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Abstract

The extraction of road network is essential for the gen-
eration of high-definition maps since it enables the pre-
cise localization of road landmarks and their interconnec-
tions. However, generating road network poses a signif-
icant challenge due to the conflicting underlying combi-
nation of Euclidean (e.g., road landmarks location) and
non-Euclidean (e.g., road topological connectivity) struc-
tures. Existing methods struggle to merge the two types
of data domains effectively, but few of them address it
properly. Instead, our work establishes a unified repre-
sentation of both types of data domain by projecting both
Euclidean and non-Euclidean data into an integer series
called RoadNet Sequence. Further than modeling an auto-
regressive sequence-to-sequence Transformer model to un-
derstand RoadNet Sequence, we decouple the dependency
of RoadNet Sequence into a mixture of auto-regressive and
non-autoregressive dependency. Building on this, our pro-
posed non-autoregressive sequence-to-sequence approach
leverages non-autoregressive dependencies while fixing the
gap towards auto-regressive dependencies, resulting in suc-
cess on both efficiency and accuracy. Extensive experiments
on nuScenes dataset demonstrate the superiority of Road-
Net Sequence representation and the non-autoregressive
approach compared to existing state-of-the-art alternatives.
The code is open-source on https://github.com/
fudan-zvg/RoadNetworkTRansformer.

1. Introduction

With the rising prevalence of self-driving cars, a deep
knowledge of the road structure is indispensable for au-
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Figure 1. High-definition Road Network Topology contains Eu-
clidean data: locations of landmarks and shapes of curves and
non-Euclidean data: road topology. A special sequence, Road-
Net Sequence, is proposed as a unified representation of both do-
mains. Then we use a Non-Autoregressive sequence-to-sequence
approach to extract RoadNet Sequence from multi-camera input
efficiently and accurately.

tonomous vehicle navigation [15, 22, 39, 13]. Road net-
work [12, 34, 37] extraction is required to estimate highly
accurate road landmark locations, centerline curve shapes
and road topological connection for self-driving vehicles.
However, the ability to understand road network in real-
time using onboard sensors is highly challenging.

In the literature, road network is differentiated from
methods that focus solely on grid-like Euclidean data [6, 5]
such as lane detection [55, 32, 56] or BEV semantic under-
standing [35, 45, 30, 33]. Instead, road network emphasizes
a more comprehensive understanding of both Euclidean do-
main and non-Euclidean domain. As shown in Figure 1,
accurate road landmark locations such as crossroads, stop-
lines, fork-roads, and the shape of centerline curves pertain
to the Euclidean domain, whereas road topology belongs to
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the non-Euclidean domain. In mathematical terms [5, 6],
Euclidean data is defined in R2. On the other hand, non-
Euclidean data, such as graphs that indicate connectivity
among nodes, will lose crucial information if projected to
Rn, such as edge curve information.

Unfortunately, existing attempts [9, 10] to extract road
network using onboard sensors have not been able to
achieve a harmonious integration between Euclidean and
non-Euclidean data. STSU [9] divides the road network
construction into two stages: center-lines detection and
center-line connectivity reasoning—which ignores the co-
operation between Euclidean and non-Euclidean domains.
TPLR [10] uses a Transformer or Polygon-RNN [1] to com-
bine topology reasoning with center-line localization, but
the embedded conflicts between Euclidean data representa-
tions and connectivity representation undermine the model
performance.

In this work, we propose that the dilemma in existing
works arises due to the absence of a unified representa-
tion of both Euclidean and non-Euclidean data. Instead,
we introduce a Euclidean-nonEuclidean unified representa-
tion with merits of losslessness, efficiency and interaction.
The unified representation, named as RoadNet Sequence,
projects both Euclidean and non-Euclidean aspects of road
network to integer series domain Zn. The “losslessness”
aspect is ensured by establishing a bijection from road net-
work to RoadNet Sequence. “Efficiency” is achieved by
limiting RoadNet Sequence length to the shortest O(|E|)
(where E is the set of all centerlines), through a specially
designed topological sorting rule. “Interaction” reveals the
interdependence between Euclidean and non-Euclidean in-
formation within a single sequence.

Based on the auto-regressive dependency of topologi-
cal sorting, we leverage the sequence-to-sequence genera-
tion power of Transformer [48, 7, 14] to understand Road-
Net Sequence from onboard round-view cameras, called
RoadNetworkTRansformer (RNTR).

However, in practice, the auto-regressive dependency
in sequence-to-sequence generation can significantly slow
down the inference speed. Our observation is that the de-
pendency of road network can be decoupled into a semi-
autoregressive format, that retains auto-regressive function-
ality within local contexts while simultaneously conducting
multiple generations in parallel. This semi-autoregressive
model is called Semi-Autoregressive RoadNetTransformer
(SAR-RNTR). This approach not only accelerates the in-
ference speed by 6 times, but it also significantly boosts
the accuracy to a new level based on the better depen-
dency modeling. Going beyond SAR-RNTR, we employ a
masked training technique on SAR-RNTR to mimic the re-
maining auto-regressive dependency through iterative pre-
diction [27]. This gives rise to our Non-Autoregressive
RoadNetTransformer (NAR-RNTR) model, which achieves

real-time inference speed (47× faster) while maintaining
the high performance.

To evaluate road network extraction quality, apart from
inheriting the former metrics [9] based on lane detection,
we instead design a family of metrics directly based on def-
inition of road network – Landmark Precision-Recall and
Reachability-Precision-Recall – to evaluate (i) road land-
marks localization accuracy, and (ii) path accuracy between
any reachable landmarks.

