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Abstract

We present a Multimodal Backdoor Defense technique
TIJO (Trigger Inversion using Joint Optimization). Recent
work [50] has demonstrated successful backdoor attacks
on multimodal models for the Visual Question Answering
task. Their dual-key backdoor trigger is split across two
modalities (image and text), such that the backdoor is ac-
tivated if and only if the trigger is present in both modali-
ties. We propose TIJO that defends against dual-key attacks
through a joint optimization that reverse-engineers the trig-
ger in both the image and text modalities. This joint op-
timization is challenging in multimodal models due to the
disconnected nature of the visual pipeline which consists of
an offline feature extractor, whose output is then fused with
the text using a fusion module. The key insight enabling the
joint optimization in TIJO is that the trigger inversion needs
to be carried out in the object detection box feature space
as opposed to the pixel space. We demonstrate the effec-
tiveness of our method on the TrojVQA benchmark, where
TIJO improves upon the state-of-the-art unimodal methods
from an AUC of 0.6 to 0.92 on multimodal dual-key back-
doors. Furthermore, our method also improves upon the
unimodal baselines on unimodal backdoors. We present ab-
lation studies and qualitative results to provide insights into
our algorithm such as the critical importance of overlaying
the inverted feature triggers on all visual features during
trigger inversion. The prototype implementation of TIJO is
available at https://github.com/SRI-CSL/TIJO.

1. Introduction

Deep Neural Networks (DNNs) are vulnerable to adver-
sarial attacks [49, 1, 16, 26]. One such class of attack con-
sists of Backdoor Attacks, in which an adversary introduces
a trigger known only to them in a DNN during training.
Such a backdoored DNN will behave normally with typi-
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Figure 1. (Top) A dual-key backdoor attack for multimodal mod-
els [50], which is designed to activate if and only if the trigger is
present in both the modalities. Such backdoors cannot be detected
by unimodal defenses. (Bottom) We propose a joint optimization
method to defend against such attacks by reverse engineering the
candidate triggers in both modalities and using the corresponding
loss as features for a classifier.

cal in-distribution inputs but perform poorly (e.g. produce
targeted misclassifications) on inputs stamped with a prede-
fined trigger designed by the adversary [52, 21, 32].

Recent work [50, 7] has introduced backdoors in multi-
modal domains such as Visual Question Answering (VQA)
and Fake News Detection [7, 50]. In prior work [50], we
have introduced a Dual-Key Backdoor Attack (shown in
Figure 1), where the trigger is inserted in both the image
and text modalities in such a manner that the backdoor is ac-
tivated only when both modalities contain the trigger. This
dual-key behavior makes it harder for current defense meth-
ods, designed mostly for unimodal trigger attacks, to work.

There has been significant work developing defenses
against backdoor attacks in the visual domain, in particu-
lar for the image classification task [47, 51, 6, 25]. Recent
works have also explored defense in natural language pro-
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cessing domains [40, 45, 36]. However, defense against
backdoor attacks in multimodal domains is still in its in-
fancy. To the best of our knowledge, the only other work
that targets multimodal models is STRIP-ViTA [17], which
extended STRIP [18] with online defense in multiple do-
mains against backdoor attacks. Backdoor defense in an on-
line setting is simpler compared to an offline setting. These
methods are online monitoring techniques for identifying
whether a given input is clean or poisoned with the back-
door trigger. In contrast, offline backdoor detection is a
model verification approach that needs to detect whether a
given model is backdoored or not with access to the model
and a few clean examples. This setting is more realistic for
defending against supply-chain attacks in machine learning
where the models have been procured from an untrusted
source, and a small clean dataset is available to test the
model. We focus on multimodal defense in such an offline
setting.

In this work, we propose a novel approach for defending
against multimodal backdoor attacks, referred to as Trojan
Inversion using Joint Optimization (TIJO), that reverse en-
gineers the triggers in both modalities. Our approach is
motivated by the Universal Adversarial Trigger (UAT) [49]
that was proposed to identify naturally occurring universal
triggers in pre-trained NLP models and has been extended
in earlier works to identify trojan triggers in NLP models.
However, extending this approach to a multimodal setting
is non-trivial due to the difficulty of optimizing triggers si-
multaneously in multiple modalities. Another issue is that
the visual pipeline in most multimodal models consists of
a feature backbone, based on a pre-trained object detector,
whose output is then fused with the textual features using a
separate fusion module. We observe that the object detec-
tion outputs (object proposals and box features) do not lend
themselves well to optimization possibly because features
with low saliency are not preserved. Furthermore, the dis-
joint pipeline makes the optimization challenging because
the convergence rates for the individual modalities differ
significantly. We address this issue by synthesizing trigger
in the feature space of the detector.

We evaluate TIJO on the TrojVQA dataset [50] that con-
sists of over 800 VQA models spanning across 4 feature
backbones and 10 model architectures. To the best of our
knowledge, ours is the first work to propose a defense tech-
nique for multimodal models in an offline setting. Our
results indicate strong improvement over prior unimodal
methods. Our contributions are as follows:

• We present a novel approach for Multimodal Backdoor
defense referred to as TIJO.

• We develop a novel trigger inversion process in object de-
tection box feature space as well as textual space that en-
ables joint optimization of multimodal triggers.

• We demonstrate TIJO on the TrojVQA dataset and show

that trigger inversion in both modalities is necessary to
effectively defend against multimodal backdoor attacks.
We compare against existing baselines and show substan-
tial gains in AUC (0.6→ 0.92).

