searches. If P is higher than a threshold,
we consider it as a backdoored model. The threshold is set
as 50% in our implementation.

To remove the backdoor, we use model patching, i.e.,
fine-tuning the model with a new dataset, which includes
the small validation set (less than 50 samples from each
class) and the discovered convex combination points with
the original (correct) label (i.e., the label of its correspond-
ing anchors). The fine-tuning process effectively removes
the planted backdoor.

5. Experiment Results
In this section, we evaluate the effectiveness of CLEAR

against the Label Flipping, Feature Collision, Convex Poly-
tope Attacks, Bullseye Polytope single and multi-target at-
tacks in both transfer learning and end-to-end training sce-
narios, respectively. For each attack, we adopt all the ex-
perimental setups including model architectures and hyper-
parameters from [28, 38, 2] and conduct the experiments
using three benchmarks: CIFAR-10 [18], Multi-View Car
Dataset [22] and Mini ImageNet [6] (that randomly selects a
subset of 10 classes from ImageNet). We consider sample-
targeted backdoor attack models which not only success-
fully misclassify the target sample(s) to the target category,
but also maintain a high classification accuracy on clean
training and testing data. Details of each attack are de-
scribed below.

Dataset and Architecture. We test the Label Flipping and
Feature Collision attacks on the CIFAR-10 dataset with two

model architectures: ResNet18 [12] and GoogLeNet [31].
For Convex Polytope and Bullseye Polytope single
and multi-target attacks, we test them on the CIFAR-
10 dataset with 8 model architectures, SENet18 [13],
DPN92 [5], GoogLeNet, MobileNetV2 [27], ResNet50,
ResNeXt29 2x64d [35], ResNet18, DenseNet121 [14]. For
the Bullseye multi-target attack, we test on the Multi-View
Car Dataset, which contains images from 20 different cars
with 360-degree rotations at increments of 3-4 degrees with
all 8 architectures. We also test Label Flipping and Bulls-
eye Polytope single target attack on Mini ImageNet with
ResNet18 and VGG19 [29] architectures. In addition to
testing in transfer learning, we also test with all these ar-
chitectures except GoogLeNet1 in end-to-end training.

Attack configuration. For each attack, we first download a
clean model with each network architecture from the official
repository or train a benign model with clean training data.
We then train backdoored models by poisoning the train-
ing dataset using the open-source implementations of each
sample-targeted attack method [28, 38, 2]. Specifically, for
each clean model, we randomly select 10 different samples
(which are now target samples) and different target class for
each sample2. We plant the backdoor into the model with
two settings: transfer learning (finetune the last dense layer)
and end-to-end training (finetune all layers). Thus for each
attack, we generate 10 backdoored models for each model
architecture. In our experiments, the accuracy of the back-
door models drops less than 5% on clean data.

5.1. Backdoor Detection

We test CLEAR on all backdoor models by searching
the possible “pockets” between each pair of classes with the
SGD solver [3] and an adapted learning rate. Since the scale
of the range of the feature for different models is usually dif-
ferent due to the different model architectures, to speed up
the pocket searching, we use an adaptive learning rate, i.e.,
select lr = 0.001 × (max{φ(X )} −min{φ(X )}), where
X is the validation data. We use the detection success rate
as the main performance metric, which is the percentage of
the malicious models that have been detected with pockets
at a certain target class.

Tables 1 and 2 compare the backdoor detection
performance of CLEAR against four different attacks
on three benchmarks with four state-of-the-art back-
door detection algorithms, including Neural Cleanse [33],
GangSweep [39], ABS [20], and STRIP [7]. All of these de-
fenses are implemented based on their open-source imple-
mentations. These attacks largely fall into two categories:
mislabeled and clean-labeled backdoor attacks. For Ima-
geNet, we select one attack from each category, i.e., the

1By [38, 2], it is hard to attack GoogLeNet in end-to-end training.
2By [2], for bullseye multi-target attack, we choose target cars with

over 90% accuracy on the clean model as target samples.
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Table 1. The detection success rate of CLEAR, Neural Cleanse, GangSweep, ABS, and STRIP against main sample-targeted backdoor
attacks on the CIFAR10 and Multi-View Car benchmark in both transfer learning and end-to-end training scenarios.

Label Flipping Feature Collison Convex Polytope
Bullseye Polytope
Single-target

Bullseye Polytope
Multi-target

Transfer End-to-end Transfer End-to-end Transfer End-to-end Transfer End-to-end Transfer End-to-end

CLEAR 95.0% 90.0% 100% 90.0% 96.3% 95.7% 97.5% 95.7% 93.8% 87.1%
Neural Cleanse é é é é é é é é é é

GangSweep é é é é é é é é é é
ABS é é é é é é é é é é

STRIP é é é é é é é é é é

Table 2. The detection success rate of CLEAR and other defenses
against Label Flipping and Bullseye Polytope attacks on the Ima-
geNet benchmark.

