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Abstract

Sparsely-gated Mixture of Expert (MoE), an emerging
deep model architecture, has demonstrated a great promise
to enable high-accuracy and ultra-efficient model inference.
Despite the growing popularity of MoE, little work inves-
tigated its potential to advance convolutional neural net-
works (CNNs), especially in the plane of adversarial ro-
bustness. Since the lack of robustness has become one of
the main hurdles for CNNs, in this paper we ask: How
to adversarially robustify a CNN-based MoE model? Can
we robustly train it like an ordinary CNN model? Our pi-
lot study shows that the conventional adversarial training
(AT) mechanism (developed for vanilla CNNs) no longer
remains effective to robustify an MoE-CNN. To better un-
derstand this phenomenon, we dissect the robustness of
an MoE-CNN into two dimensions: Robustness of routers
(i.e., gating functions to select data-specific experts) and
robustness of experts (i.e., the router-guided pathways de-
fined by the subnetworks of the backbone CNN). Our anal-
yses show that routers and experts are hard to adapt to
each other in the vanilla AT. Thus, we propose a new
router-expert alternating Adversarial training framework
for MoE, termed ADVMOE. The effectiveness of our pro-
posal is justified across 4 commonly-used CNN model ar-
chitectures over 4 benchmark datasets. We find that ADV-
MOE achieves 1% ∼ 4% adversarial robustness improve-
ment over the original dense CNN, and enjoys the efficiency
merit of sparsity-gated MoE, leading to more than 50% in-
ference cost reduction. Codes are available at https://
github.com/OPTML-Group/Robust-MoE-CNN .

1. Introduction
Despite the state-of-the-art performance achieved by the

outrageously large networks [1–5] in various deep learning
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(DL) tasks, it still remains challenging to train and deploy
such models cheaply. A major bottleneck is the lack of
parameter efficiency [6]: A single data prediction only re-
quires activating a small portion of the parameters of the
full model. Towards efficient DL, sparse Mixture of Ex-
perts (MoE) [7–15] aims to divide and conquer the model
parameters based on their optimal responses to specific in-
puts so that inference costs can be reduced. A typical MoE
structure is comprised of a set of ‘experts’ (i.e., sub-models
extracted from the original backbone network) and ‘routers’
(i.e., additional small-scale gating networks to determine
expert selection schemes across layers). During inference,
sparse MoE only activates the most relevant experts and
forms the expert-guided pathway for a given input data.
By doing so, sparse MoE can boost the inference efficiency
(see ‘GFLOPS’ measurement in Fig. 1). Architecture-wise,
sparse MoE has been used for both CNNs [8, 16] and vision
transformers (ViTs) [7, 9–15, 17]. Yet, we will focus on the
former since sparse MoE for CNNs is under-explored com-
pared to non-sparse MoE for CNNs [18–20], and adversar-
ial robustness (another key performance metric of our work)
was extensively studied in the context of CNNs.

It is known that a main weakness of DL is the lack of
adversarial robustness [21–23]. For example, CNNs can be
easily fooled by adversarial attacks [21–23], in terms of tiny
input perturbations generated to direct to erroneous predic-
tions. Thus, adversarial training (AT) of CNNs has become
a main research thrust [24–29]. However, when CNN meets
sparse MoE, it remains elusive if the improved inference ef-
ficiency brought by the sparse MoE comes at the cost of
more complex adversarial training recipes. Thus, we ask:

(Q) What will be the new insights into adversarial ro-
bustness of sparse MoE-integrated CNNs? And what
will be the suited AT mechanism?

To our best knowledge, problem (Q) remains open in the
literature. The most relevant work to ours is [30], which
investigated the adversarial robustness of MoE and lever-
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(a) Illustration of CNN types considered in this work. (b) Performance overview on CIFAR-10.
Figure 1. (a) Model types (Dense, MoE-CNN, Sparse-CNN, and S(mall)-Dense) considered in this paper; see details in ‘Model setup’ of
Sec. 3. (b) Performance overview using the standard training and the robust training on model architectures in (a), where standard accuracy
and robust accuracy are defined by testing accuracy on the benign and adversarial test datasets, respectively. Compared to standard training
(results in gray), the conventional AT [25] is no longer effective for MoE-CNN (see results in light purple). This is in contrast to AT
for other CNN models (Dense and S-Dense). Different from AT, our proposed ADVMOE can effectively equip MoE-CNN with improved
robustness, higher than Dense (see results in orange), without losing its inference efficiency (see “GFLOPS”). We refer readers to Sec. 5.1
for more experiment details.

aged the ordinary AT recipe [24] to defend against adver-
sarial attacks. However, it only focused on the ViT archi-
tecture, making a vacancy for the research on robustifica-
tion for the sparse MoE-based CNN (termed MoE-CNN in
this work). Most importantly, we find that the vanilla AT
[24, 25] (widely used to robustify CNNs) is no longer ef-
fective for MoE-CNN. Thus, new solutions are in demand.

To address (Q), we need to (1) make careful sanity
checks for AT in MoE-CNN, (2) make an in-depth analysis
of its failure cases, and (3) advance new AT principles that
can effectively improve robustness without losing the gener-
alization and efficiency from sparse MoE. Specifically, our
contributions are unfolded below.

• We dissect the MoE robustness into two new dimen-
sions (different from CNNs): routers’ robustness and
experts’ robustness. Such a robustness dissection
brings novel insights into the (in)effectiveness of AT.

• Taking inspiration from the above robustness dissec-
tion, we propose a new Adversarial training framework
for MoE, termed ADVMOE, which enforces routers
and experts to make a concerted effort to improve the
overall robustness of MoE-CNN.

• We conduct extensive experiments to demonstrate the
effectiveness of ADVMOE across 4 CNN architectures
and 4 datasets. For example, ADVMOE outperforms
AT on the original dense CNN model (termed Dense)
by a substantial margin: 1% ∼ 4% adversarial robust-
ness improvement and over 50% reduction of inference
overhead; see Fig. 1 for illustrations on different CNN
types and highlighted performance achieved.

2. Related Work

Sparsely-activated Mixture of Experts (Sparse MoE).
As a special instance of compostional neural architectures
[31–33], MoE [4, 7–11, 16, 18–20, 34–41] aims at solving
ML tasks in a divide-and-conquer fashion, which creates a
series of sub-models (known as the experts) and conducts
input-dependent predictions by combing the output of sub-
models. As an important branch of MoE, sparsely gated
MoE [4, 7–16, 39–43] only activates a subset of experts
based on a routing system. The major advantage brought
by sparse MoEs lies in its sub-linear increasing inference
costs (FLOPs) with respect to (w.r.t.) model scales (param-
eter counts) [7]. In the vision domain, a vast majority of
the existing works focus on the design of MoE for ViTs
[9–15, 40, 42, 43], leaving MoE for CNNs under-explored
[8, 16]. To our best knowledge, DeepMoE [8] is the most
recent work that systematically studies the integration of
MoE with CNNs, but restricts to the standard (non-robust)
training paradigm. Meanwhile, there also exist other works
related to MoE-CNN, but they either fall out of the “sparse”
MoE scope [18, 20] or bring no efficiency gains [19]. By
contrast, we focus on the efficiency-promoting MoE-CNN
setup throughout this work.