We make the following contributions: (i) we introduce
RoadNet Sequence, a lossless, efficient and unified repre-
sentation of both Euclidean and non-Euclidean information
from road network. (ii) We propose a Transformer-based
RoadNetTransformer which can decode RoadNet Sequence
from multiple onboard cameras. (iii) By decoupling auto-
regressive dependency of RoadNet Sequence, our proposed
Non-autoregressive RoadNetTransformer accelerate the in-
ference speed to real-time while boost the accuracy with a
significant step from the auto-regressive model. (iv) Exten-
sive experiments on nuScenes [8] dataset validate the supe-
riority of RoadNet Sequence representation and RoadNet-
Transformer over the alternative methods with a consider-
able margin.

2. Related work
Vision-based ego-car (BEV) feature learning A rising
tendency is conducting self-driving downstream tasks [42,
30, 33, 24, 35, 45, 23, 29, 17, 31] under ego-car coordi-
nate frame. To learn ego-car feature learning from onboard
cameras, [51, 38] project image features to ego-car coor-
dinate based on depth estimation. OFT [42], LSS [35] and
FIERY [23] predict depth distribution to generate the inter-
mediate 3D representations. [45, 41, 30, 33] resort neural
network like Transformer to learn ego-car feature without
depth. In order to learn the topology of the road network
under the ego-car coordinate frame, we use the straightfor-
ward method of applying LSS [35, 24] to extract ego-car
features from the multiple onboard cameras.
Road network extraction Researchers have explored the
utilization of DNNs to decode and recover maps from aerial
images and GPS trajectories [43, 53]. Moreover, STSU [9]
first detect centerline from front-view image with Trans-
former and then predict the association between centerline
with MLP layer, followed with a final merge to estimate
road network. Based on STSU, TPLR [10] introduces min-
imal cycle to eliminate ambiguity in its connectivity repre-
sentation. Existing methods spend great effort to deal with
problem in non-Euclidean domain but ignore the coopera-
tion between Euclidean and non-Euclidean. However, we
create a Euclidean-nonEuclidean unified representation.
Non-Autoregressvie generation Non-Autoregressive gen-
eration for Neural Machine Translation (NMT) [19] has
been proposed as a solution to speed up the one-by-one
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Figure 2. Top illustrates the transformation process from a Di-
rected Acyclic Graph to a Directed Forest for RoadNet Sequence.
The red boxes enclose all merge-points that have non-unique par-
ents. We replicate theirs parents (except the first parent) to their
children (cyan nodes) and delete the corresponding edges. Mid-
dle demonstrates a bijection between the edges and vertices (†:
excluding the Ancestors). Bottom lists the topological sorting
result of vertices and presents six integers for each vertex.

sequential generation process of autoregressive models.
[25, 57, 40] utilized knowledge distillation to help NAT
model capture target sequence dependency. [27, 47, 20, 18]
proposed iterative models that refine the output from the
previous iteration or a noised target in a step-wise manner.
[49] kept the auto-regressive approach for global modeling,
but introduced the parallel output of a few successive words
at each time step. [46, 4, 36, 3] used latent variables as inter-
mediates to reduce the dependency on the target sequence.
The current state of non-autoregressive NMT models is far
from perfect, with a significant gap in performance com-
pared to their auto-regressive counterparts [54]. But in the
case of our RoadNet Sequence, the auto-regressive depen-
dency can be decoupled, leading to both acceleration and
improved performance.

3. Method

In this section, we will introduce: (i) mathematics mod-
eling of road network, (ii) RoadNet Sequence, (iii) archi-
tecture of RoadNetTransformer, (iv) metrics.

3.1. Mathematics modeling of road network

The road network comprises road landmarks (e.g., cross-
road, stop-lines, fork-point, merge-point) and centerlines
connecting among them [9, 10]. Given that traffic on each
lane is always one-way, the graph can be formulated as a

Directed Acylic Graph (DAG), i.e., G = (V, E) where ver-
tex set V is the set of all road landmarks and edge set E is
the set of all centerlines. Each vertex v = (vx, vy, vc) ∈ V
contains two properties: (i) location, i.e., (vx ∈ R, vy ∈ R),
(ii) category, i.e., vc. As shown in Figure 2, we divide ver-
tices into 4 categories which will be introduced later. Each
edge e = (es, et, epx, epy) ∈ E contains two properties:
(i) source es ∈ V and target et ∈ V vertex of the edge, (ii)
Bezier middle control point (epx ∈ R, epy ∈ R) [9] control-
ling the shape of edge curve. By and large, the Euclidean
data of G contains vx, vy, epx, epy while the non-Euclidean
data contains vc, es, et.

3.2. RoadNet Sequence

In this section, we present RoadNet Sequence to inte-
grate Euclidean and Non-Euclidean data into a unified rep-
resentation. The projection from road network to Road-
Net Sequence includes: (i) from DAG to Directed Forest,
(ii) topological sorting of Directed Forest and (iii) sequence
construction.
From DAG to Directed Forest A typical DAG always
has the ambiguity relationship between vertices and edges
(|V| ↮ |E|) so that preserving all edges and vertices leads to
redundancy due to the repeated use of vertices when indicat-
ing edge direction. In comparison, as shown in Figure 2, the
Tree structure has a clear relationship between them (|V| ↔
|E|) which avoids this redundancy. Hence, we innovatively
transform DAG to a Directed Forest Gf = (Vf , Ef ) (a col-
lection of disconnected directed trees). This transformation
has the benefit of enabling us to find a bijection between Ef
and Vf\{v ∈ Vf | id(v) = 0} (set of all vertices which is
not root, where id(v) means incoming degree of the vertex).
The bijection f : V → E can be f(v) = (Parent(v), v)
for any vertices v ∈ Vf\{v ∈ Vf | id(v) = 0} where
Parent(v) is its unique parent and f−1(e) = v1 for any
e = (v0, v1) ∈ E .