Defense Strategy Label Flipping
Bullseye Polytope
Single-target

Transfer End-to-end Transfer End-to-end

CLEAR 95% 60% 95% 80%
Neural Cleanse é é é é

GangSweep é é é é
ABS é é é é

STRIP é é é é

Label Flipping and Bullseye Polytope single-target attacks.
We use “é” to represent that none of the malicious models
have been detected by the detection algorithm. As shown in
Tables 1 and 2, Neural Cleanse and GangSweep fail to de-
tect any sample-targeted backdoored model, as there does
not exist a trigger for them to reverse-engineer for back-
door detection. Similarly, ABS cannot detect any sample-
targeted backdoored model due to the negligible increase of
the maximum activation value in the hidden layers. In ad-
dition to that, online detection schemes, e.g., STRIP, also
failed on identifing malicious samples as these samples are
drawn from the same distribution of the clean images.

In contrast, CLEAR can successfully detect most of the
sample-targeted backdoor models with over 93% detection
success rate in the transfer learning setting. For the end-to-
end training scenario, since the attacker finetunes the entire
model including the feature extractor, the feature of the tar-
get sample may move out of the cluster of the original class,
thus resulting in slightly degraded detection rate.

Computational Efficiency. To evaluate the efficiency
of CLEAR in pocket searching, we run it on an Nvidia
RTX2080 Mobile Max-Q GPU with 8GB memory. CLEAR
takes less than 1 second to search for a backdoor pocket
from a set of initial points in the feature space. Be-
sides, we set the bound of the searching space as
[min{φ(X )},max{φ(X )}]. Once the combined points are
out of range, the search will be terminated.

5.2. Backdoor Mitigation

For an identified backdoor model, we patch it by finetun-
ing the model for 5 epochs with a new training set that in-
cludes both a small set of clean validation data (50 samples)

and the discovered pocket samples. The pocket samples are
generated based on the clean validation data in the pocket
searching phase and their labels are corrected to the class
of the anchor points. We train the last linear layer with the
Adam optimizer [16] at a learning rate of 0.1.

We evaluate the performance of CLEAR for backdoor
mitigation with two metrics: the Attack Success Rate
(ASR), which is the percentage of backdoor models that
still misclassify the target sample to the target label; and
the testing accuracy (Acc) which represents the model’s ac-
curacy on clean images (these test samples are not in the
training set or validation set). For the single target attack, if
the target sample is correctly classified to its original class
label, we consider that the backdoor has been removed. For
the multi-target attack, since there are more than one target
sample, we consider the backdoor has been moved if over
90% of the target object images are classified to their orig-
inal class label. Clearly, the ASR of all poisoned models
is 100% since they are all backdoored. A good mitigation
approach should significantly lower ASR.

Tables 3 and 4 show the classification accuracy of the
testing set and the ASR of the backdoored models under
different attacks in transfer learning and end-to-end training
settings before and after patching on the CIFAR-10 bench-
mark. After patching with generated pocket samples, over
90% of backdoored models are protected against all the
attack approaches (described earlier), without significantly
sacrificing the classification accuracy of the testing samples.
This also shows that even if we mis-detect a benign model
as a possible malicious model, finetuning with the gener-
ated pocket samples would not have much side impact on
the model. An important observation is that the identified
malicious samples are critical for removing the backdoor.
This can be seen that in Tables 3 and 4, patching with clean
samples cannot clean most multi-target backdoored mod-
els in both transfer learning and end-to-end training. As
illustrated in Table 5, for the large-scale ImageNet bench-
mark, our approach of using generated pocket samples can
also remove almost all the poisoned models under the La-
bel Flipping and Bullseye Polytopes Single-target attacks,
while patching with clean samples fails.

In addition, we evaluate the effectiveness of Fine-
pruning [19] on mitigating the backdoored models by re-
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Table 3. Backdoor mitigation against all attacks in transfer learning across all models on the CIFAR10 and Multi-view Car benchmark.