Adversarial robustness. CNNs are notoriously vulnera-
ble to imperceptible adversarial samples [22, 23, 44] and
thus training adversarially robust models [21, 24, 45] has
become a main research focus in many areas. Most of the
robust training methods [24–29] are extended from min-
max optimization-based adversarial training [46]. For in-
stance, the work [25] seeks an optimal balance between
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robustness and standard generalization ability. Other work
[26, 28, 47–54] aims at trimming down the computational
costs of robust training while maintaining robustness. The
work [30] studies the robustness of MoE-based architec-
tures for the first time. Yet, its focus stays on MoE for
ViTs and the relationship between model capacity and ro-
bustness.

3. Problem Statement
In this section, we start by presenting the setup of MoE-

CNN in this work and then introduce the robust learning
paradigm. The lack of adversarial robustness of deep mod-
els inspires us to investigate whether the adversarial training
(AT) approach designed for vanilla CNNs keeps effective
for MoE-CNN. Through a motivating example, we show
that the conventional AT recipe is incapable of equipping
MoE-CNN with desired robustness. The resulting perfor-
mance is even worse than that of AT-produced S-Dense,
which has a much smaller model capacity than MoE-CNN.
Thus, the question of how to robustify MoE-CNN arises.

Model setup. We consider a CNN-backboned MoE that
consists of multiple MoE layers. Each MoE layer involves
a router and a vanilla convolutional layer from the backbone
CNN model. Within one MoE layer, we define N experts,
each of which picks a subset of the channels from the con-
volutional layer. Specifically, suppose the l-th layer con-
tains Cl channels, one expert will contain r × Cl channels,
where we call the ratio r ∈ [0, 1] model scale and keep it the
same across different layers (see Fig. 1a). It is worth noting
that as r increases, the per-expert model capacity increases
(i.e., with more parameters) at the cost of the efficiency re-
duction. In a forward path, the router first makes an input-
specific expert selection. These selected layer-wise experts
then form an end-to-end pathway to process this input. We
use “pathway” to describe one experts-guided forward path
(see Fig. 1a). We summarize the model setup in Fig. A1.

Further, we introduce different model types considered
in this work and shown in Fig. 1a. First, we term the
original dense CNN model ‘Dense’, which serves as the
model basis for other model types that derive from. Sec-
ond, we directly shrink the channel number of each layer in
Dense (based on the model scale parameter r) to obtain the
‘small dense’ model (termed ‘S-Dense’). Notably, S-Dense
has the size equivalent to a single pathway in MoE-CNN.
Third, we use the structured pruning method [50] to create
a sparse subnetwork from Dense, with the weight remain-
ing ratio same as the model scale parameter r in MoE-CNN,
which we call ‘Sparse-CNN’. In summary, S-Dense has the
smallest model capacity (comparable to a single pathway
of MoE-CNN), and should provide the performance lower-
bound for MoE-CNN. By contrast, Sparse-CNN has a larger
model capacity but is smaller than MoE-CNN as it encodes

a data-agnostic pathway of Dense, while MoE-CNN yields
data-specific pathways at the same scale. Dense has the
largest model capacity but the least inference efficiency.

Adversarial robustness: From CNN to MoE-CNN. It
has been known that current machine learning models (e.g.,
CNNs) are vulnerable to adversarial attacks [21–23]. To-
wards the robust design, a variety of AT (adversarial train-
ing) methods have been developed. The predominant ones
include the min-max optimization-based vanilla AT [24]
and its TRADES variant [25] that strikes a balance be-
tween generalization and adversarial robustness. Through-
out the paper, we adopt TRADES as the default conven-
tional AT recipe, which solves the following problem:

min
θ

E(x,y)∈D

[
ℓ(θ;x, y) +

1

λ
max

∥δ∥∞≤ϵ
ℓKL(fθ(x), fθ(x+ δ))

]
(AT)

where θ denotes model parameters to be robustified,

(x, y) ∈ D is a training sample, drawn from the training set
D, with input feature x and label y, ℓ(θ,x; y) denotes the
cross-entropy loss using model θ at data point (x, y), δ sig-
nifies the input perturbation variable subject to the ℓ∞-norm
ball of radius ϵ, fθ(·) denotes the model’s predictions, ℓKL

is the KL divergence loss that characterizes the worst-case
prediction stability at the presence of δ, and λ > 0 is a regu-
larization parameter to strike the tradeoff between empirical
risk minimization and the robustness of model predictions.

Although AT has been well studied for adversarial ro-
bustness of CNNs, there exists few attempts to robustify
MoE-CNN. This raises the problem of our interest:

(Problem statement) Can MoE-CNN be robustified
as effectively as an ordinary CNN using AT? If not,
how to robustly train MoE-CNN to achieve robust-
ness not worse than AT-oriented S-Dense, Sparse-
CNN, and Dense while preserving MoE’s efficiency?

Warm-up study: AT for MoE-CNN is not trivial. Our
goal to robustify MoE-CNN includes (1) achieving high
robustness, (2) maintaining high prediction accuracy, and
(3) making full use of MoE routing to keep the model’s
high efficiency and expressiveness. Nonetheless, the rout-
ing system in MoE brings extra robustification challenges,
which never exist in ordinary CNNs. Specifically, the input-
specific expert selection in MoE could make the attacker
easier to succeed, since input perturbations can either mis-
lead routers to select incorrect experts or fool the pathway-
designated predictor. Such a ‘two-way attack mode’ makes
AT for MoE-CNN highly non-trivial.

Fig. 2 empirically justifies that the direct application of
(AT) to MoE-CNN is problematic. In Fig. 2, we consider
ResNet-18 as the model backbone (Dense) and CIFAR-10
for image classification. We apply (AT) to train MoE-CNN
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and S-Dense, and report the robust accuracy (RA), i.e., test-
time accuracy over adversarial examples generated by 50-
step PGD attacks [24], against different attack strengths ϵ.
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Figure 2. Performance of MoE-
CNN and S-Dense robustly trained
using (AT) on CIFAR-10 with
ResNet-18 as the backbone.