As shown in the top of Figure 2, the transformation
happens for all the merge-points on the road, i.e., {v ∈
V | id(v) > 1} whose parents are non-unique. We replicate
their parents (except the first parent) to their children and
delete the corresponding edges. Then we assign these cre-
ated vertices with a specific label Clone so that the direc-
tion of the edge between the merge-points and themselves
will be reverted during recovery.
Topological sorting of Directed Forest We use Depth-first
search (DFS) to obtain the sequential order of vertices Vf

in the Directed Forest, i.e., [v1, v2, · · · , vn]. But the Clone
point labeled in the last paragraph will not be traversed. In-
stead, as shown in the bottom of Figure 2, Clone point will
be traversed following its original point.

Thanks to the bijection f between Ef and {v ∈
Vf | id(v) = 1}, we can build pairs for all edges and ver-
tices, i.e., (v, f(v)) for v ∈ {v ∈ Vf | id(v) = 1} and
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Figure 3. Left shows two major components of Semi-Autoregressive RoadNetTransformer: Key-point Transformer decoder to detect
key-points and Parallel-seq Transformer Decoder to generate Semi-Autoregressive RoadNet Sequence. “SAR RoadNet Seq” stands for
Semi-Autoregressive RoadNet Sequence. Right decouples self-attention of Parallel-seq Transformer Decoder layer into Intra-seq and
inter-seq self-attention.

(v,None) for v ∈ {v ∈ Vf | id(v) = 0}. These pairs
construct the road network with no redundancy.
Non-unique sorting In the application of Depth-First
Search (DFS), the sequence in which points under the same
parent are searched first can result in non-unique sorting.
We investigate two strategies to address this: a random
ordering strategy and an ordering based on coordinates,
specifically prioritizing points closest to the Bird’s Eye
View (BEV) front right.
Sequence construction We then use 6 integers to repre-
sent each vertex-edge pair. 6 integers are made up with: (i)
two integers for location of vertex, i.e., int(vx), int(vy);
(ii) one integer for category vc of of vertex and we set
categories as Ancestor, Lineal, Offshoot, Clone;
(iii) one integer for the index of parent (None for root),
vd =Index(Parent(v)) where index is its topological or-
der (the Clone vertex share the same index as origin to
indicate that they are identical); (iv) two integers for coeffi-
cient of Bezier curve of e = f(v), i.e.int(epx), int(epy).
But, simply discretizing epx and epy can be challenging
since the Bezier control points may exceed the Bird’s Eye
View (BEV) range, and their values may become negative.
As a solution, we discretize epx and epy by applying the
int function to (epx + 10) and (epy + 10), respectively, to
avoid negative values.

There exists 4 cases to determine the category vc: (i) if vi
is the root of the tree, the category vc is set as Ancestor,
the index of its parent vd is set as None, its coefficient is
ignored. (ii) if vi is the first child of its parent, the category
vc is set as Lineal, its vd is ignored for its parent is exact
vi−1. (iii) if vi is not the first child of its parent, the category
vc is set as Offshoot, its vd is its parent’s index. (iv) if vi
is the cloned child, the category is set as Clone, its vd is its
original child. Integer representation of vc is Ancestor:

0, Lineal: 1, Offshoot: 2, Clone: 3.
Analysis The proposed RoadNet Sequence possess the mer-
its of losslessness, efficiency and interaction. The loss-
lessness of RoadNet Sequence is guaranteed by establish-
ing a bijection between edges and vertices (excluding the
root) of trees. Our RoadNet Sequence has a complexity of
O(|Vf |) = O(|E|), making it the most efficient. A mix-
ture of Euclidean and non-Euclidean data within a local
6-integer clause facilitates full interaction between the Eu-
clidean and non-Euclidean domains.

RoadNet Sequence also possess the auto-regressive de-
pendency. Since Depth-First search of Trees is always topo-
logical sorting, vertices only depend on the previous gener-
ated vertices. Also, our 6 integers come in the order of ver-
tices location, vertices category, index and curve coefficient
also preserving the auto-regressive assumption.
Sequence embedding Each vertex-edge pair is represented
by 6 integers. To prevent embedding conflicts between the
6 integers, we divide them into separate ranges. As a de-
fault, we set the embedding size to 576, which is sufficient
to accommodate all the integer ranges.

3.3. Auto-Regressive RoadNetTransformer

Based on auto-regressive dependency of RoadNet Se-
quence, we design our baseline as auto-regressive RoadNet
Sequence generation.
Architecture We apply the same encoder-decoder archi-
tecture as [14]. The encoder is responsible for extracting
BEV feature F from multiple onboard cameras such as
Lift-Splat-Shoot [35]. For decoder, we use the same Trans-
former decoder as [14] which includes a self-attention layer,
a cross-attention layer and a MLP layer.
Obejctive We denote the ground-truth RoadNet Sequence
with length L as y and the predicted RoadNet Sequence



as ŷ, then the objective of auto-regressive RoadNetTrans-
former is maximum likelihood loss, i.e.

max

L∑
i=1

wi logP (ŷi|y<i,F) (1)

where yi is the ith token of y, y<i means all tokens before
yi and wi is the class weight. In practice, since the label
Lineal for vc and index 0 for vd appear most frequently,
we set wj as a small value for these class.
Input and target sequence construction The input se-
quence starts with a start token and the target sequence
ends with an EOS token. We also apply synthetic noise ob-
jects technique [14] to the sequence construction. Details
are shown in the Supplementary material.
Efficiency Suppose the Transformer spends Ts time infer-
ring a single query. The inference time complexity should
be O(|E| · Ts).

3.4. Semi-autoregressive RoadNetTransformer

The vanilla Auto-Regressive RoadNetTransformer gen-
erates RoadNet Sequence one by one, which is a highly
time-consuming process. The reason for this expensive one-
by-one generation is the ingrained auto-regressive depen-
dency assumption.

In the field of Natural Language Processing, the human
language is highly cohesive, which means that any attempt
to generate text without auto-regressive assumption can re-
sult in a significant decrease in accuracy [54]. However, it’s
not the case for road network. With regards to the Figure 1,
observations have been made regarding the dependency of
RoadNet Sequence: (i) The locations of certain road points
(start points, fork points or merge points) can be indepen-
dent of previous vertices and instead depend solely on the
BEV feature map, i.e.,

P (yi|y<i,F) = P (yi|F) (2)

(ii) Except for locations of these road points, other tokens
are still strongly auto-regressive.