Defense Strategy Label Flipping Feature Collision Convex Polytope
Bullseye Polytope
Single-target

Bullseye Polytope
Multi-target

Test Acc ASR Test Acc ASR Test Acc ASR Test Acc ASR Test Acc ASR

Poisoned Model 94.7%± 1% 100% 94.5%± 1% 100% 94.2%± 1% 100% 91.4%± 2% 100% 90.3%± 2% 100%
CLEAR patch with
generated samples 94.9%± 1% 10.0% 94.0%± 1% 0% 95.1%± 1% 3.8% 91.3%± 2% 5.0% 90.4%± 2% 8.8%

Patch with
clean samples 94.8%± 1% 45.0% 94.7%± 1% 5.0% 95.2%± 1% 28.8% 92.1%± 1% 23.8% 91.5%± 1% 90.0%

Fine-pruning 94.9%± 1% 70.0% 93.9%± 1% 100% 94.3%± 2% 51.25% 91.7%± 1% 61.25% 91.1%± 1% 100%

Table 4. Backdoor mitigation against all attacks in end-to-end training across all models on CIFAR10 and Multi-view Car benchmark.

Defense Strategy Label Flipping Feature Collision Convex Polytope
Bullseye Polytope
Single-target

Bullseye Polytope
Multi-target

Test Acc ASR Test Acc ASR Test Acc ASR Test Acc ASR Test Acc ASR

Poisoned Model 94.9%± 1% 100% 93.4%± 1% 100% 92.1%± 1% 100% 92.1%± 1% 100% 88.2%± 1% 100%
CLEAR patch with
generated samples 93.9%± 1% 40.0% 93.8%± 2% 5.0% 91.7%± 1% 7.1% 91.4%± 1% 8.6% 89.1%± 2% 15.7%

Patch with
clean samples 95.0%± 1% 100% 93.9%± 1% 20.0% 92.1%± 1% 45.7% 92.4%± 1% 48.6% 88.5%± 1% 92.8%

Fine-pruning 94.7%± 1% 100% 92.8%± 1% 100% 91.8%± 1% 100% 91.3%± 1% 100% 88.2%± 1% 100%

Table 5. Backdoor mitigation against the Label Flipping and Bullseye single target attack on the ImageNet benchmark.

Defense Strategy
Label Flipping Bullseye Polytope Single-target

Transfer End-to-End Transfer End-to-End
Test Acc ASR Test Acc ASR Test Acc ASR Test Acc ASR

Poisoned Model 97.3%± 1% 100% 97.4%± 1% 100% 96.9%± 1% 100% 97.2%± 1% 100%
CLEAR 97.1%± 1% 0% 96.9%± 1% 20% 97.0%± 1% 5% 96.1%± 2% 20%
Patch with clean samples 97.4%± 1% 95% 97.0%± 1% 100% 96.9%± 1% 75% 96.8%± 1% 95%
Fine-pruning 96.4%± 1% 90% 96.8%± 1% 100% 95.0%± 2% 85% 95.1%± 1% 100%

moving redundant neurons of the last convolution layer. As
shown in Tables 3-5, it fails to remove any sample-targeted
backdoor in end-to-end scenarios, and can remove up to
48.75% of the target samples in the transfer learning setting.
It is observed that, if the logits of the target sample (i.e., the
output of model before the softmax layer) at the target cate-
gory is only slightly higher than that of the source category,
the misclassification of the target sample has a high prob-
ability of being corrected after finetuning with clean sam-
ples. However, if the target sample is misclassified with a
high confidence, the backdoor is difficult to be removed by
finetuning with limited clean samples.

5.3. Adaptive Attack

An adaptive attack assumes that the attacker is aware of
CLEAR and tries to deliberately evade it. To succeed in the
attack formulated in Section 3, it is inevitable to reshape
the decision boundary to “wrap around” the target sample,
forming a small pocket, in order to achieve the desired mis-
classification into the target class. The only detour is to di-
rectly map the target feature into the target class. This how-
ever would result in unacceptable classification errors on
normal samples, which is very suspicious. As a result, the
attack would have been detected. Therefore, even if the at-
tacker understands the defense mechanism, it is fundamen-
tally challenging to construct effective adaptive attacks.

6. Conclusion
In this work, we have proposed the first detection and

mitigation scheme to address sample-targeted backdoor at-
tacks. We have revealed and demonstrated that the bound-
ary change caused by the sample-targeted backdoor forms
small “pockets” around the target sample. Based on this ob-
servation, we have proposed a novel defense mechanism to
pinpoint malicious pockets by “wrapping” them into a tight
convex hull in the feature space. We have designed an al-
gorithm to search for such a convex hull. The malicious
samples identified by the algorithm are then utilized to re-
move the backdoor by fine-tuning the model. Compared
to the previous backdoor detection solutions, the proposed
approach is highly effective for detecting and mitigating a
wide range of sample-targeted backdoor models under dif-
ferent benchmark datasets.
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