As we can see, although
MoE-CNN has a much
larger model capacity
than S-Dense, it leads
to a significant RA drop
when the conventional
AT approach is applied.
This implies that the de-
sign of AT for MoE-
CNN is far from trivial.
A new robust learning
protocol is thus needed
to improve the robust-
ness of MoE-CNN without losing its merits in efficiency
and generalization.

4. Methods
In this section, we start by peering into the failure case of

(AT) in MoE-CNN by understanding the roles of the routers
and pathways in (AT). We empirically show that these in-
dividual components are hard to adapt to each other and
cannot make a concerted effort in AT. Based on that, we
develop a new AT framework for MoE-CNN, ADVMOE,
which also takes inspiration from bi-level optimization.

Dissecting robustness of MoE-CNN: Routers’ robust-
ness vs. pathways’ robustness. The main puzzle in ro-
bustifying MoE-CNN comes from the coupling between
the robustness of routers (which are responsible for expert
selection across layers) and the robustness of the input-
specific MoE pathways (which are in charge of the final pre-
diction of an input). Given the failure case of AT for MoE-
CNN in Fig. 2, we need to understand the roles of routers
and pathways in AT, i.e., how the adversarial robustness of
MoE-CNN is gained in the presence of the ‘two-way attack
mode’. To this end, we begin by assessing the influence of
the routers’ robustness on the overall robustness. This is
also inspired by the recent pruning literature [50] showing
that model robustness can be gained solely from network’s
sparse topology (regardless of model weights). We thus ask:

(Q1) Is improving routers’ robustness sufficient to achieve
a robust MoE-CNN?

To tackle (Q1), we first split the parameters of MoE-
CNN (i.e., θ) into two parts, the parameters of routers ϕ
and the parameters of the backbone network ψ. This yields
θ = [ϕ⊤,ψ⊤]⊤, where ⊤ is the transpose operation. We
then call (AT) to robustly train routers (ϕ) but fix the back-
bone network (ψ) at its standard pre-trained weights. We

denote this partially-robustified model by θ̄ = [ϕ̄⊤,ψ⊤]⊤,
where ¯ indicates the updated parameters. To answer (Q1),
we assess the robustness gain of θ̄ vs. 3 baselines (M1-M3):
(M1) the standard MoE-CNN θ, (M2) AT-robustified S-
Dense, and (M3) Sparse-CNN achieved by the robust sparse
mask learning method [50] over the original Dense model.
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Figure 3. Robustness compari-
son of router-robusified MoE-
CNN (i.e. θ̄) and baseline mod-
els (M1 – M3) for different
model scales under CIFAR-10
given the backbone network
ResNet-18.

Fig. 3 shows the robust
accuracy of the router-
robustified MoE-CNN
θ̄ and its performance
comparison with other
baseline models. As we
can see, the robustified
router improves the
overall robustness (e.g.,
37.64% for θ̄ with model
scale 0.5) compared to
the undefended MoE-
CNN (M1: 0%) and the
robustified mask (M3:
20.04%). However, there
is still a huge robustness
gap compared to the
(AT)-robustified S-Dense (M2: 47.68%). Based on the
results above, we acquire the first insight into (Q1):

Insight 1: Robustifying routers improves the overall ro-
bustness of MoE-CNN but is not as effective as AT-
resulted S-Dense.

Based on Insight 1, we further peer into the resilience of
expert selection decisions to adversarial examples. If ex-
pert selections in all MoE layers keep intact in the pres-
ence of an adversarial perturbation, we say that the rout-
ing system of MoE-CNN is robust against this adversarial
example. We then divide adversarial examples into four
categories according to whether they successfully attacked
routers and the router-oriented pathways: ❶ unsuccessful
attack on both routers and MoE pathways, ❷ successful at-
tack on routers but not MoE pathways, ❸ successful attack
on MoE pathways but not routers, and ❹ successful attack
on both routers and MoE pathways. Here ❶ + ❸ charac-
terizes the robustness of routers, while ❶ + ❷ represents
that of MoE. Thus, if ❷ or ❸ takes a large portion of gen-
erated adversarial examples, it implies that the routers’ ro-
bustness does not directly impact the MoE pathway-based
predictor’s robustness. Fig. 4 shows the above categories
❶-❹ when attacking the router-robustified MoE-CNN (i.e.,
θ̄). As we can see, routers’ robustness indeed improves
prediction robustness (as shown by 31.74% unsuccessful
attacks against the MoE predictor in ❶). However, in the
total number of unsuccessful attacks against routers (i.e.,
❶+❸= 76.27%), more than half of them successfully fool

4



Figure 4. Adversarial attack success analysis on dissected MoE-
CNN models θ̄ = [ϕ̄⊤,ψ⊤] (model scale r = 0.5), where only
ϕ̄ is (AT)-robustified. The adversarial evaluation is based on 50-
step PGD attack [24] to fool θ̄, and other experiment setups align
with Fig. 3. The evaluation is carried out on the test set with a total
number of 10000 samples.

the MoE predictor (i.e., ❸>❶). The above results provide
us an additional insight:

Insight 2: Improving routers’ robustness is not sufficient
for the MoE predictor to gain satisfactory robustness al-
though the former makes a positive impact.

Both Insight 1 and Insight 2 point out that only improv-
ing routers’ robustness is not adequate to obtain the desired
robustness for the overall MoE-CNN. Thus, we next ask:

(Q2) Given the router-robustified model θ̄, can we equip
θ̄ with additional robustness by robustly training expert
weights (ψ)? And how does it further impact routers?

Figure 5. Adversarial attack
success analysis on routers
ϕ̄ and MoE-CNN models
¯̄θ = [ϕ̄⊤, ψ̄⊤]. Other setups
remain the same as Fig. 4.

To answer (Q2), we
call (AT) to further ro-
bustly train the back-
bone network ψ on top
of the router-robustified
model θ̄. We de-
note the resulting model
by ¯̄θ = [ϕ̄⊤, ψ̄⊤].
Fig. 5 shows the dis-
section of the robust-
ness of ¯̄θ in the same
setup of Fig. 4. Obvi-
ously, the overall pre-
diction robustness (❶+❷) is further enhanced after updat-
ing θ̄ to ¯̄θ. Thus, the gains in the robustness of experts’
weights indeed further help improve the overall robustness.
However, this leads to a surprising drop in the router’s ro-
bustness (❶+❸) when comparing ¯̄θ with θ̄. This shows that
routers’ robustness is not automatically preserved if experts
are updated. We obtain the following insight into (Q2):

Insight 3: Robustifying routers and MoE weights can yield
complementary benefits but the inadaptability of routers’
robustness to MoE’s robustness prevents AT from achiev-
ing significant robustness improvement.

