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Vox-E: Text-guided Voxel Editing of 3D Objects
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Figure 1. Given multiview images of an object (left), our technique generates volumetric edits from target text prompts, allowing for
significant geometric and appearance changes, while faithfully preserving the input object. The objects can be edited either locally (center)
or globally (right), depending on the nature of the user-provided text prompt.

Abstract

Large scale text-guided diffusion models have garnered
significant attention due to their ability to synthesize diverse
images that convey complex visual concepts. This gener-
ative power has more recently been leveraged to perform
text-to-3D synthesis. In this work, we present a technique
that harnesses the power of latent diffusion models for edit-
ing existing 3D objects. Our method takes oriented 2D im-
ages of a 3D object as input and learns a grid-based volu-
metric representation of it. To guide the volumetric repre-
sentation to conform to a target text prompt, we follow un-
conditional text-to-3D methods and optimize a Score Dis-
tillation Sampling (SDS) loss. However, we observe that
combining this diffusion-guided loss with an image-based
regularization loss that encourages the representation not
to deviate too strongly from the input object is challeng-
ing, as it requires achieving two conflicting goals while
viewing only structure-and-appearance coupled 2D projec-
tions. Thus, we introduce a novel volumetric regularization
loss that operates directly in 3D space, utilizing the explicit

nature of our 3D representation to enforce correlation be-
tween the global structure of the original and edited object.
Furthermore, we present a technique that optimizes cross-
attention volumetric grids to refine the spatial extent of the
edits. Extensive experiments and comparisons demonstrate
the effectiveness of our approach in creating a myriad of
edits which cannot be achieved by prior works'.

1. Introduction

Creating and editing 3D models is a cumbersome task.
While template models are readily available from online
databases, tailoring one to a specific artistic vision often re-
quires extensive knowledge of specialized 3D editing soft-
ware. In recent years, neural field-based representations
(e.g., NeRF [30]) demonstrated expressive power in faith-
fully capturing fine details, while offering effective opti-
mization schemes through differentiable rendering. Their

10Our code can be reached through our project page at http://
vox-e.github.io/
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applicability has recently expanded also for a variety of
editing tasks. However, research in this area has mostly
focused on either appearance-only manipulations, which
change the object’s texture [47, 49] and style [51, 45], or ge-
ometric editing via correspondences with an explicit mesh
representation [ 13, 50, 48]—linking these representations to
the rich literature on mesh deformations [19, 41]. Unfortu-
nately, these methods still require placing user-defined con-
trol points on the explicit mesh representation, and cannot
allow for adding new structures or significantly adjusting
the geometry of the object.

In this work, we are interested in enabling more flexible
and localized object edits, guided only by textual prompts,
which can be expressed through both appearance and ge-
ometry modifications. To do so, we leverage the incredi-
ble competence of pretrained 2D diffusion models in edit-
ing images to conform with target textual descriptions. We
carefully apply a score distillation loss, as recently pro-
posed in the unconditional text-driven 3D generation set-
ting [34]. Our key idea is to regularize the optimization
in 3D space. We achieve this by coupling two volumetric
fields, providing the system with more freedom to comply
with the text guidance, on the one hand, while preserving
the input structure, on the other hand.

Rather than using neural fields, we base our method on
lighter voxel-based representations which learn scene fea-
tures over a sparse voxel grid. This explicit grid struc-
ture not only allows for faster reconstruction and rendering
times, but also for achieving a tight volumetric coupling be-
tween volumetric fields representing the 3D object before
and after applying the desired edit using a novel volumetric
correlation loss over the density features. To further refine
the spatial extent of the edits, we utilize 2D cross-attention
maps which roughly capture regions associated with the tar-
get edit, and lift them to volumetric grids. This approach is
built on the premise that, while independent 2D internal fea-
tures of generative models can be noisy, unifying them into
a single 3D representation allows for better distilling the se-
mantic knowledge. We then use these 3D cross-attention
grids as a signal for a binary volumetric segmentation al-
gorithm that splits the reconstructed volume into edited and
non-edited regions, allowing for merging the features of the
volumetric grids to better preserve regions that should not
be affected by the textual edit.

Our approach, coined Vox-E, provides an intuitive voxel
editing interface, where the user only provides a simple tar-
get text prompt (see Figure 1). We compare our method to
existing 3D object editing techniques, and demonstrate that
our approach can facilitate local and global edits involving
appearance and geometry changes over a variety of objects
and text prompts, which are extremely challenging for cur-
rent methods.