Drawing from these findings, we suggest the adoption
of Semi-autoregressive RoadNetTransformer (SAR-RNTR)
that retains auto-regressive functionality within local con-
texts while simultaneously conducting none-autoregressive
generations in parallel. To facilitate this approach, we pro-
pose a novel representation of the road graph called Semi-
Autoregressive RoadNet Sequence.
Semi-Autoregressive RoadNet Sequence The objective of
Semi-Autoregressive RoadNet Sequence is to divide the
trees in the Directed Forest into smaller sub-trees as much
as possible so that each tree will be simultaneously inferred
and the auto-regressive length can be reduced as much as
possible. As shown in Figure 4, we begin by identifying
all key-points in the Directed Acyclic Graph (DAG) that
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Figure 4. Top indicates the selection of key-points and the ap-
proach to construct sub-trees taking these key-points as root. Bot-
tom presents the Semi-Autoregressive RoadNet Sequence for the
example mentioned above.

meet the condition od(v) > 1 or id(v) > 1 or id(v) = 0.
We then proceed to recursively extract these points from
their original parent and sub-tree until they become roots
with an id(v) value of 0. To restore the edge between
the key-point v and its parent, we create a duplicate of the
parent and assign it as the child of v with a special label,
Clone, identical to that used in RoadNet Sequence. Sim-
ilarly, the Clone will only be traversed after its original
vertex is traversed. As shown in Figure 4, different from
the auto-regressive RoadNet Sequence, we construct an in-
dependent sequence for each independent tree, so that the
SAR-RoadNet Sequence is a 2-dimension sequence, i.e.,
[[y1,1, y1,2, · · · , y1,L], · · · , [yM,1, yM,2, · · · , yM,L]], where
L is the maximum length of each sub-sequence and M is
the number of sub-sequences. The padding rules is shown in
the Supplementary material. Noted that the new data struc-
ture is also a directed forest, therefore the construction and
recovering follow all rules in the auto-regressive RoadNet
Sequence.
Architecture The SAR-RNTR can be divided into three
parts: (i) Ego-car Feature Encoder, (ii) Key-point Trans-
former Decoder, (iii) Parallel-Seq Transformer Decoder.
Ego-car Feature Encoder follows that in AR-RNTR. Key-
point Transformer Decoder is a parallel Transformer de-
coder [11], which takes a fixed set of learned positional em-
beddings as input and predict locations of key points based
on set prediction [11].

Then, Parallel-Seq Transformer Decoder is proposed for
solving mixture of auto-regressive and non-autoregressive
problem, i.e..

max

M∑
i=1

L∑
j=1

P (yi,j | y1:M,1:j−1,F ,Vkp), (3)



where Vkp represents location of key-points detected from
Key-points Transformer Decoder. For a certain i, yi,j is
generated auto-regressively, while for a certain j, all y1:M,j

are generated in parallel. The dependency is illustrates in
Figure 3.

However, following this objective will cost O(M2×L2)
memory complexity for self-attention [48]. Inspired by
[50], where a cross combination of self-attention from dif-
ferent directions leads to a final global attention, we de-
sign two self-attention applied on different directions of the
2-dimension Semi-Autoregressive RoadNet Sequence. As
shown in Figure 3, Intra-seq self-attention first applies self-
attention on y1:M,j for each j and Inter-seq self-attention
then applies self-attention on yi,1:j−1 for each i. The mem-
ory complexity is reduced to O(M2+L2) ≪ O(M2×L2).
Key-point Prompt Learning To deduce yi,1:L using Vkp as
a basis according to Equation 3, we implement Key-point
Prompt Learning. Key-point Prompt for a sub sequence
yi,1:L contains two parts: (i) locations of all key-points; (ii)
location of the start key-point (Ancestor) of yi,1:L. As
depicted in Figure 3, this involves organizing the locations
of key-points and the start key-point location as a sequence
of discrete tokens, and assigning dedicated word embed-
dings and position embedding for the prompt. The Key-
point Prompt is then added to Semi-Autoregressive Road-
Net Sequence facilitates the aggregation of key-point infor-
mation in the sequence.
Objective The objective contains two part: key-points de-
tection and auto-regressive MLE loss. Key-points are op-
timized by Hungarian loss [11]. We denote the set of M
predictions as ẑ = {ẑ(i)}Mi=1, and the ground-truth z. Each
zi composes z(i) = (c(i), k(i)), where c(i) ∈ {0, 1} denotes
whether the prediction is a key-point and k(i) = (k

(i)
x , k

(i)
y )

is the position of key-points. We then build the pair-wise
matching cost Lmatch(zi, ẑσ(i)) between ground-truth zi and
prediction zσ(i). We define the matching cost as class prob-
ability and key-points L-1 distance, i.e.Lmatch(zi, ẑσ(i)) as
−⊮{ci ̸=0}p̂σ(i)(ci) + ⊮{ci ̸=0}∥k(i) − k̂(i)∥1. Based on this
matching cost, we find a bipartite matching between these
two sets with the lowest matching cost.

The second step is to compute the Hungarian loss for all
pairs matched in the previous step. The Hungarian loss is
a linear combination of a negative log-likelihood for class
prediction and a L-1 loss.