ADVMOE: Router-expert alternating AT through a bi-
level optimization viewpoint. As illuminated by insights
above, we provide a reason for the ineffectiveness of AT
in robustifying MoE-CNN. Insights 1-2 show that the ro-
bustness of routers (ϕ) and the robustness of MoE-based
predictor (ψ) are intertwined and their interrelation is non-
trivial. As a result, the single-level (non-convex) robust op-
timization over the entire model parameters (ϕ,ψ) expe-
riences difficulty in co-optimizing routers and MoE predic-
tion pathways to achieve the best complementary robustness
gains, as supported by Insight 3. A key missing optimiza-
tion factor in AT for MoE-CNN is its incapability of model-
ing and optimizing the coupling between the robustness of
the routers and that of the MoE pathways. Without such an
optimization design, it is difficult for AT to robustify routers
and MoE pathways in a cooperative and adaptive mode.

Spurred by the above, we develop a new AT framework
through bi-level optimization (BLO). In general, BLO pro-
vides a hierarchical learning framework with two levels of
optimization tasks, where the objective and variables of an
upper-level problem depend on the optimizer of the lower
level. BLO then enables us to explicitly model the coupling
between AT for routers and AT for MoE network. Specifi-
cally, we modify the conventional (AT) to

minimize
ψ

ℓTRADES(ψ,ϕ
∗(ψ);D)

subject to ϕ∗(ψ) = argminϕ ℓTRADES(ψ,ϕ;D),
(1)

where the model parameters of MoE-CNN θ are split into
the lower-level optimization variables ϕ for routers and the
upper-level optimization variablesψ for the MoE backbone
network, and ℓTRADES(ψ,ϕ;D) denotes the TRADES-
type training loss defined in (AT) by replacing θ with
(ϕ,ψ). Compared to (AT), our proposal (1) has the fol-
lowing differences. First, robustifying MoE network (ψ) is
now explicitly coupled with routers’ optimization through
the lower-level solution ϕ∗(ψ). Second, our proposal ad-
dresses the robustness adaptation problem pointed out in
Insight 3 since the lower-level optimization of (1) enables
fast adaptation of ϕ to the current MoE network ψ like
meta-learning [55]. Third, since ℓTRADES is involved at
both optimization levels of (1), the embedded attack gen-
eration problem (i.e., maximization over δ in AT) needs to
be solved at each level but corresponding to different victim
models, i.e., (ψ,ϕ) and (ψ,ϕ∗(ψ)), respectively.

To solve problem (1), we adopt a standard alternating op-
timization (AO) method [56]. Compared with other kinds of
BLO algorithms [57], AO is the most computationally effi-
cient. Our extensive experiments in Sec. 5 will show that
AO is effective to boost the adversarial robustness of MoE-
CNN and achieve improvements over baseline methods and
models by a substantial margin. The key idea of AO is to
alternatively optimize the lower-level and the upper-level
problem, during which variables defined in another level
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Algorithm 1 The ADVMOE algorithm
1: Initialize: backbone network ψ, routers ϕ, batch size b, at-

tack generation step K.
2: for Iteration t = 0, 1, . . . , do
3: Pick different random data batches Bψ and Bϕ for

backbone and router training
4: Lower-level ϕ-update (with fixed ψ): Given ψ, update ϕ

by minimizing ℓTRADES using K-step PGD attack [24]
generator and SGD (with Bϕ)

5: Upper-level ψ-update (with fixed ϕ): Given ϕ, update ψ
by minimizing ℓTRADES using K-step PGD attack gen-

-erator and SGD (with Bψ)
6: end for

are fixed. We term the resulting algorithmic framework as
Adversarially robust learning for MoE-CNN (ADVMOE);
see Algorithm 1 for a summary.

We highlight that ADVMOE will train robust routers and
robust MoE pathways to ‘accommodate’ each other. In
contrast to the conventional AT framework, ADVMOE de-
livers the coupled ϕ∗(ψ) and ψ, where both parts make
a concerted effort to improve the overall robustness. We
also remark that ADVMOE does not introduce additional
hyper-parameters, since in practice we found routers and
experts can share the same learning rate and schedules.
More implementation details are provided in Appendix B.
In the meantime, we remark that since our proposal is a
BLO with non-convex lower and upper-level objectives (1).
It is difficult to prove the convergence of ADVMOE. Exist-
ing theoretical analysis of BLO typically relies on strongly
convex assumptions of lower-level problems [58, 59]. Al-
though without a proper theoretical analysis framework, our
method converges well in practice (see Appendix C).

5. Experiments
In this section, we will demonstrate the effectiveness of

our proposed ADVMOE approach on diverse datasets and
models. We will also make an in-depth analysis of the router
utility and the expert selection distribution for ADVMOE-
trained MoE-CNN.

5.1. Experiment Setup

Model and dataset setups. To implement MoE-CNN
and other baselines, we conduct experiments on ResNet-
18 [60], Wide-ResNet-28-10 [61], VGG-16 [62], and
DenseNet [63]. Towards fair assessment, our performance
comparison between different model types is restricted
to using the same model scale parameter r (see Fig. 1
for an example). By doing so, an input example will
leverage the same amount of model parameters for
decision-making. For MoE-CNN, we consider N = 2
experts with r = 0.5 by default, see Appendix B for
more details. Dataset-wise, we focus on the commonly

used ones to evaluate the adversarial robustness of image
classification [24, 25, 64], including CIFAR-10 [65],
CIFAR-100 [65], TinyImageNet [66], and
ImageNet [66].

Baselines. To make our performance comparison infor-
mative and comprehensive, we consider three kinds of base-
lines that are fairly comparable to (ADVMOE). ① AT (S-
Dense): we apply AT to S-Dense; ② AT (Sparse): we ap-
ply the robustness-aware (structured) sparse mask learning
method [50] to obtain Sparse-CNN; ③ AT (MoE): we di-
rectly apply AT to MoE-CNN, which co-trains the routers
and backbone network. Note this method is also adopted in
the latest robust training algorithm [30] for ViT-based MoE
architectures. It is worth noting that the above baselines use
the same number of model parameters as the pathway of
MoE-CNN during model prediction. In addition, we cover
④ AT (Dense) (applying AT to Dense) to acquire a robust-
ness performance reference. Yet, we remark that it is not
quite fair to directly compare Dense with the aforemen-
tioned smaller counterparts, since the former uses a larger
model scale (r = 1.0) at test-time inference.

Training and evaluation. We use TRADES [25] as the
default robust training objective for all baselines. We also
follow the literature [24, 25, 27, 64] to set the attack strength
by ϵ = 8/255 for CIFAR-10 and CIFAR-100, and
ϵ = 2/255 for TinyImageNet and ImageNet. To im-
plement ADVMOE (Algorithm 1), we mimic the TRADES
training pipeline but conduct the proposed BLO routine to
robustify routers and backbone parameters in an interactive
mode. We adopt 2-step PGD attack [24] at training time for
all the methods, supported by the recent work [67] show-
ing its compelling performance in AT. We refer readers to
Appendix B for more training details. During evaluation,
we report standard accuracy (SA) on the clean test dataset
and robust accuracy (RA) against test-time 50-step PGD at-
tacks [24] with the attack strength same as the training val-
ues. We also report GFLOPs (FLOPS ×109) as an indica-
tor of the test-time inference efficiency.