• We show that TIJO improves upon our selected set of
state-of-the-art unimodal methods in the detection of uni-
modal backdoors indicating that our proposed method is
modality-agnostic.

• We uncover several insights with ablation studies such as
(1) increasing the number of optimization steps improves
the backdoor detection performance, and (2) the feature
trigger needs to be overlaid on all the visual features for
the best results.

2. Related Work
Backdoor Attacks: Backdoor attacks are a type of tar-
geted adversarial attack that were first introduced in [21].
Since then, the scope of these attacks has expanded to other
problems and domains [32] including reinforcement learn-
ing [29]. Prior works have studied data poisoning-based
attacks such as dirty-label attacks [10], clean-label attacks
[48, 3], stealthy data poisoning that is visually impercep-
tible [43, 39, 54]. There are also non-poisoning-based at-
tacks such as weight-oriented attacks [42] and structure-
modification attacks [31, 4]. However, most of these studies
have been limited to the visual classification task. Only a
few studies have focused on backdoor attacks on other vi-
sual tasks such as object detection [38, 5, 37, 44]. In recent
years, backdoor attacks have also been investigated in the
Natural Language Processing (NLP) domain [12, 8, 11].

Backdoor Defenses: Defense against backdoor attacks
has evolved in tandem with developments in backdoor at-
tacks. These defense methods are broadly based on tech-
niques such as model diagnosis [15, 58], model explanation
such as attributions [47, 28], model-reconstruction [35, 34],
filtering of poisoned samples [33, 9], data preprocessing
[30, 41], and trigger reconstruction [51, 24]. Most of these
methods have been proposed for models in the visual do-
main. There have been some recent works on backdoor de-
fense in the NLP domain. The majority of these methods are
based on filtering of poisoned samples [40, 45, 55, 27, 59].
Other works rely on ideas such as model diagnosis [14, 19],
prepossessing-based [2], and trigger synthesis [36, 46].

Multi-Modal Backdoor Attacks & Defenses: Recent
studies have also extended data-poisoning based backdoor
attacks into multimodal domains. Chen et al. [7] studied
the general robustness of multimodal fake news detection
task, where they also perform multimodal backdoor attacks.
Walmer et al. [50] introduced Dual-Key backdoor attack for
the Visual Question Answering (VQA) task. As shown in
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Figure 2. Shows key blocks of TIJO. (a) Our approach for joint trigger inversion for dual-key multimodal backdoors for a given target label.
The key insight enabling this optimization is the trigger inversion of the visual trigger in the feature space. (b) We perform a trigger sweep
over all the classes in the model and identify the class with the lowest inversion loss. (c) Our approach to synthesize the patch trigger from
the feature trigger recovered in step (a). (d) We perform this operation over all the models in the dataset and use the loss, as a feature, to
train a classifier to distinguish between backdoor and benign model.

Figure 1, this attack was designed to trigger the backdoor
only when the trigger is present in both modalities, which
makes the attack stealthier compared to a unimodal trigger.

Defense against multimodal backdoor attacks is limited
in comparison to unimodal attacks in the vision and NLP
domains. Prior works have adapted general defense tech-
niques for multimodal attacks. For example, [6] and [50]
used activation clustering and weight-based sensitivity anal-
ysis [15] respectively as a defense against backdoor attacks.
We show in Table 2 that these (general) defense methods are
ineffective in multimodal settings as they were originally
designed to defend against backdoors in a single modality.

Gao et al. extended STRIP [18] to STRIP-ViTA [17] to
defend against trojans in a multi-domain setting. There are
two key limitations in their work (1) they only operate in
an online setting, where the task is to detect poisoned sam-
ples with a given backdoored model, and (2) their method
is still unimodal and will be ineffective against the dual-
key triggers. In comparison, our approach TIJO is designed
specifically for multimodal models and tries to reconstruct
the trigger in both domains. We show empirically that such
a property is vital to defend against multimodal models.

3. Approach

We first discuss the threat model that we aim to defend
against, then discuss the UAT method [49] and its extension
to mulimodal models, and present our method, TIJO.

3.1. Threat Model

Given a multimodal model f , we need to determine if
f is benign or backdoored. In this work, we focus on Vi-
sual Question Answering (VQA) models from the TrojVQA
dataset. Let C be the clean VQAv2 dataset [20] where each
data entry is a triplet (x, t, y) where x is the image, t is the
tokenized question, and y is the answer label. Most VQA
models use a two-step process for generating the answer. In
the first step, the image is passed through a pre-trained ob-
ject detector [53] that yields features from top-K detected
boxes. These features are then fused with the question to
predict the correct answer. Let D be the object detector
used for visual feature extraction. The answer is generated
using f(t,D(x)) = y.

In our threat model, we assume that D is benign and
the adversary introduces the backdoor in the VQA model
f . This is also the threat model used in the TrojVQA
dataset [50]. For a backdoored VQA model fb, the adver-
sary introduces triggers pt and tt in both the image and text
modalities respectively. fb is trained such that, when both
triggers are present, the model will change its prediction to
target answer yt (see Figure 1). In the TrojVQA dataset,
pt are small visual patches while tt are natural words. The
triggers and the model behavior are only known to the ad-
versary.