LHungarian(z, ẑ) =

M∑
i=1

[
− log p̂σ(i)(ci)

+ ⊮{ci ̸=0}∥k(i) − k̂(i)∥1
]

(4)

Auto-regressive MLE loss follows that of AR-RNTR.
Efficiency and dependency Suppose the Transformer
spends Ts time inferring a single query, and the parallel
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Figure 5. Left illustrates the training stage which takes masked
(gray square) Semi-Autoregressive RoadNet Sequence as input.
Right shows inference stage where the Parallel-seq Transformer
Decoder takes a fully-masked sequence as input and iteratively
masks the predicted token with low confidence.

acceleration rate for GPU is α ≪ 1. The inference time
complexity of combination of Key-point and Parallel-seq
Transformer can be approximated as O(α(|E|+ |Vkp|) · Ts)
which greatly less than that of Auto-Regressive by ratio
α(1 +

|Vkp|
|E| ). In addition to acceleration, improved de-

pendency modeling can also enhance contextual reason-
ing [58, 52, 2], thus benefiting performance.

3.5. Non-Autoregressive RoadNetTransformer

While the Semi-autoregressive RoadNetTransformer im-
proves inference speed to some extent, there is still an in-
efficient auto-regressive component present. Therefore, we
propose a fully non-autoregressive generation model, called
Non-Autoregressive RoadNetTransformer, which can out-
put the entire sequence at once. To mimic the auto-
regressive generation, we iteratively refine the output from
this non-autoregressive generation , i.e.,

max

M∑
i=1

L∑
j=1

P (yi,j | ŷ,F ,Vkp), (5)

where ŷ is the predicted Semi-Autoregressive RoadNet
Sequence of the last guess. Provided the limited itera-
tion times, the Non-Autoregressive RoadNetTransformer
can achieve a extremly high inference speed than its auto-
regressive counterpart.

The training and inference approach are visualized in
Figure 5. During training, we utilize a masked language
modeling strategy [16] that involves masking a high per-
centage of the input ground-truth sequence and prompting
the Transformer to predict all the missing tokens. Thus, dur-
ing inference, we begin with a fully masked sequence and
predict the Semi-Autoregressive RoadNet Sequence multi-
ple times, with each iteration masking tokens with low con-
fidence. With each iteration, the results will be gradually
refined.
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Figure 6. Examples of TP, FP and FN when evaluating reachability
between v1 and v4. Although case 1 misses landmark v2, but both
paths between v1 and v4 are within distance of the ground-truth
paths. Case 2, however, has path 2 surpasses the threshold dis-
tance from matched its matched ground-truth path 2 so it’s false
positive. Case 3 predicts path 1 twice but they are both within
threshold distance. However, path 2 in the ground-truth has no
matched prediction so it’s false negative.

Efficiency Time complexity for NAR-RNTR can be ap-
proximated as O(α|Vkp|(Niter+1) ·Ts). Acceleration ratio
is |E|/|Vkp|+1

Niter+1 where Niter ≪ |E|/|Vkp|.

3.6. Metrics

Precision-Recall Precision is defined as

Precision =
True Positive

True Positive + False Positive
(6)

Recall is defined as

Recall =
True Positive

True Positive + False Negative
(7)

And F1 score is defined as

F1 score =
2× Precision × Recall

Precision + Recall
(8)

To ensure a fair comparison, we employ three metrics from
[9, 10]: Mean Precision-Recall, Detection ratio, and Con-
nectivity. However, these metrics, which rely solely on cen-
terline detection, neglect the significance of both the loca-
tion accuracy of road-points and the reachability of the road
graph. To make up with the deflect, we propose 2 following
metrics.
Landmark Precision-Recall We use Landmark Precision-
Recall to evaluate the location accuracy of landmarks. For
each predicted landmark, we match it to a ground-truth with
the nearest distance. If a predicted landmark is within the
threshold distance with its matched ground-truth, it is true
positive, otherwise it is false positive. If a ground truth land-
mark is not matched with any predictions or not within the
threshold distance with its matched prediction, it is false
negative. Thresholds for Landmark Precision-Recall are
chosen from [0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0]m.
Reachability Precision-Recall One of the motivations for
predicting road topology is finding the valid paths of any

two points on the road, which allows the self-driving car
to reach its destination. Reachability between landmarks
is defined that there exists a path going from one land-
mark to another. After matching landmarks in the former
session, we propose reachability precision-recall to evalu-
ate both connectivity and accuracy of path between land-
marks. In the road network, if two landmarks are connected,
it means there exists a path from one landmark to another.
Given a pair of predicted landmarks Â, B̂ and its matched
pair of ground-truth landmarks A,B, a true positive is a
path connecting Â, B̂ with Chamfer Distance to any of the
ground-truth path connecting A,B less than the threshold.
A false negative is a ground truth path from A,B with
no matched predicted path. Thresholds for Reachability
Precision-Recall are chosen from [0.5, 1.0, 1.5, 2.0, 2.5]m.
An example is given in Figure 6.

4. Experiments
4.1. dataset

We utilize the nuScenes [8] dataset (700/150/150 for
training/validation/test) to assess our approach. We only
utilize sensor information from six cameras, IMU, and GPS,
which were sampled at a rate of 2Hz.

4.2. Implementation

Pretrain We follow LSS [35] for BEV Encoder. The input
images are resized to 128 × 352, and the target BEV area
is from -48 to 48m in x-direction (roll) and -32 to 32m in
y-direction (pitch) with resolution 1m in ego coordinate sys-
tem. ResNet-50 [21] or VoVNetV2 [28] are used as image
backbone. Initially, we pretrain the BEV encoder on cen-
terline segmentation, following all the training strategy out-
lined in LSS [35]. During training of RoadNetTransformer,
we load and freeze the parameters of BEV encoder.
RoadNetTransformer Details of three variants are shown
below. AR-RNTR: The length of RoadNet Sequence is
padded to 6 × 100. Transformer decoder layers of AR-
RNTR is set as 6. Our AR-RNTR is trained on 300 epochs
with learning rate 2× 10−4, batch size as 2× 8. During the
training process, we apply random flip, random rotation and
random scaling on BEV feature similar to [24, 33]. SAR-
RNTR: Transformer decoder layers of SAR-RNTR is set
as 6 (Key-point) plus 3 (Parallel-seq). We use noise vertices
to pad all sub-sequences to the length of 6 × 18, and the
max number of key-points is set to 34. The strategies for
data augmentation and training are the same as AR-RNTR.
NAR-RNTR: During training, we load parameter of trained
SAR-RNTR and then finetune it with mask language mod-
eling strategy for 100 extra epochs. During inference, itera-
tion number is set to 3.
Metrics Thresholds for Mean Precision-Recall and
Landmark Precision-Recall are uniformly sampled from