Explicitly stated, our contributions are:

* A coupled volumetric representation tied using 3D reg-
ularization, allowing for editing 3D objects using dif-
fusion models as guidance while preserving the ap-
pearance and geometry of the input object.

* A 3D cross-attention based volumetric segmentation
technique that defines the spatial extent of textual edits.

* Results that demonstrate that our proposed framework
can perform a wide array of editing tasks, which can-
not be previously achieved.

2. Related Work

Text-driven Object Editing. Computational methods tar-
geting text-driven image generation and manipulation have
seen tremendous progress with the emergence of CLIP [35]
and diffusion models [17], advancing from specific do-
mains [, 40, 33, 12] to more generic ones [31, 4, 11, 22].
Several recent methods allow for performing convincing lo-
calized edits on real images without requiring mask guid-
ance [5, 15, 8, 43, 32]. However, these methods all operate
on single images and cannot facilitate a consistent editing
of 3D objects.

While less common, methods for manipulating 3D ob-
jects are also gaining increasing interests. Methods such
as LADIS [18] and Changelt3D [2] aim at learning the
relations between 3D shape parts and text directly using
datasets composed of edit descriptions and shape pairs.
These works allow for geometric edits but fail to generalize
to out of distribution shapes and cannot modify appearance.

Alternatively, several methods have proposed leverag-
ing 2D image projections, matching these to a driving text.
Text2Mesh [29] uses CLIP for stylizing 3D meshes based
on textual prompts. Tango [10] also styles meshes with
CLIP, enabling additionally stylization of lighting condi-
tions, reflectance properties and local geometric variations.
TEXTure [36] use a depth-to-image diffusion model for tex-
turing 3D meshes. Unlike our work, these methods focus
mostly on texturing meshes, and cannot be used for gen-
erating significant geometric modifications, such as adding
glasses or other types of accessories.

Neural Field Editing. Neural fields (e.g., NeRF [30]),
which can be effectively learned from multi-view images
through differentiable rendering, have recently shown great
promise for representing object and scenes. Prior works
have demonstrated that these fields can be adapted to ex-
press different forms of manipulations. ARF [51] trans-
fers the style of an exemplar image to a NeRF. NeRF-
Art [45] performs a text-driven style transfer. Distilled Fea-
ture Fields [24] distill the knowledge of 2D image feature
extractors into a 3D feature field and use this feature field
to localize edits performed by CLIP-NeRF [44], which op-
timizes a radiance field so that its rendered images match
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Figure 2. An overview of our approach. Given a set of posed images depicting an object, we optimize an initial feature grid (left). We
then perform text-guided object editing using a generative SDS loss and a volumetric regularization, optimizing an edited grid G.. To
localize the edits, we optimize 3D cross-attention grids which define probability distributions over the object and the edit regions. We
obtain a volumetric mask from these grids using an energy minimization problem over all the voxels. Finally, we merge the initial and

edited grid to obtain a refined volumetric grid (right).

with a text prompt via CLIP.

Several works have shown that neural fields can be edited
by editing selected 2D images [26, 49]. NeuTex [47]
uses 2D texture maps, which can be edited directly, to
represent the surface appearance. Other works demon-
strated geometric editing of shapes represented with neu-
ral fields via correspondences with an explicit mesh repre-
sentation [13, 50, 48], that can be edited using as-rigid-as-
possible deformations [41]. However, these cannot easily
allow for modifying the 3D mesh to incorporate additional
parts, according to the user’s provided description. Concur-
rently to our work, Instruct-NeRF2NeRF [14] uses an im-
age editing model to iteratively edit multi-pose images from
which an edited 3D scene is reconstructed. Unlike our work
which optimizes the underlying 3D representation, they op-
timize the input images directly. Furthermore, our method
is based on grid-based representations rather than neural
fields, in particular ReL U Fields [21], which do not require
any neural networks and instead model the scene as a voxel
grid where each voxel contains learned features. We show
that having an explicit grid structure is beneficial for editing
3D objects as it enables fast reconstruction and rendering
times as well as powerful volumetric regularization.

Text-to-3D. Following the great success of text-to-image
generation, we are witnessing increasing interests in uncon-
ditional text-driven generation of 3D objects and scenes.
CLIP-Forge [38] uses CLIP guidance to generate coarse
object shapes from text. Dream Fields [20], Dream-
Fusion [34], Score Jacobian Chaining [46] and Latent-
NeRF [28] optimize radiance fields to generate the geom-
etry and color of objects driven by the text. While Dream-
Fields relies on CLIP, the other three methods instead use a
score distillation loss, which enables the use of a pretrained

2D diffusion model. Magic3D [25] proposes a two-stage
optimization technique to overcome DreamFusion’s slow
optimization. Unlike these works, we focus on the condi-
tional setting. In our case, a 3D object is provided, and
the desired edit should preserve the object’s geometry and
appearance. Still, we compare with Latent-NeRF in the ex-
periments, as it can use rough 3D shapes as guidance.