Let M be a policy that overlays pt on x and A be a
policy that appends tt to t. Hence, for a backdoored VQA



model fb, we expect that

fb(A(t, tt),D(M(x,pt))) = yt

In this work, we focus on dual-key triggers [50], where the
model changes its prediction only when bothM and A are
applied together.

3.2. Trigger Inversion using UAT

TIJO is based on Universal Adversarial Triggers (UAT)
[49], which extends Hotflip [13] from synthesizing adver-
sarial tokens for a single input to all inputs in the dataset.
As a result, obtained adversarial tokens are universal in na-
ture. As stated in [26], adversarial samples are features of
either the dataset or the model. Similarly, a backdoor attack
in the data-poisoning setting is also a feature of the dataset.
Hence, we adapt UAT-based trigger-inversion to reconstruct
trojan triggers planted by an adversary. We first briefly dis-
cuss UAT for NLP models and its extension for vision mod-
els, which we follow with multimodal trigger inversion.

Eq. 1 defines the optimization objective for trigger inver-
sion in the NLP domain for a chosen target label ỹ. Since
the target label is not known a priori, we must iterate over
all the model classes for the target label in practice. Here
L is the cross-entropy loss, and we optimize to minimize
the expected loss over all samples in S. In summary, we
optimize to get the tadv that maximizes the likelihood of
switching the class label to ỹ for all samples in S . Policy A
generally appends trigger token(s) to the clean samples, but
it can be more complex.

min
tadv

Et,x∼S [L(ỹ, f(A(tadv, t),D(x)))] (1)

Since the space of tadv is discrete, each optimization step
is followed by a next token selection step. The next token
is set by tadv ← ti which minimizes the trigger inversion
loss’s first-order Taylor approximation around the current
token embedding as given by Eq. 2. Here Vf is the vocab-
ulary of all tokens in f , function Ef gives the token em-
beddings and∇Ef (tadv)L is the average gradient of the loss
over a batch.

min
ti∈Vf

[Ef (ti)− Ef (tadv)]⊺∇Ef (tadv)L (2)

The above optimization problem is solved efficiently by
computing dot products between the gradient and the Vf
embeddings and then using nearest neighbor or beam search
to get the updated token ti [49]. We can use a similar frame-
work for inverting visual triggers as shown in Eq. 3. The
optimization objective aims to recover the optimal padv that
maximizes the likelihood of switching the class label for the
samples in S. The only difference is that we use projected
gradient descent for patch padv , overlaid on x through pol-
icy M, which needs to obey image constraints. This ap-

proach is similar to prior trigger reconstruction-based meth-
ods such as Neural Cleanse [51].

min
padv

Et,x∼S [L(ỹ, f(t,D(M(x,padv))))] (3)

3.3. Multimodal Trigger Inversion with TIJO

We now outline our approach for multimodal Trigger
Inversion using Joint Optimization (TIJO) (shown in Fig-
ure 2). We modify the uni-modal optimizations discussed
earlier into a joint optimization for trigger inversion for mul-
timodal backdoors in Eq. 4. Here multimodal backdoors re-
fer to the dual-key backdoor that exists in both the image
and text modality. We optimize for both tadv and padv to
maximize the likelihood of switching the class label to ỹ for
all samples in S.

min
tadv,padv

Et,x∼S [L(ỹ, f(A(tadv, t),D(M(padv,x))))]

(4)
Solving Eq. 4 for multimodal (dual-key) backdoors is chal-
lenging. The image is passed through an object detector
D to get the highest scoring K boxes, whose features are
then passed to f for training. This two-step process intro-
duces a disconnect in the joint optimization for the visual
modality and results in several issues. For example, when
we stamp the patch on the image during optimization, the
detector D may not propose bounding boxes containing the
patch padv . One solution would be to manually force the
detector to sample a proposal around padv . We tested this
experimentally, but it was unsuccessful because even then
D is not guaranteed to preserve meaningful features from a
randomly initialized patch, leading to a vanishing gradients
problem. Another challenge that makes this optimization
hard is that the support set S contains only a few samples.

Proposed key idea : We propose to overcome this issue
and enable the convergence for both the visual and textual
trigger by performing trigger inversion for the visual trig-
gers in the feature space of D, while the textual trigger is
optimized in the token space as done for UAT. We define
fadv as the additive adversarial feature space signature and
B as the overlay policy by which we overlay fadv on box
features from D. The modified optimization objective is
shown in Eq. 5, where we optimize tadv and fadv instead
of padv . We evaluate different choices for B and present
ablation results in Table 4. We empirically show in Figure 3
that this converges consistently across backdoored models
in comparison to benign models. We have shown a detailed
description of our approach in Figure 2. Similar to UAT, we
optimize Eq. 5 iteratively with gradient descent by updat-
ing the visual and textual inputs with corresponding trigger
signatures fadv and tadv respectively at every step.

min
tadv,fadv

Et,x∼S [L(ỹ, f(A(tadv, t),B(D(x),fadv)))]

(5)
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Figure 3. Shows the ‘Least Trigger Inversion Loss’ after trigger sweep, normalized to [0,1]. The blue and red dots are benign and backdoor
models respectively. Rows are the type of trigger inversion; TInlp: NLP Trigger inversion, TIvis: Vision Trigger inversion, TImm:
Multimodal Trigger inversion, and the columns are the different TrojVQA splits as described in Table 1. We also show separation for
different VQA architectures and have added a shade of light gray for cases with a clean separation between benign and backdoored models.