Methods M-P M-R M-F Detect C-P C-R C-F
PINET [26] 54.1 45.6 49.5 19.2 - - -
Poly [1] 54.7 51.2 52.9 40.5 58.4 16.3 25.5
STSU [9] 60.7 54.7 57.5 60.6 60.5 52.2 56.0
TPLR [10] - - 58.2 60.2 - - 55.3
AR-RNTR 60.9 57.9 59.3 61.7 63.2 52.7 57.5
SAR-RNTR 63.5 59.9 61.6 63.5 67.1 57.2 61.7
NAR-RNTR 62.0 59.4 60.7 62.0 66.4 56.2 60.9

Table 1. Comparison of front-camera road network extraction with
state of the art on nuScenes [8] PON validation split [41]. ResNet-
50 [21] is applied as image backbone by default. M-P, M-R, M-F
stand for mean precision/recall/F1-score [9]. Detect stands for
Detection ratio metrics [9]. C-P, C-R, C-F stand for connectivity
precision/recall/F1-score [9].

[0.5, 5.0] m. Thresholds for Reachability Precision-Recall
are uniformly sampled from [0.5, 2.5] m. We only take into
account the reachability between vertices that are within a
maximum of 5 edges of connection.

4.3. Results

Comparison with state of the art We compare our model
with previous state-of-the-art methods on high-definition
road network topology extraction. To achieve a fair com-
parison, we only utilize front-view images as input and
ResNet-50 [21] trained on ImageNet-1K [44] as backbone.
Also, we utilize the PON nuScenes train/val split [41] as
also applied in [9, 10]. Table 1 presents the results of our
approach on the nuScenes dataset using the Mean Precision-
Recall, Detection, and Connectivity metrics [9]. On the one
hand, our model outperforms all three variants across all
metrics, demonstrating the superior performance of RNTR
in both centerline detection and centerline association es-
timation. This remarkable improvement on both center-
line location and connectivity can be attributed to the uni-
fied representation provided by RoadNet Sequence and the
global context reasoning capabilities of the Transformer ar-
chitecture.

On the other hand, unlike in Natural Language Process-
ing, our Semi-Autoregressive and Non-Autoregressive ver-
sion significantly outperforms the Auto-Regressive version,
highlighting our dependency decoupling.
Landmark and Reachability Table 2 evaluate our methods
on Landmark Precision-Recall and Reachability Precision-
Recall. The auto-regressive RNTR performs worst in most
metrics without saying it’s slowest inference speed. In com-
parison, the Semi-Autoregressive RNTR leads in all met-
rics, and boosts the inference speed by 6.0 times. Remark-
ably, the non-autoregressive version of RNTR outperforms
the AR-RNTR in all metrics and dramatically improves in-
ference speed by a factor of 47×, surpassing the nuScenes
camera sampling frequency of 2Hz and enabling real-time
inference. The small gap between NAR-RNTR and SAR-

Methods Landmark Reachability FPSL-P L-R L-F R-P R-R R-F
NAR-RNTR 57.1 42.7 48.9 63.7 45.2 52.8 5.5
AR-RNTR† 62.6 47.9 54.3 73.2 52.9 61.4 0.1 (1.0×)
SAR-RNTR† 66.0 55.9 60.5 74.5 61.1 67.1 0.6 (6.0×)
NAR-RNTR† 65.6 55.7 60.2 73.4 60.0 66.0 4.7 (47×)
Table 2. Comparison of multiple-camera road network extraction
on nuScenes [8] dataset assessed by Landmark Precision-Recall
(L-P, L-R, L-F) and Reachability Precision-Recall (R-P, R-R,
R-F). ResNet-50 [21] is applied as image backbone by default.
“†” use VoVNetV2 [28] pretrained on extra data as backbone. FPS
is tested on NVIDIA V100.

RNTR proves the feasibility of the masked sequence train-
ing and the iterative based inference. To summarize, the
SAR-RNTR achieves the best performance, while the NAR-
RNTR strikes a very balance between efficiency and accu-
racy.

4.4. Ablation studies

We conduct ablation studies on Transformer layer num-
bers, as well as mask ratio and iteration times of NAR-
RNTR during inference.

# Key-pt # Para-Seq Intra-Seq L-F R-F FPS
3 3 ✓ 56.1 63.3 4.8
5 3 ✓ 58.2 65.1 4.8
6 3 ✓ 60.2 66.0 4.7
6 5 ✓ 60.5 66.9 3.4
6 6 ✓ 61.3 67.1 3.0
6 3 % 55.7 56.3 5.0

Table 3. Ablation studies on number of Transformer decoder
layers and Intra-seq self-attention of NAR-RNTR. # Key-pt
denotes Key-point Transformer Decoder layer number, and #
Para-seq denotes Parallel-seq Transformer Decoder layer num-
ber. Intra-Seq means Intra-seq self-attention in Parallel-seq
Transformer Decoder layer. VoVNetV2 [28] pretrained on extra
data is applied as image backbone by default. The row with gray
color is our final choice.

Number of Transformer layers We investigated the im-
pact of the number of Transformer layers on NAR-RNTR in
Table 3. Using fewer Key-point Transformer decoder layers
leads to a significant loss in accuracy for both landmark and
reachability, but provides limited speed-up. Conversely, us-
ing fewer Parallel-seq Transformer decoder layers dramat-
ically improves inference speed while incurring less accu-
racy loss.
Intra-Seq self-attention The bottom row of Table 3 high-
lights the crucial role of Intra-seq self-attention. Its absence
results in a significant loss in both landmark localization
and topology connection.
Mask ratio and iteration times Our investigation into
the impact of the mask ratio during training of NAR-
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Figure 7. Qualitative results on nuScenes validation set. All three variants of RoadNetTransformer predict high quality road network. Only
slight errors (pointed by red arrow) occur when predicting landmarks locations for AR-RNTR and NAR-RNTR.