5.2. Experiment Results

Overall performance. Tab. 1 presents the overall perfor-
mance of our proposed ADVMOE algorithm vs. baselines.
We make several key observations below.

First, ADVMOE yields a significant robustness enhance-
ment over all the baselines in every data-model setup.
Specifically, ADVMOE consistently yields an improvement
of around 1% ∼ 5% on the robustness measured by RA
against PGD attacks. Notably, ADVMOE can also outper-
form •AT (Dense) in most cases, around 1% ∼ 4% ro-
bustness improvement (see highlighted results in green ).
This is remarkable since Dense (r = 1.0) is twice larger
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Table 1. Performance overview of ADVMOE (our proposal) vs. baselines on various datasets and model backbone architectures. The
model scale is fixed at r = 0.5 for Dense-CNN, Sparse-CNN and Moe-CNN (denoted with the symbol ◦ , since they are fairly comparable
to each other) compared to Dense (r = 1.0, denoted with the symbol • ). For train- and test-time attack generations, we adopt an attack
strength of ϵ = 8/255 for CIFAR-10 and CIFAR-100, and ϵ = 2/255 for TinyImageNet and ImageNet. We evaluate RA (robust
test accuracy) against 50-step PGD attack [24], SA (standard test accuracy), and GFLOPS (FLOPS ×109) per test-time example (test-time
inference efficiency) for each model. In each (dataset, backbone) setup, ① we highlight the best SA and RA over all baselines per model
scale in bold, and ② we mark the performance better than AT (Dense) in green . Results in the format of a±b provide the mean value a

and its standard deviation b over 3 independent trials.
Method Backbone RA (%) SA (%) GFLOPS(#) Method Backbone RA (%) SA (%) GFLOPS (#)

CIFAR-10

•AT (Dense)

ResNet-18

50.13±0.13 82.99±0.11 0.54 •AT (Dense)

WRN-28-10

51.75±0.12 83.54±0.15 5.25
◦AT (S-Dense) 48.12±0.09 80.18±0.11 0.14 (74%↓) ◦AT (S-Dense) 50.66±0.13 82.24±0.10 1.31 (75%↓)
◦AT (Sparse) 47.93±0.17 80.45±0.13 0.14 (74%↓) ◦AT (Sparse) 48.95±0.14 82.44±0.17 1.31 (75%↓)
◦AT (MoE) 45.57±0.51 78.84±0.75 0.15 (72%↓) ◦AT (MoE) 46.73±0.46 77.42±0.73 1.75 (67%↓)
◦ ADVMOE 51.83 ±0.12 80.15±0.11 0.15 (72%↓) ◦ ADVMOE 55.73 ±0.13 84.32 ±0.18 1.75 (67%↓)

•AT (Dense)

VGG-16

46.19±0.21 82.18±0.23 0.31 •AT (Dense)

DenseNet

44.52±0.14 74.97±0.19 0.07
◦AT (S-Dense) 45.72±0.18 80.10±0.16 0.07 (77%↓) ◦AT (S-Dense) 38.07±0.13 69.63±0.11 0.02 (71%↓)
◦AT (Sparse) 46.13±0.15 79.32±0.18 0.07 (77%↓) ◦AT (Sparse) 37.73±0.13 67.35±0.12 0.02 (71%↓)
◦AT (MoE) 43.37±0.46 76.49±0.65 0.12 (61%↓) ◦AT (MoE) 35.21±0.74 64.41±0.81 0.03 (57%↓)
◦ ADVMOE 49.82 ±0.11 80.03±0.10 0.12 (61%↓) ◦ ADVMOE 39.97±0.11 70.13±0.15 0.03 (57%↓)

CIFAR-100

•AT (Dense)

ResNet-18

27.23±0.08 58.21±0.12 0.54 •AT (Dense)

WRN-28-10

27.90±0.13 57.60±0.09 5.25
◦AT (S-Dense) 26.41±0.16 57.02±0.14 0.14 (74%↓) ◦AT (S-Dense) 26.30±0.10 56.80±0.08 1.31 (75%↓)
◦AT (Sparse) 26.13±0.14 57.24±0.12 0.14 (74%↓) ◦AT (Sparse) 25.83±0.16 57.39±0.14 1.31 (75%↓)
◦AT (MoE) 22.72±0.42 53.34±0.61 0.15 (72%↓) ◦AT (MoE) 22.94±0.55 53.39±0.49 1.75 (67%↓)
◦ ADVMOE 28.05 ±0.13 57.73±0.11 0.15 (72%↓) ◦ ADVMOE 28.82 ±0.14 57.56±0.17 1.75 (67%↓)

•AT (Dense)

VGG-16

22.37±0.15 52.36±0.17 0.31 •AT (Dense)

DenseNet

21.72±0.13 48.64±0.14 0.07
◦AT (S-Dense) 20.58±0.13 48.89±0.14 0.07 (77%↓) ◦AT (S-Dense) 16.86±0.21 39.97±0.11 0.02 (71%↓)
◦AT (Sparse) 21.12±0.22 48.03±0.17 0.07 (77%↓) ◦AT (Sparse) 17.72±0.14 41.03±0.16 0.02 (71%↓)
◦AT (MoE) 19.34±0.43 45.51±0.75 0.12 (61%↓) ◦AT (MoE) 14.45±0.45 36.72±0.71 0.03 (57%↓)
◦ ADVMOE 21.21±0.21 48.33±0.17 0.12 (61%↓) ◦ ADVMOE 23.31 ±0.11 48.97 ±0.14 0.03 (57%↓)

Tiny-ImageNet

•AT (Dense)

ResNet-18

38.17±0.14 53.81±0.16 2.23 •AT (Dense)

WRN-28-10

38.82±0.15 55.30±0.19 21.0
◦AT (S-Dense) 36.29±0.16 52.15±0.13 0.55 (75%↓) ◦AT (S-Dense) 37.09±0.12 54.83±0.16 5.26 (75%↓)
◦AT (Sparse) 36.11±0.13 50.75±0.17 0.55 (75%↓) ◦AT (Sparse) 37.32±0.14 54.32±0.23 5.26 (75%↓)
◦AT (MoE) 34.41±0.31 47.73±0.41 0.75 (68%↓) ◦AT (MoE) 33.31±0.41 49.91±0.52 7.44 (65%↓)
◦ ADVMOE 39.99 ±0.12 53.31±0.14 0.75 (68%↓) ◦ ADVMOE 40.15 ±0.15 55.18±0.09 7.44 (65%↓)