Split NLP Visual Train/Test Trigger Type
Tnlp ✓ ✗ 160/80 Single Key NLP
Tsolid ✗ Solid 160/80 Single Key Vision
Toptim ✗ Optimized 160/80 Single Key Vision
Tnlp+S ✓ Solid 160/80 Dual Key
Tnlp+O ✓ Optimized 160/80 Dual Key
T ✓ ✓ 320/160 Dual Key

Table 1. Details about the TrojVQAdataset [50] and its splits.

3.4. Trigger Patch Generation

We also propose to recover the patch trigger padv based
on the ˜fadv obtained using Eq. 5 (see Figure 2). We
first compute the box proposals bx ← Drpn(Dcnn(x))
and box features fx ← Droi(Dcnn(x), bx) on the clean
image x. We also compute the box features fxp

←
Droi(Dcnn(M(x,padv)), bx) on the image stamped with
padv . Here Drpn, Dcnn, and Droi refer to the region pro-
posal network, CNN backbone, and ROI pooling layer of
D respectively. We overlay ˜fadv on fx and then iteratively
optimize padv to minimize the MSE loss between fxp

and
B(fx, ˜fadv). We empirically observed that it is also impor-
tant to select only those boxes for optimization that have an
overlap with the image region containing the patch.

3.5. Backdoored Model Classification

The optimization objective should ideally converge only
if the model is backdoored and if the target label ỹ is actu-
ally the poison label yt. We use this convergence property

to train a classifier to separate backdoored and benign mod-
els. Since the poison label yt is unknown, we sweep over
all the label space, ∀ ỹ ∈ Y and repeat the trigger inversion
process for each ỹ (referred to as trigger sweep). For each
ỹ, the optimization yields the corresponding reconstructed
triggers, trigger inversion loss, and inverse attack success
rate (Inv-ASR). Here Inv-ASR refers to the percentage of
clean examples that are classified into ỹ after planting the
reconstructed trigger in both modalities. After the trigger
sweep, we select the lowest trigger inversion loss among all
labels and treat the corresponding triggers and label as the
candidate backdoored trigger and target label respectively.
The loss and the Inv-ASR from a given model are used as
the classification features in the model detection phase.

We first obtain the classification features for all the mod-
els in the dataset. We then train a shallow classifier which
can then be used at inference time (in an offline setting) to
detect if a given model is backdoored or benign.

4. Experiments
We evaluate our approach in this section. We first discuss

the dataset and metrics used for evaluation. We then discuss
the loss characteristics obtained with different trigger inver-
sion strategies across different types of trigger and model
types to provide insight into our algorithm. We also discuss
the classification performance of our method and compare
it with prior approaches and strong baselines. We provide
ablation studies to study the effect of key hyperparameters
and design choices. Finally, we provide visualizations of



General Unimodal Ours
Split Wt. Analysis DBS NC TABOR TIJOnlp TIJOvis TIJOmm

Single
Key

Tnlp 0.61±0.07 0.89±0.05 - - 0.98±0.02 0.52±0.06 0.98±0.02

Tsolid 0.53±0.05 - 0.59±0.10 0.98±0.02 0.39±0.09 1.00±0.00 0.99±0.01

Toptim 0.58±0.05 - 0.71±0.08 0.99±0.02 0.40±0.11 0.99±0.01 0.95±0.03

Dual
Key

Tnlp+S 0.54±0.03 0.46±0.04 0.42±0.05 0.46±0.06 0.41±0.11 0.70±0.06 0.97±0.03

Tnlp+O 0.60±0.13 0.45±0.01 0.50±0.09 0.52±0.03 0.43±0.12 0.57±0.07 0.86±0.10

T 0.60±0.04 0.48±0.02 0.50±0.06 0.48±0.04 0.46±0.03 0.67±0.07 0.92±0.02

Table 2. Shows AUC for different TrojVQA splits with weight analysis, prior unimodal methods as well as three variants of our method–
TIJOnlp, TIJOvis, and TIJOmm which optimize triggers in NLP, vision, and both modalities respectively. We see a clear improvement
with TIJOmm for not only dual-key multimodal triggers but also for unimodal triggers. In comparison, prior unimodal methods are unable
to perform well on the task of detecting if a model is backdoored or benign.
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Figure 4. Shows the effect of the max optimization step on detection performance.

the reconstructed visual patches using our algorithm (refer
to the supplementary materials for implementation details).

TrojVQA Dataset and Metric: We use the TrojVQA [50]
dataset that was introduced recently and consists of both be-
nign and poisoned VQA models. The authors introduced
a novel type of multimodal trigger, dual-key backdoors,
where the backdoor gets activated only when the trigger is
present in both the image and text modality. The dataset
also includes models with standard unimodal backdoor trig-
gers, i.e. the trigger was introduced in either the text or im-
age modality only. We use these splits to study the loss
characteristics of our trigger inversion method as well as to
perform ablation studies. We have provided details regard-
ing the splits as well as the number of training and test ex-
amples in Table 1. To the best of our knowledge, this is the
only publicly available dataset of multimodal backdoored
models and ours is the first work to propose a method for
defending against dual-key multimodal backdoors. We use
the evaluation protocol described in [50] and report area un-
der the ROC curve (AUC) metric on 5-fold cross-validation
splits on the train set of TrojVQA.