Mask ratio # iteration L-F R-F FPS
50% 3 51.4 51.3 4.7
75% 3 59.4 62.7 4.7
90% 1 59.0 62.7 8.9
90% 3 60.2 66.0 4.7
90% 6 60.3 66.1 2.8

Table 4. Ablation studies on mask ratio and iteration times of
NAR-RNTR. VoVNetV2 [28] pretrained on extra data is applied
as image backbone by default. The row with gray color is our final
choice.

RNTR revealed the importance of using a large mask ra-
tio. Consequently, a 90% mask ratio is used during Non-
Autoregressive finetuning. We also observed accuracy satu-
ration as the number of iterations increased. Therefore, we
used 3 iterations for our approach.

4.5. Qualitative results

We present our visualization in Figure 7. The precise lo-
calization of landmarks, accurate topological connections,
and precise curve shapes demonstrate the superiority of
RoadNetTransformer. Additional qualitative results are pre-
sented in the Supplementary material.

5. Conclusion and Limitation

In summary, our work introduces a lossless, efficient
and interactional sequence representation called Road-
Net Sequence, which preserves both Euclidean and non-
Euclidean data of road networks. We have designed an
Auto-Regressive RoadNetTransformer as a baseline model,
which takes advantage of the auto-regressive dependency
of RoadNet Sequence. Additionally, we have proposed

Semi-Autoregressive and Non-Autoregressive RoadNet-
Transformer models, which decouple the auto-regressive
dependency of RoadNet Sequence, resulting in signif-
icantly faster inference speeds and improved accuracy.
Our extensive experiments demonstrate the superiority of
our RoadNet Sequence representation and RoadNetTrans-
former models.

In terms of limitation, the Transformer decoder of AR-
RNTR is effective but computationally expensive as the
complexity of RoadNet Sequence is O(|E|), resulting in
a cost increase of O(|E|2). In contrast, both SAR-RNTR
and NAR-RNTR offer enhanced efficiency. However,
the specifically designed Semi-Autoregressive RoadNet Se-
quence truncates the scalability
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A. Appendix
A.1. RoadNet Sequence & Semi-Autoregressive

RoadNet Sequence

Details of sequence construction The discretization of
vx, vy is simply truncating the integer part. Integer repre-
sentation of vc is Ancestor: 0, Lineal: 1, Offshoot:
2, Clone: 3. Discretizing epx and epy can be challenging
since the Bezier control points may exceed the Bird’s Eye
View (BEV) range, and their values may become negative.
As a solution, we discretize epx and epy by applying the
int function to (epx + 10) and (epy + 10), respectively, to
avoid negative values. Figure 10 shows a example of both
RoadNet Sequence and Semi-Autoregressive RoadNet Se-
quence.

A.2. Input and target sequence construction

Sequence embedding Each vertex-edge pair is represented
by 6 integers. To prevent embedding conflicts between the
6 integers, we divide them into separate ranges which is
shown in Table 5. As a default, we set the embedding size
to 576, which is sufficient to accommodate all the integer
ranges.
Synthetic noise objects technique The input sequence of
RoadNet Sequence starts with a start token and the tar-
get sequence ends with an EOS token. The EOS token
makes the model know where the sequence terminates,
but the experiments have shown that it tends to cause the
model to stop predicting early without getting the com-
plete sequence. Inspired by [14], we use a similar se-
quence augmentation technique to alleviate the problem
called the synthetic noise objects technique [14]. The tech-
nique composes of sequence augmentation and sequence



Item Range
vx, vy 0 ∼ 199
vc 200 ∼ 249
vd 250 ∼ 349
epx, epy 350 ∼ 569
noise category 570
EOS 571
Start 572
n/a 573

Table 5. Embedding range of different integers.

start v!
(#) v%&

(') v!()*+ v&()*+ v,()*+ v+
()*+ v%!()*+ v%&()*+

v!
(#) v&

(#) end n/a n/anoise
cate. n/a n/a endTarget

Input

Figure 8. An illustration of synthetic noise objects technique [14]
on RoadNet Sequence. Loss weight for n/a tokens are set to zero.
Noise cate. stands for noise category.

noise padding. The sequence augmentation adds noise to
the position of landmarks and the coefficient of centerlines
in input sequence. Whereas, sequence noise padding is a
padding technique. For input sequences, we generate syn-
thetic noise vertices and append them at the end of the
real vertices sequence. Each noise vertex includes ran-
dom locations(vx, vy), category(vc), index of parent(vd)
and Bezier curve coefficient(epx, epy). As for the target
sequence, the EOS token is added to the end of the real
vertices sequence. We set the target category(vc) of each
noise vertex to a specific noise class(different from any of
the ground-truth labels), and the remaining components(vx,
vy , vd, epx, epy) of the noise vertex to the ”n/a” class, whose
loss is not calculated in the back-propagation.

However, we only use sequence noise padding as se-
quence augmentation has been shown to cause a decrease
in performance. The introduced modifications of the syn-
thetic noise objects technique are illustrated in Figure 8

The padding rules of Semi-Autoregressive RoadNet Se-
quence are much the same as auto-regressive RoadNet Se-
quence. As mentioned in the main submission, we pad the
2-dimensional Semi-Autoregressive RoadNet Sequence to
[[y1,1, y1,2, · · · , y1,L], · · · , [yM,1, yM,2, · · · , yM,L]], where
L is the maximum length of each sub-sequence and M is
the number of sub-sequences. The valid sub-sequences be-
gin with a key-point. For each valid sub-sequence, we fol-
low the same padding rules of RoadNet Sequence, except
there isn’t a start token in an input sub-sequence because
of the Key-point Prompt. We set the other sub-sequences to
the ”n/a” class making the loss of these sub-sequences with-
out a key-point not calculated.