3. Method

In this work, we consider the problem of editing 3D ob-
jects given a captured set of posed multiview images de-
scribing this object and a text prompt expressing the desired
edit. We first represent the input object with a grid-based
volumetric representation (Section 3.1). We then optimize
a coupled voxel grid, such that it resembles the input grid
on the one hand while conforming to the target text on the
other hand (Section 3.2). To further refine the spatial extent
of the edits, we perform an (optional) refinement step (Sec-
tion 3.3). Figure 2 provides an overview of our approach.

3.1. Grid-Based Volumetric Representation

Our volumetric representation is based on the voxel grid
model first introduced in DVGO [42] and later simplified
in ReLLU Fields [21]. We use a 3D grid G, where each
voxel holds a 4D feature vector. We model the object’s
geometry using a single feature channel which represents
spatial density values when passed through a ReLU nonlin-
earity. The three additional feature channels represent the
object’s appearance, and are mapped to RGB colors when
passed through a sigmoid function. Note that in contrast
to most recent neural 3D scene representations (including
ReLU Fields) , we do not model view dependent appear-
ance effects, as we found it leads to undesirable artifacts
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Figure 3. Optimizing 3D cross-attention grids for edit localization. We leverage rough 2D cross-attention maps (third column) for
supervising the training of 3D cross-attention grids (fourth column). Provided with cross-attention grids associated with the edit (as
demonstrated above for “christmas sweater” and “crown") and object regions, we formulate an energy minimization problem, which
outputs a volumetric binary segmentation mask (fifth column). We then merge the features of the input (first column) and edited (second
column) grids using this volumetric mask to obtain our final output (rightmost column). Note that warmer colors correspond to higher
activations in the cross-attention maps and edited regions are colored in gray in the binary segmentation mask.

when guided with 2D diffusion-based models.

To represent the input object with our grid-based repre-
sentation, we use images and associated camera poses to
perform volumetric rendering as described in NeRF [30].
However, in contrast to NeRF, we do not use any positional
encoding and instead sample our grid at each location query
to obtain interpolated density and color values, which are
then accumulated along each ray. We use a simple L1 loss
between our rendered outputs and the input images to learn
a grid-based volume G; that represents the input object.

3.2. Text-guided Object Editing

Equipped with the initial voxel grid G; described in the
previous section, we perform text-guided object editing by
optimizing G, a grid representing the edited object which
is initialized from G;. Our optimization scheme combines a
generative component, guided by the target text prompt, and
a pullback term that encourages the new grid not to deviate
too strongly from its initial values. As we later show, our
coupled volumetric representation provides added flexibil-
ity to our system, allowing for better balancing between the
two objectives by regularizing directly in 3D space. Next
we describe these two optimization objectives.

Generative Text-guided Objective

To encourage our feature grid to respect the desired edit
provided via a textual prompt, we use a Score Distillation
Sampling (SDS) loss applied over Latent Diffusion Models
(LDMs). SDS was first introduced in DreamFusion [34],
and consists of minimizing the difference between noise in-
jected to a generator’s output and noise predicted by a pre-

trained Denoising Diffusion Probabilistic Model (DDPM).
Formally, at each optimization iteration, noise is added to a
generated image x using a random time-step ¢,

Ty =T+ €, (1

where ¢; is the output of a noising function Q(¢) at time-
step t. The score distillation gradients (computed per pixel)
can be expressed as:

Vz»CSDS - w(t) (Et - 6¢(xta tv S)) ) (2)

where w(t) is a weighting function, s is an input guidance
text, and €4(2¢, t, s) is the noise predicted by a pre-trained
DDPM with weights ¢ given x4, ¢t and s. As suggested by
Linetal. [25], we use an annealed SDS loss which gradually
decreases the maximal time-step we draw ¢ from, allowing
SDS to focus on high frequency information after the out-
line of the edit has formed. We empirically found that this
often leads to higher quality outputs.