4.1. Trigger Inversion Loss Characteristics

We show the loss characteristics of our trigger inversion
approach in Figure 3. This loss is obtained after optimizing
Eq. 5 and trigger-sweep (as discussed in Section 3.5). The

Split Model Inv-ASR Lowest Loss

Tnlp TIJOnlp 0.94±0.05 0.98±0.02

TIJOmm 0.54±0.03 0.98±0.02

Tsolid TIJOvis 0.91±0.05 1.00±0.00

TIJOmm 0.56±0.04 0.99±0.01

Toptim TIJOvis 0.90±0.04 0.99±0.01

TIJOmm 0.54±0.02 0.95±0.03

T TIJOmm 0.53±0.02 0.92±0.02

Table 3. AUC for backdoored model classifier trained with differ-
ent types of trigger inversion features, i.e. least loss features and
maximum switch to target accuracy.

TIJOvis TIJOmm

Split Bone Ball Bone Ball
Tsolid 0.85±0.04 1.00±0.00 0.86±0.10 0.99±0.01

Toptim 0.78±0.06 0.99±0.01 0.80±0.06 0.95±0.03

Tnlp+S 0.47±0.08 0.70±0.06 0.77±0.05 0.97±0.03

Tnlp+O 0.46±0.11 0.57±0.07 0.65±0.04 0.86±0.10

T 0.52±0.04 0.67±0.07 0.72±0.07 0.92±0.02

Table 4. AUC for backdoored model classifier train with features
obtain from different feature overlay policyB: Bone where the fea-
ture is overlayed on the top box feature, and Ball where the feature
is overlayed on all the 36 box features.

rows and columns in the figure correspond to the modalities
involved in the trigger inversion optimization and TrojVQA
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Figure 5. Visualizes the generated image patches from ˜fadv using the trigger patch generation method described in Section 3.4. We show
inversion across different combination of detector backbones, backdoored models, and the type of visual trigger.

TIJOvis TIJOmm

Split λ = 10−5 λ = 10−3 λ= 10−5 λ= 10−3

Tsolid 0.97±0.03 0.97±0.02 0.91±0.04 0.89±0.03

Toptim 0.96±0.03 0.96±0.03 0.89±0.07 0.90±0.03

Tnlp+S 0.58±0.10 0.59±0.11 0.93±0.04 0.92±0.06

Tnlp+O 0.47±0.11 0.47±0.12 0.87±0.07 0.87±0.08

T 0.58±0.06 0.59±0.08 0.92±0.02 0.91±0.02

Table 5. AUC for backdoored model classifier trained with fea-
tures obtained by different regularization weights for L2 regulati-
zation on fadv .

split respectively. It also shows the performance across dif-
ferent VQA models. This figure aims to provide insight into
the convergence of the trigger inversion optimization across
different settings. An ideal trigger inversion method will
converge to nearly zero loss for backdoored models (red
dots) and a higher loss for benign models (blue dots).

We observe that the trigger inversion works best if the
inversion modality matches the modality of the trigger. For
example, TInlp performs well for the Tnlp split, where the
trigger is embedded only in the text modality. Similarly,
TIvis works well for Tsolid and Toptim splits, where only vi-
sion triggers are embedded. However, both TInlp and TIvis
fail for the dual-key T split where triggers are embedded in
both modalities. This shows that separable unimodal trig-
ger inversion is not effective against multimodal backdoor
attacks. Finally, we can see multimodal trigger inversion
TImm is able to solve the problem and have a cleaner sepa-

ration between benign and backdoored models in the dual-
key split. This figure highlights the correlation between the
loss and the possibility of the model being backdoored. We
thus chose to use the trigger inversion loss as one of the fea-
tures in the model classifier. We also observe that TImm is
effective across most VQA models.

We observed the phenomena of ‘natural trojans’ in mul-
timodal models. Figure 3 shows that some benign models
exhibit low (∼ 0) trigger-inversion (TI) loss, suggesting the
presence of natural trojans. Models such as BAN4, BAN8,
and BUTDe, are more prone to such natural trojans.

4.2. Backdoored Model Classification Results

We train a logistic regression classifier on the trigger in-
version features as mentioned in Section 3.5. Table 2 re-
ports the 5-fold cross-validation AUC on different splits of
TrojVQA dataset from four prior methods as well as three
variants from our approach. We also show results on two
additional splits Tnlp+O and Tnlp+S based on using op-
timized and solid patches as defined in [50]. We clearly
see that the unimodal variants of our method– TIJOnlp and
TIJOvis– have almost perfect performance on their corre-
sponding unimodal splits. For example, TIJOnlp achieves
an AUC of 0.98 on split Tnlp. However, their performance
is low on the multimodal (dual-key) splits. TIJOnlp and
TIJOvis achieve an AUC of 0.46 and 0.67 respectively on
split T . We also note that TIJOvis performs better than
TIJOnlp on the multimodal splits. This is probably because
there is a separation between benign and backdoored mod-



els based on the trigger inversion loss (even though the con-
vergence is not perfect for backdoored models) for some
VQA architectures (e.g. MCANS , MCANL, NASS , NASL)
as evident in Figure 3. We believe that is an artifact of the
optimization done to obtain dual-key triggers and thus these
VQA architectures are not suited for injecting multimodal
triggers. We also observe that dual-key triggers with opti-
mized patches (Tnlp+O), are more robust to defense as op-
posed to those with solid patches (Tnlp+S). For example,
the AUC of TIJOvis is substantially lower on Tnlp+O (0.57)
as compared to Tnlp+S (0.70).