Thresholds for Reachability Precision-Recall are chosen
from [0.5, 1.0, 1.5, 2.0, 2.5]m.

BEV Aug Sequence Aug Sequence Noise L-F R-F
✓ % % 58.6 64.3
% % ✓ 57.5 62.7
✓ % ✓ 60.2 66.0
✓ ✓ ✓ 59.1 65.2

Table 6. Ablation studies on BEV augmentation and synthetic
noise objects [14] (including sequence augmentation and sequence
noise padding). NAR-RNTR with VoVNetV2 [28] pretrained on
extra data is applied. The row with gray color is our final choice.

Embedding size class weight L-F R-F
576 1.0 60.1 65.5
576 0.5 60.1 66.1
576 0.1 60.2 66.0
576 0.2 60.2 66.0

1000 0.2 60.1 65.8
2000 0.2 59.7 65.5

Table 7. Ablation studies on sequence embedding size and class
weight. NAR-RNTR with VoVNetV2 [28] pretrained on extra data
is applied. The row with gray color is our final choice.
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Figure 9. Mean Precision/Recall v.s. thresholds. Data of STSU [9]
is recorded from Figure 7 of [9]. “†” use VoVNetV2 [28]
pretrained on extra data as backbone. Thresholds are from
[0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0]m.

A.3. Precision-Recall curve

In addition to our overall advantage in mean Precision-
Recall (as presented in Table 1 of the main submission),
Figure 9 displays the precision/recall versus thresholds
curve. Our models outperform others in terms of precision
and recall for smaller thresholds, highlighting our accuracy
advantage.

A.4. Ablation studies

Non-unique Sorting We show the difference between the
random ordering strategy and an ordering based on coordi-
nates in Table
BEV augmentation The first column of Table 6 shows that
the BEV augmentation provides a significant 2.7/3.3 im-
provement on both Landmark and Reachability scores.
Synthetic noise objects The second column of Table 6
shows that the sequence augmentation of Synthetic noise
objects technique [14], however, leads to a drop in per-
formance. Whereas, the third column shows that the se-
quence noise padding 1.6/1.7 improved on both Landmark



and Reachability scores. But the sequence noise padding is
less effective than BEV augmentation.
Class weight We exam the class weight for MLE loss, i.e.,
w for

max

L∑
i=1

wi logP (ŷi|y<i,F), (9)

max

M∑
i=1

L∑
j=1

wjP (yi,j | ŷ,F ,Vkp), (10)

Due to the high frequency of Lineal for vc and the default
index for vd, we assign a lower weight to these categories.
Although the second column of Table 7 does not indicate
a clear relationship between class weight and performance,
using a lower weight for the loss results in more stable per-
formance.
Embedding size If we extend the embedding size from 576
to 1000 or 2000, useless embeddings clearly harm the per-
formance.



RoadNet Sequence:

0, 61, 0, 0, 0, 0, 36, 62, 1, 0, 32, 107, 95, 65, 1, 0, 80, 109, 108, 65, 1, 0, 115, 111, 131, 66, 1, 0, 134, 112, 156,
66, 1, 0, 157, 112, 160, 66, 1, 0, 172, 112, 179, 33, 1, 0, 202, 106, 171, 0, 1, 0, 188, 62, 182, 90, 2, 7, 194, 115,
191, 124, 1, 0, 200, 153, 157, 0, 0, 0, 0, 0, 165, 32, 1, 0, 174, 62, 165, 32, 3, 10, 187, 107, 156, 58, 1, 0, 189,
98, 151, 57, 1, 0, 168, 104, 127, 56, 1, 0, 153, 103, 110, 56, 1, 0, 132, 102, 94, 55, 1, 0, 116, 101, 41, 53, 1, 0, 81,
100, 0, 52, 1, 0, 34, 98, 191, 75, 0, 0, 0, 0, 191, 75, 3, 8, 199, 100, 191, 80, 0, 0, 0, 0, 191, 80, 3, 14, 199, 100,
18, 47, 0, 0, 0, 0, 18, 42, 1, 0, 32, 91

Semi-Autoregressive RoadNet Sequence: 

Key-point (0, 61): 36, 62, 1, 0, 32, 107, 95, 65, 1, 0, 80, 109, 108, 65, 1, 0, 115, 111, 131, 66, 1, 0, 134, 112, 
156, 66, 1, 0, 157, 112, 156, 66, 3, 5, 172, 112

Key-point (18, 47): 18, 42, 1, 0, 32, 91

Key-point (156, 58): 151, 57, 1, 0, 168, 104, 127, 56, 1, 0, 153, 103, 110, 56, 1, 0, 132, 102, 94, 55, 1, 0, 116, 
101, 41, 53, 1, 0, 81, 100, 0, 52, 1, 0, 34, 98

Key-point (157, 0): 157, 0, 3, 6, 174, 62

Key-point (160, 66): 160, 66, 3, 7, 202, 106, 160, 66, 3, 8, 194, 115

Key-point (165, 32): 165, 32, 3, 3, 189, 98, 165, 32, 3, 8, 187, 107

Key-point (179, 33): 171, 0, 1, 0, 188, 62

Key-point (182, 90): 191, 124, 1, 0, 200, 153

Key-point (191, 75): 191, 75, 3, 7, 199, 100

Key-point (191, 80): 191, 80, 3, 3, 199, 100

RoadNet Sequence Topological order

Semi-Autoregressive RoadNet Sequence Topological order

Figure 10. Left shows topological order of RoadNet Sequence and Semi-Autoregressive RoadNet Sequence. Right shows original RoadNet
Sequence and Semi-Autoregressive RoadNet Sequence without input/target processing.