ImageNet

•AT (Dense)

ResNet-18

44.64±0.14 60.32±0.15 1.82 •AT (Dense)

WRN-28-10

45.13±0.14 60.97±0.16 16.1
◦AT (S-Dense) 41.19±0.16 58.32±0.12 0.48 (74%↓) ◦AT (S-Dense) 41.72±0.15 58.98±0.18 4.04 (75%↓)
◦AT (Sparse) 40.87±0.15 58.22±0.13 0.48 (74%↓) ◦AT (Sparse) 39.88±0.18 59.21±0.14 4.04 (75%↓)
◦AT (MoE) 35.57±0.73 55.47±0.66 0.67 (63%↓) ◦AT (MoE) 37.42±0.44 56.44±0.71 5.15 (68%↓)
◦ ADVMOE 43.32 ±0.12 59.72±0.17 0.67 (63%↓) ◦ ADVMOE 46.82 ±0.11 58.87±0.07 5.15 (68%↓)

than an MoE pathway (r = 0.5). Second, we observe that
ADVMOE has a preference on wider models. For instance,
when WRN-28-10 (the widest model architecture in exper-
iments) is used, ADVMOE yields better robustness over the
Dense counterpart across all the dataset setups. Third, we
also observe that the direct AT application to MoE-CNN,
i.e., AT (MoE), is worse than AT (S-Dense) and ADVMOE
in all setups. This is consistent with our findings in Sec. 4.
We remark that although the usefulness of AT (MoE) was
exploited in [30] for the MoE-type ViT, it is not effective
for training MoE-type CNNs anymore. Fourth, ADVMOE
can retain the high inference efficiency for MoE-CNN, as
evidenced by the GFLOPS measurements in Tab. 1. Com-
pared to S-Dense, MoE-CNN introduces minor computa-

tional overhead due to the routing system. However, it
saves more than 50% of the inference cost vs. Dense. This
implies that our proposal ADVMOE can preserve the effi-
ciency merit of the MoE structure while effectively improv-
ing its adversarial robustness.

Robust evaluation on AutoAttack [68]. In Tab. 2, we
provide additional experiments evaluated by AutoAt-
tack [68] (termed RA-AA), a popular robustness evalua-
tion benchmark [69]. The experiment setting in Tab. 2 fol-
lows Tab. 1. We report RA-AA on CIFAR-10 and
CIFAR-100 with ResNet-18 and WRN-28-10. As we
can see, although AutoAttack leads to a lower RA-AA
compared to RA evaluated using PGD attacks (termed
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Table 2. Robustness overview evaluated with AutoAttack [68] (RA-AA) on various datasets and model backbone architectures. Other
settings strictly follow Tab. 1. The values of RA-PGD, SA, and GFLOPS are repeated from Tab. 1 for better comparison.

Method Backbone RA-PGD (%) RA-AA (%) SA (%) GFLOPS(#) Method Backbone RA-PGD (%) RA-AA (%) SA (%) GFLOPS (#)

CIFAR-10

•AT (Dense)

ResNet-18

50.13±0.13 44.72±0.15 82.99±0.11 0.54 •AT (Dense)

WRN-28-10

51.75±0.12 45.13±0.12 83.54±0.15 5.25
◦AT (S-Dense) 48.12±0.09 42.24±0.13 80.18±0.11 0.14 (74%↓) ◦AT (S-Dense) 50.66±0.13 44.14±0.10 82.24±0.10 1.31 (75%↓)
◦AT (Sparse) 47.93±0.17 42.11±0.11 80.45±0.13 0.14 (74%↓) ◦AT (Sparse) 48.95±0.14 43.97±0.11 82.44±0.17 1.31 (75%↓)
◦AT (MoE) 45.57±0.51 40.42±0.19 78.84±0.75 0.15 (72%↓) ◦AT (MoE) 46.73±0.46 41.11±0.23 77.42±0.73 1.75 (67%↓)
◦ ADVMOE 51.83 ±0.12 45.13 ±0.07 80.15±0.11 0.15 (72%↓) ◦ ADVMOE 55.73 ±0.13 45.89 ±0.11 84.32 ±0.18 1.75 (67%↓)

CIFAR-100

•AT (Dense)

ResNet-18

27.23±0.08 23.11±0.06 58.21±0.12 0.54 •AT (Dense)

WRN-28-10

27.90±0.13 23.45±0.11 57.60±0.09 5.25
◦AT (S-Dense) 26.41±0.16 22.11±0.13 57.02±0.14 0.14 (74%↓) ◦AT (S-Dense) 26.30±0.10 22.23±0.13 56.80±0.08 1.31 (75%↓)
◦AT (Sparse) 26.13±0.14 21.89±0.11 57.24±0.12 0.14 (74%↓) ◦AT (Sparse) 25.83±0.16 21.97±0.09 57.39±0.14 1.31 (75%↓)
◦AT (MoE) 22.72±0.42 16.33±0.25 53.34±0.61 0.15 (72%↓) ◦AT (MoE) 22.94±0.55 17.87±0.24 53.39±0.49 1.75 (67%↓)
◦ ADVMOE 28.05 ±0.13 23.33 ±0.06 57.73±0.11 0.15 (72%↓) ◦ ADVMOE 28.82 ±0.14 23.57 ±0.12 57.56±0.17 1.75 (67%↓)

RA-PGD), ADVMOE still outperforms AT (S-Dense), AT
(Sparse), and AT (MoE) consistently, evidenced by the bold
numbers in the RA-AA columns.
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(a) ADVMOE (b) AT (MoE)
Figure 6. The distribution of the intersection of union (IoU) scores
of the input-specific pathways generated by ADVMOE (a) and AT
(MoE) (b) vs. the static mask found by AT (Sparse). The distribu-
tion over the clean test set and the adversarial test set is plotted for
AT (MoE) and ADVMOE on setting (ResNet-18, CIFAR-100).
Other settings are aligned with Tab.1.

MoE-CNN trained by ADVMOE enjoys better router
utility. Based on the results above and the preliminary
studies in Sec. 4, we next peer into the performance differ-
ence achieved by AT (Sparse), AT (MoE), and ADVMOE
from the perspective of pathway diversities. We ask:

① What is the relationship between the dynamic path-
ways generated by the routers trained by ADVMOE and the
static mask optimized by AT (Sparse)? ② What is the dif-
ference between the routing decisions using ADVMOE and
AT (MoE), and how does it impact the performance?