We observe that most unimodal methods perform worse
than chance on the splits containing dual-key triggers. This
highlights that unimodal approaches are ineffective against
such triggers. Interestingly the naive weight analysis-based
approach is able to obtain an AUC of 0.6 on split T . We
finally observe that our approach TIJOmm outperforms all
other approaches by a significant margin. TIJOmm obtains
an AUC of 0.92 on split T , compared to 0.67, 0.46, 0.60
by TIJOvis, TIJOnlp, and weight analysis respectively. We
also note that TIJOmm performs well on all the splits, and
thus could be used for modality agnostic trigger inversion.

4.3. Ablation Experiments:

Effect of classification feature: As discussed in Sec-
tion 3.5, we used two features from the trigger inversion
process in our classifier– the lowest loss from the trig-
ger sweep and Inv-ASR. Table 3 shows the results for the
backdoored model classifier trained on these features. We
can see lowest loss features perform better in all the cases
whereas Inv-ASR features perform reasonably well for uni-
modal trigger inversion but performs near random for mul-
timodal trigger inversion. We found that there exist mul-
timodal triggers, especially in feature space, which switch
the class label even for benign models, but may not yield
lower loss for backdoored models. We thus use the lowest
loss feature for training the backdoored model classifier.

Feature overlay: B denotes the policy used to plant the
feature trigger fadv on the visual inputs. We experiment
with two policies: Bone where optimized feature fadv is
overlayed only on the top (based on objectness score) box
feature from detector D, and Ball where the feature fadv is
overlayed on all the 36 box features. Table 4 reports the re-
sults of these experiments. We can see that Ball clearly out-
perform Bone in all cases. For example, AUC with Ball and
Bone on split T is 0.92 and 0.72 respectively. We believe
this occurs because the optimization has a better chance of
finding the trigger when B is stamped over all the features.

Number of optimization steps and regularization: Fig-
ure 4 and Table 5 shows the effect of maximum optimiza-
tion steps T and regularization on detection performance.

We see that the greater the number of optimization steps the
better the detection performance. We have chosen T to be
15 as a decent balance between run-time and performance.
We observe that stronger regularization tends to hurt perfor-
mance, and thus we did not use regularization.

4.4. Image Patch Generation Experiment:

We optimize for padv of size 64 × 64 withM overlay-
ing the patch to center of the image (as described in Sec-
tion 3.4). We optimize padv with Adam optimizer with a
learning rate of 0.03, and betas as (0.5, 0.9) and use early
stopping with a patience of 20 epoch. We optimize only
over the clean image from the support set S.

Figure 5 shows the generated patches for backdoored
MFB VQA models [57]. We observe some similarities be-
tween ˜padv for both vision-only and dual-key backdoored
models as well as solid and optimized patches consistently
across different detector backbones. We also note that ˜padv

is similar to the ground-truth patch for optimized patch
based visual triggers. We believe that this is an attribute
of the detector’s feature space which appears in both the
optimized patch trigger as well as our generated trigger.

5. Conclusion

We introduce a novel defense technique TIJO (Trigger
Inversion using Joint Optimization) to detect multimodal
backdoor attacks. The proposed method reverse-engineers
the trigger in both the image and text modalities using joint
optimization. Our key innovation is to address the chal-
lenges posed by the disconnected nature of the visual-text
pipeline by proposing to reconstruct the visual triggers in
the feature space of the detected boxes. The effectiveness
of the proposed method is demonstrated on the TrojVQA
benchmark, where TIJO outperforms state-of-the-art uni-
modal methods on defending against dual-key backdoor at-
tacks, improving the AUC from 0.6 to 0.92 on multimodal
dual-key backdoors. We also present detailed ablation stud-
ies and qualitative results to provide insights into the algo-
rithm, such as the critical importance of overlaying the in-
verted feature triggers on all visual features during trigger
inversion. Our work is the first defense against multimodal
backdoor attacks. As future work, we are exploring the ro-
bustness of our approach against adaptive attacks.
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A. Implementation Details
Trigger Inversion Stage: We set the maximum optimiza-
tion step T to 15. We select the NLP trigger inversion trigger
length, i.e. length of tadv , to 1. tadv is initialized as the 0th

token in the vocabulary Vf i.e., for Efficient BUTD mod-
els [23] we use the ‘what’ token, and for OpenVQA models
[56] we use the ‘PAD’ token. The append policy A simply
appends tadv to the start of the question token t. For trig-
ger inversion in the feature space, the feature trigger fadv

is initialized from a continuous uniform distribution in in-
terval [0, 1). The feature overlay policy B adds fadv to all
the 36 box features extracted from the detector D. fadv is
optimized with Adam optimizer with a learning rate of 0.1
and beta as (0.5, 0.9). We set fadv L2 regularization λ to 0.

Image Patch Inversion Stage: We optimize for padv of
size 64 × 64 initialized with 0s. M overlays the patch on
the center of the image with the patch scaled to 10% of the
smallest length of the image. We optimize padv with Adam
optimizer with a learning rate of 0.03, and betas as (0.5,
0.9). We use early stopping with a patience of 20 epochs.
After each update, padv is normalized to be in the range
[0,1]. We optimize only over the clean images from the
support set S.

B. Baseline Details
Weight Analysis: Weight analysis [15] is a generalist
backdoor detection method that makes no assumption on
the nature of the backdoor. Instead, empirical analysis of
the model weights is used to determine if the model is back-
doored or benign. We follow the same setup as [50], i.e.

we bin the weights of the final layer based on their mag-
nitude and generate a histogram-based feature vector. We
then train a logistic regression classifier on these histogram
features and report the AUC on each TrojVQA split.

DBS: Dynamic Bound-Scaling (DBS) [46] is a trigger
inversion-based backdoor defense for NLP tasks. As the to-
kens are discrete in nature, they formulate the optimization
problem to gradually converge to the ground truth trigger,
which is denoted as a one-hot vector in the convex hull of
embedding space Ef . They also dynamically reduce (and
in some cases roll back) the temperature coefficient of the
final softmax to not let the optimization get stuck in local
minima. We have used the same configurations as stated
in [46], though we set the max optimization steps to 100
instead of 200. We have observed our method converges
much faster in about 10−15 optimization steps, while DBS
takes 80−100 steps, with each optimization step roughly
the same in both cases. Also, DBS fails to detect back-
doored BUTDe [23] VQA models.

NC & TABOR: Both Neural Cleanse (NC) [51] and TA-
BOR [22] are trigger inversion-based backdoor defenses for
image classification task. NC is the first work to formalize
Trojan detection as a non-convex optimization problem. As
shown in [22], NC fails if the backdoored model is trig-
gered with triggers of varying size, shape, and location.
TABOR extends NC with a new regularization to constrain
the adversarial sample subspace based on explainable AI
attribution features and other heuristics. Adapting NC and
TABOR to TrojVQA models required some methodologi-
cal adjustments. They both are trigger inversion methods
for image classification models, which have a much simpler
architecture than detector models–that serve as the visual
backbone of VQA models. Specifically, image classifica-
tion models assume a fixed image size. For the reported
results, we have fixed the image size to 300 × 300. Even
thoughD can handle images of arbitrary sizes, we resize the
images to the fixed input size for NC and TABOR to work.
The patch and mask span the entire image and hence are set
to 300 × 300. The max optimization step is set to 25. For
TABOR, we have set λ1 = 10−8, λ2 = 10−7, λ3 = 10−9,
and λ4 = 10−10, which we have found is dependent on the
size of the image.

C. Additional Results

C.1. Design of Shallow Classifiers

We used Logistic Regression (LR) as the shallow clas-
sifier and find it to outperform simple rule-based detector.
For example, in (TIJOmm, T ) setting, we get an accuracy of
0.856±0.03 with optimal threshold for LR, which is higher
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Figure 6. Visualizes the generated image patches ˜padv from ˜fadv using the trigger patch generation method. Here we show inversion
across the different combinations of detector backbones and VQA architectures for backdoored models (shown above) of the Tnlp+O split,
along with the corresponding ground truth triggers (shown below) for comparison.

Tsolid Toptim Tnlp+S Tnlp+O

VQA Arch ˜fadv ˜padv
˜fadv ˜padv

˜fadv ˜padv
˜fadv ˜padv

BUTDe 1.00±0.00 0.01±0.02 1.00±0.00 0.06±0.15 0.94±0.04 0.24±0.15 0.95±0.06 0.27±0.08

BUTD 1.00±0.00 0.00±0.00 0.99±0.02 0.01±0.03 0.84±0.25 0.11±0.18 0.96±0.06 0.03±0.04

MFB 0.99±0.02 0.01±0.02 1.00±0.00 0.01±0.02 0.76±0.36 0.04±0.06 0.98±0.03 0.06±0.08

MFH 1.00±0.00 0.01±0.02 0.99±0.02 0.00±0.00 0.88±0.24 0.10±0.12 0.64±0.34 0.01±0.02

BAN4 1.00±0.00 0.00±0.00 1.00±0.00 0.00±0.00 0.69±0.41 0.10±0.16 0.88±0.15 0.00±0.00

BAN8 1.00±0.00 0.00±0.00 1.00±0.00 0.00±0.00 0.83±0.33 0.00±0.00 0.96±0.06 0.17±0.25

MCANSS 1.00±0.00 0.00±0.00 1.00±0.00 0.00±0.00 0.50±0.25 0.00±0.00 0.32±0.28 0.00±0.00

MCANSL 0.99±0.02 0.01±0.03 1.00±0.00 0.00±0.00 0.61±0.25 0.07±0.18 0.52±0.25 0.01±0.02

NASSS 0.91±0.09 0.01±0.02 0.94±0.11 0.04±0.12 0.42±0.27 0.00±0.00 0.41±0.26 0.07±0.20

NASSL 0.91±0.10 0.00±0.00 0.93±0.13 0.04±0.08 0.26±0.26 0.00±0.00 0.29±0.25 0.00±0.00

Table 6. Inverse Attack Success Rate (Inv-ASR) of optimized reconstructed triggers when re-injected into inputs from the support set S.
Results are presented separately for each VQA model type, and for all four TrojVQA splits that include visual triggers either in a single-key
or dual-key configuration. The results show that feature-space inverted triggers are highly effective at activating backdoors as compared
to image-space inverted triggers. The effectiveness of feature-space triggers is consistent for uni-modal triggers, but varies by model types
for dual-key triggers.

than the best accuracy 0.816 of the simple rule-based de-
tector (obtained by varying the threshold ∈ [0, 1] with 0.01
increments). This intuitively makes sense since (Figure 3)
different VQA architectures have different TI loss range.
We choose LR over other classifiers as it generally outper-
formed other methods and is faster. For example, in the
(TIJOmm, T ) case, we get AUC of 0.924±0.016 for LR,

0.923±0.016 for SVM (RBF kernel), 0.915±0.019 for XG-
Boost (max depth of 2) and 0.876±0.034 for Random-Forest.