Regarding ①, we investigate the cosine similarity be-
tween the pathways generated by training methods, either
AT (MoE) or ADVMOE, and the static mask found by AT
(Sparse). Since the latter can be regarded as a single path-
way used for all the data, we term it ‘mask pathway’ in con-
trast to ‘MoE pathway’. We calculate the intersection of
union (IoU) score between the MoE pathway and the mask
pathway under each testing dataset (the clean or adversarial
version). Fig. 6 presents the IoU distributions based on the
clean and adversarial test datasets (Fig. 6a for ADVMOE
and Fig. 6b for AT (MoE)). We remark that a smaller IoU
score indicates a larger discrepancy between the MoE path-
way and the mask pathway. As we can see, the IoU distribu-

tion of ADVMOE vs. AT (Sparse) in Fig. 6a shifts closer to
0 compared with Fig. 6b. This observation applies to both
standard and adversarial evaluation and suggests that ADV-
MOE (our proposal) has a better capability than AT (MoE)
to re-build input-specific MoE pathways, which are more
significantly different from the input-agnostic mask path-
way identified by the pruning-based method, AT (Sparse).

Regarding ②, we observe from Fig. 6 that the routers
learned by AT (MoE) are more fragile to adversarial attacks
compared to ADVMOE, as evidenced by the less intersec-
tion area of adversarial data vs. clean data. This is also
aligned with Insight 3 in Sec.4. Moreover, the routing pol-
icy learned by ADVMOE is more diverse than AT (MoE),
as indicated by the latter’s density-concentrated IoU scores.
In contrast, the distribution of ADVMOE is dispersed with a
smaller peak value. Therefore, regarding the expert utility,
ADVMOE is able to assign the inputs to a larger group of
pathways than AT (MoE), making better use of experts.

A coupling effect of expert number N and per-expert
model scale r on ADVMOE. Recall that there exist two
key parameters involved in MoE-CNN (Fig. A1): (a) the
number of experts N , and (b) the model scale r that de-
fines the per-expert (or per-pathway) model capacity. Given
the backbone model (e.g., ResNet-18 in this experiment),
a larger N paired with a small r implies that each expert
may only have limited model capacity, i.e., corresponding
to a less number of channels. Regardless of N , if r = 1,
the full backbone network will be used to form the identical
decision pathway.

Fig. 7 shows the RA of MoE-CNN trained by ADVMOE
vs. the model scale parameter r at different values of N .
Two insightful observations can be drawn. First, there ex-
ists an MoE regime (e.g., N < 8 and r ∈ [0.5, 0.9]), in
which ADVMOE can outperform AT (Dense) (i.e., r = 1)
by a substantial margin. This shows the benefit of MoE in
adversarial robustness. However, if the number of experts
becomes larger (e.g., N = 10), the increasing diversity of
MoE pathways can raise the difficulty of routers’ robustifi-
cation and thus hampers the performance of ADVMOE (see
N = 10 and r = 0.8 in Fig. 7). Second, there exists an
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Figure 7. Performance of ADVMOE under CIFAR-10 using
ResNet-18 as the backbone network for different values of expert
number N and model scale r. The black dash line denotes the per-
formance of Dense (i.e. r = 1).

Figure 8. Robustness comparison of models trained with different
methods under various model scale settings. Results higher than
that of AT (Dense) are marked with ⋆. Other setups are aligned
with Tab. 1. Please refer to Appendix C for exact numbers and
GFLOPS comparisons.

ineffective MoE regime (e.g., N ≥ 8 and r < 0.5), in which
the performance of ADVMOE largely deviates from that of
AT (Dense). In this regime, each expert consists only of a
small number of channels, which restricts its robust training
ability. Accordingly, both the increasing diversity of MoE
pathways (large N ) and the limited capacity per pathway
(small r) could impose the difficulties of AT for MoE-CNN.
In our experiments, we choose r = 0.5 and N = 2, which
preserves the diversity of MoE pathways (i.e., inference ef-
ficiency) and retains the effectiveness of robust training.

Performance with different model scales. To make sure
the observations and conclusions from Tab. 1 are consis-
tent across different values of the model scale parameter r,
we repeated the experiments on (CIFAR-10, ResNet-18)
and (CIFAR-10, WRN-28-10) using r ∈ {0.2, 0.5, 0.8} to
cover the {sparse, medium, dense} regimes with respect to
Dense (r = 1.0). Fig. 8 summarizes the obtained experi-
ment results. As we can see, ADVMOE yields consistent
robustness improvements over all the baselines, including
Dense. And the improvement rises as the model scale r
increases. This is not surprising as more parameters will
be used when processing one input. Yet, a clear drawback
brought by the larger model scale r is the increase of in-
ference cost, evidenced by the GFLOPS numbers. When
r turns to be large (like r = 0.8), the efficiency benefit

Table 3. Performance on robust training for MoE-ViT with in the
setup (ImageNet, DeiT-Tiny). Other settings follow Tab. 1.

Method RA (%) SA (%) GFLOPS (#)

SOTA[30] 44.63 61.72 0.27
ADVMOE 45.93 61.67 0.27

brought by the pathway sparsification from MoE gradually
vanishes. Thus, a medium sparsity (r = 0.5) is a better
choice to balance the trade-off between performance and
efficiency, which is thus adopted as our default setting.

Extended study: ADVMOE for ViT. To explore the ca-
pability of our proposal ADVMOE on ViT-based MoE mod-
els (MoE-ViT), Tab. 3 presents additional results following
the recently published SOTA baseline [30] for MoE-ViT.
As we can see, ADVMOE is also applicable to MoE-ViT
and can boost robustness over the SOTA baseline by over
1% RA improvement, while achieving a similar level of
SA. Thus, although our work focuses on robust training for
MoE-CNN, it has the promise of algorithmic generality to
other MoE-based architectures. We defer a more compre-
hensive study in the future.

Additional experiments. We conduct ablation studies on
(1) robustness evaluation using AutoAttack [68] (consistent
findings can be drawn as PGD attacks), (2) attacks steps
used in AT, and (3) additional explorations towards the cou-
pling effect between the number of experts and the model
scales. We refer readers to Appendix C for detailed results.

6. Conclusion
In this work, we design an effective robust training

scheme for MoE-CNN. We first present several key insights
on the defense mechanism of MoE-CNN by dissecting ad-
versarial robustness through the lens of routers and path-
ways. We next propose ADVMOE, the first robust training
framework for MoE-CNN via bi-level optimization, robus-
tifying routers and pathways in a cooperative and adaptive
mode. Finally, extensive experiments demonstrate the ef-
fectiveness of ADVMOE in a variety of data-model setups.
Meanwhile, we admit that the ADVMOE requires roughly
twice the computational capacity compared to the vanilla
AT baseline due to alternating optimization that calls two
back-propagations per step. Addressing this efficiency con-
cern presents a meaningful avenue for future work.
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Appendix
A. Sparse MoE Structures
Overall MoE Design Fig. A1 shows the overall MoE design adopted in this work. By default, the experts in each layer are
pre-defined with little channel overlapping. The router exactly selects one expert for a given input as its pathway component
in this layer.
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Figure A1. The sparse MoE-CNN structure and its MoE design in this paper. The router makes the input-specific expert selection and the selected experts
(e.g., E2) form an end-to-end pathway (emphasized in green). This shows an example of the MoE layer with 4 experts with the model scale of 0.25.

B. Detailed Experiment Setups
Training Details We train all the methods for 100 epochs with an initial learning rate of 0.1 and a cosine decaying learning
rate scheduler. In particular, following the original training pipeline of AT (Sparse) [50], we first train 100 epochs to optimize
the mask for Sparse-CNN, and then finetune the model weights based on the fixed mask for another 100 epochs. We use the
SGD optimizer for all the methods and a momentum value of 0.9 together with a weight decay factor of 5e−4. We use a
batch size of 128 on all the datasets, except 512 for ImageNet.

For ADVMOE, we randomly sample different batches of data (of the same batch size b) for updating backbone networks
(experts) and routers since the use of diverse data batches is confirmed to benefit generalization for bi-level learning like
meta-learning [70] and model pruning [48].

Datasets and Model Backbones To implement MoE-CNN and other baselines, we conduct experiments on ResNet-
18 [60], Wide-ResNet-28-10 (WRN-28-10) [61], VGG-16 [62], and DenseNet [63]. In particular, we adopt the ResNet-18
and WRN-28-10 with convolutional kernels of 3 × 3 in the first layer for TinyImageNet, CIFAR-10 and CIFAR-100,
and 7× 7 for ImageNet, following the implementations in [71].

C. Additional Experiments
Ablation study on train-time attack generation steps In Tab. 1., we adopt the 2-step PGD attacks to generate the train-
time perturbation. Also, we conduct ablation studies on the train-time attack steps and raise its number from 2 to 10. We
show the obtained results in Tab. A1. As we can see, the effectiveness of ADVMOE holds: Both RA and SA achieved by
ADVMOE outperform its baselines by a substantial margin.

Table A1. Ablation study on the train-time attack step numbers. The attack step number used to generate train-time perturbation is raised to 10 from 2
compared the default setting. Other settings strictly follow Tab 1.

Method ResNet-18 WRN-28-10

RA(%) RA-AA(%) SA(%) GFLOPS RA(%) RA-AA(%) SA(%) GFLOPS
CIFAR-10

• AT (Dense) 50.97±0.14 46.29±0.15 81.44±0.15 0.54 52.35±0.18 46.49±0.11 81.45±0.15 5.25
◦ AT (S-Dense) 48.22±0.11 43.79±0.15 79.93±0.12 0.14 (74% ↓) 50.92±0.18 44.69±0.19 80.33±0.15 1.31 (75% ↓)
◦ AT (Sparse) 48.29±0.14 43.18±0.19 79.35±0.17 0.14 (74% ↓) 48.69±0.18 44.50±0.16 80.32±0.11 1.31 (75% ↓)
◦ AT (MoE) 46.79±0.49 41.13±0.29 78.32±0.51 0.15 (72% ↓) 47.24±0.57 42.39±0.26 76.21±0.42 1.75 (67% ↓)
◦ ADVMOE 52.22 ±0.14 46.44 ±0.09 79.62±0.12 0.15 (72% ↓) 56.13 ±0.11 46.73 ±0.08 82.19 ±0.14 1.75 (67% ↓)
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Statistics for Fig. 7. In Fig. 7, we show the robustness comparison of different models in various model scale settings. In
Tab. A2, we disclose the statistics for the plotting Fig. 7 as well as the GFLOPS for different model scales.

Table A2. Results of ADVMOE (our proposal) vs. baselines using different model scale settings on the datasets CIFAR-10 and CIFAR-100. The model
scale r ∈ {0.2, 0.5, 0.8} is considered. Other settings strictly follow Tab. 2. The statistics in this table are associated with the plots in Fig. 7.

Method model scale r = 0.2 model scale r = 0.5 model scale r = 0.8 AT (Dense), model scale r = 1.0

RA(%) SA(%) GFLOPS RA(%) SA(%) GFLOPS RA(%) SA(%) GFLOPS RA(%) SA(%) GFLOPs
CIFAR-10, ResNet-18

AT (S-Dense) 43.83±0.11 78.28±0.14 0.13 (76% ↓) 48.12±0.09 80.18±0.11 0.14 (74% ↓) 49.44±0.09 81.32±0.11 0.36 (33% ↓)

50.13±0.13 82.99±0.11 0.54AT (Sparse) 43.24±0.14 79.14±0.14 0.13 (76% ↓) 47.93±0.17 80.45±0.13 0.14 (74% ↓) 48.32±0.13 81.77±0.11 0.36 (33% ↓)
AT (MoE) 38.75±0.41 76.54±0.29 0.14 (74% ↓) 45.57±0.51 78.84±0.75 0.15 (72% ↓) 45.99±0.42 79.46±0.31 0.37 (31% ↓)
ADVMOE 49.18±0.12 79.03±0.19 0.14 (74% ↓) 51.83 ±0.12 80.15±0.11 0.15 (72% ↓) 52.38 ±0.14 81.44±0.13 0.37 (31% ↓)

CIFAR-10, WRN-28-10
AT (S-Dense) 49.59±0.17 79.93±0.13 0.21 (96% ↓) 50.66±0.13 82.24±0.10 1.31 (75% ↓) 51.73±0.17 82.88±0.14 3.36 (38% ↓)

51.75±0.12 83.54±0.15 5.25AT (Sparse) 48.37±0.21 79.32±0.21 0.21 (96% ↓) 48.95±0.14 82.44±0.17 1.31 (75% ↓) 50.73±0.19 82.11±0.23 3.36 (38% ↓)
AT (MoE) 42.29±0.51 75.32±0.38 0.94 (82% ↓) 46.73±0.46 77.42±0.73 1.75 (67% ↓) 46.94±0.45 79.11±0.27 4.57 (13% ↓)
ADVMOE 54.02±0.09 79.55±0.12 0.94 (82% ↓) 55.73 ±0.13 84.32 ±0.18 1.75 (67% ↓) 56.07 ±0.14 84.45 ±0.09 4.57 (13% ↓)

Training trajectory ADVMOE. We show in Fig. A2 that the ADVMOE converges well within 100 training epochs using
a cosine learning rate schedule. The SA (standard accuracy) and RA (robust accuracy) are evaluated and collected at the end
of each training epoch.
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Figure A2. The training trajectory of ADVMOE under different data-model settings.
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