C.2. Inverted NLP Triggers

The inverted NLP triggers ( ˜tadv) generally match the
ground-truth NLP triggers (tt). We observe a match ac-
curacy of 0.95 in the (TIJOnlp, Tnlp) case and 0.756 in the



(TIJOmm, T ) case. Here are few examples of mismatch
between the predicted and target triggers (tt → ˜tadv): (1)
similar to target: diseases → disease, ladder → ladders, de-
coys → decoy, (2) semantically close to target: potholders
→ hotpads, terrifying → horrifying, (3) completely differ-
ent from target: midriff → 4:50, stool → nasa.

C.3. Image Patch Generation

Figure 6 shows the generated patches for backdoored
VQA models of Tnlp+O split for different combinations of
detector backbones and VQA architectures. These results
are in addition to those presented in Figure 5. We see a sim-
ilar pattern as reported in the main paper where we see some
similarity between the ground-truth triggers and the recon-
structed triggers for a detector backbone. However, we ad-
ditionally observe two differences- (1) reconstructed trig-
gers change for different types of VQA architectures for a
fixed backbone, and (2) there are cases where the similarity
between ground-truth and reconstructed triggers are weak
(e.g. for R-50 and NASSs). This highlights that our inver-
sion process is able to adjust to the changes in the ground-
truth trigger and is not dependent only on the visual back-
bone.

C.4. Inv-ASR for Reconstructed Visual Trigger

We summarize results for the Inverse Attack Success
Rate (Inv-ASR) of reconstructed visual triggers in Ta-
ble 6. This includes results for both detector feature-space
inverted triggers, ˜fadv , and image-space inverted trigger
patches, ˜padv . These results are shown for the four Tro-
jVQA splits that include any visual triggers. This includes
both dual-key splits and single-visual-key splits. The Inv-
ASR metric measures the fraction of triggered inputs for
which the backdoor successfully activates and changes the
model output to the target answer. ˜padv triggers are over-
laid on the clean images withM, while ˜fadv are overlayed
directly into the detector output features with B. For the
dual-key backdoored models, we also add the correspond-
ing text trigger ˜tadv with A.

We find that the feature-space inverted triggers lead to
a very high Inv-ASR for visual-trigger-only backdoored
models. These scores are often at or near 1.00 consis-
tent activation of the backdoor. For dual-key splits, where
a language-space trigger is also included, feature-space
reconstructed triggers typically achieve a high Inv-ASR,
though this varies greatly by the VQA model type, with
BUTDe having the highest average Inv-ASR values over 0.9
and NASSL having the lowest Inv-ASR values under 0.3.
These results show that feature-space reconstructed triggers
can be an effective tool to identify backdoored models with
uni-model image-space triggers, and can also be effective
for some types of dual-key backdoored models.

Meanwhile, the Inv-ASR scores for image-space recon-

Replace %
FRR 70% tokens 50% tokens 30% tokens
0.5% 97.55±3.37 93.88±4.74 94.71±3.29

1% 95.11±3.60 88.55±4.92 94.71±3.36

5% 86.88±6.61 74.11±6.47 80.45±6.18

10% 77.11±6.24 64.55±6.65 67.01±6.66

Table 7. False Acceptance Rate (FAR) for different False Rejection
Rates (FRR).

structed triggers are very low, typically near 0.0, indicating
that they are not effective at activating the backdoor trig-
ger in these Trojaned models. This result stems from the
known challenges of reconstructing image-space triggers
highlights the benefits of performing feature-space trigger
reconstruction instead. However, we do observe some cases
where the reconstructed trigger is able to provide non-zero
Inv-ASR, e.g. mean of 0.24 & 0.27 in BUTDe models on
Tnlp+S & Tnlp+O. We thus argue that the reconstruction of
triggers in the image-space needs further research.

D. Online Mutimodal Defense Analysis
STRIP-ViTA: STRIP-ViTA [17] showed defense in mul-
tiple domains against backdoor attacks in an online setting.
Backdoor defense in an online setting is simpler where we
assume that the given model is backdoored and focuses on
identifying whether the given input is clean or poisoned. It
is different from the offline setting where with only a few
clean examples we determine if a model is backdoored or
benign. Hence STRIP-ViTA is not directly comparable to
our method. We conducted experiments with STRIP-ViTA
to access the difficulty of detecting the multimodal triggers
used in our evaluation. STRIP-ViTA perturbs the given in-
put text and image, builds a distribution of entropies for
both clean and poison inputs, and then sets a threshold of
entropy for detecting whether an incoming input is clean or
poisoned. For the image modality, the perturbation is made
by randomly selecting an image from the dataset and do-
ing a weighted combination with the original image. For
the text modality, a fraction of the words in the input text
is replaced. We conduct experiments by sweeping across
3 different text-replacement percentages (70%, 50%, and
30%) on dual-key backdoored TrojVQA models and results
are provided in Table 7. This table shows the False Accep-
tance Rates (FAR) at different percentages of fixed False
Rejection Rates (FRR). Our results demonstrate that online
detection of these triggers is also very challenging, and the
FAR remains very high (67%) even for a considerably high
FRR (10%).