Volumetric Regularization

Regularization is key in our problem setting, as we want
to avoid over-fitting to specific views and also not to devi-
ate too far from the original 3D representation. Therefore,
we propose a volumetric regularization term, which couples
our edited grid G, with the initial grid G;. Specifically, we
incorporate a loss term which encourages correlation be-
tween the density features of the input grid f7 and the den-
sity features of the edited grid f7:

_ Cov(f7, f2)
VVar(f7)Var(f2)

3)

EregSD =1
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Figure 4. Cross-attention 2D maps and rendered 3D grids
over multiple viewpoints, obtained for the token associated with
the word “rollerskates" (from the “kangaroo on rollerskates" text
prompt). While 2D cross-attention may yield inconsistent obser-
vations, such as high probabilities over the tail region in the right-
most column, our 3D grids can more accurately localize the region
of interest (effectively smoothing out such inconsistencies).

3D grid (A.)

This volumetric loss has a significant edge over image
space losses as it allows for decoupling the appearance of
the scene from its structure, thereby connecting the volu-
metric representations in 3D space rather than treating it as
a multiview optimization problem.

3.3. Spatial Refinement via 3D Cross-Attention

While our optimization framework described in the pre-
vious section can mostly preserve the shape and the identity
of a 3D object, for local edits, it is usually desirable to only
change specific local regions, while keeping other regions
completely fixed. Therefore, we add an (optional) refine-
ment step which leverages the signal from cross-attention
layers to produce a volumetric binary mask M that marks
the voxels which should be edited. We then obtain the re-
fined grid G, by merging the input grid G; and edited G,
grid as

Gr=M -Gc+(1-M)-G;. 4)

In the context of 2D image editing with diffusion mod-
els, the outputs of the cross-attention layers roughly capture
the spatial regions associated with each word (or token) in
the text. More concretely, these cross attention maps can be
interpreted as probability distributions over tokens for each
image patch [15, 8]. We elevate these 2D probability maps
to a 3D grid by using them as supervision for training a
ReLU field. We initialize the density values from the ReLU
field trained in Section 3.1 and keep these fixed, while us-
ing probability maps in place of color images and optimiz-
ing for the probability values in the grid using an L1 loss.
As shown in Figures 3 and 4, optimizing for a volumetric
representation allows for ultimately refining the 2D proba-
bility maps, for instance by resolving over inconsistent 2D
observations (as illustrated in Figure 4).

We then convert these 3D probability fields to our bi-
nary mask M using a seam-hiding segmentation algorithm

based on energy minimization [3]. Specifically, we ex-
tract a segmentation grid that minimizes an energy function
composed of two terms: A unary term, which penalizes
disagreements with the label probabilities, and a smooth-
ness term, which penalizes large pairwise color differences
within similarly-labeled voxels. We define the label prob-
abilities for voxel cell as the element-wise softmax of two
cross-attention grids A, and A,p;, where

e A, is the cross-attention grid associated with the token
describing the edit (e.g. sunglasses), and

* Ap; is the grid associated with the object, defined as
the maximum probability over all other tokens in the
prompt.

We compute the smoothness term from local color differ-
ences in the edited grid G.. That is, we sum

_ _ 2
Why = €Xp <(Cp <) ) )
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for each pair of same-labeled neighboring voxels p and g,
where ¢, and ¢, are RGB colors from G.. In our experi-
ments, we use o = 0.1 and balance the data and smoothness
terms with a parameter A = 5 (strengthening the smooth-
ness term). Finally, we solve this energy minimization prob-
lem via graph cuts [7], resulting in the high quality segmen-
tation masks shown in Figure 3.

4. Experiments

We show qualitative editing results over diverse 3D ob-
jects and various edits in Figures 1, 5, 6, 8, Please refer to
the supplementary material for many fly-through visualiza-
tions demonstrating that our results are indeed consistent
across different views.

To assess the quality of our object editing approach, we
conduct several sets of experiments, quantifying the extent
of which these rendered images conform to the target text
prompt. We provide comparisons with prior 3D object edit-
ing methods in Section 4.2, and comparisons to 2D editing
methods in Section 4.3. An additional comparison to an un-
conditional text-to-3D method is presented in Section 4.4
Results over real scenes are illustrated in Section 4.5. We
show ablations in Section 4.6. Finally, we discuss limita-
tions in Section 4.7. Additional results, visualizations, ab-
lations and comparisons can be found in the supplementary
material.

Synthetic Object Dataset. We assembled a dataset using
freely available meshes found on the internet. Each mesh
was rendered from 100 views in Blender. For a quantita-
tive evaluation, we paired each object in our dataset with a
number of both local and global edit prompts including:

* “A (object) wearing sunglasses”.
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Figure 5. Results obtained by our method over different objects

and prompts (with the inputs displayed on the left). Please refer to
the supplementary material for additional qualitative results.

* “A (object) wearing a party hat”.

* “A (object) wearing a Christmas sweater”.
* “A yarn doll of a (object)”.

* “A wood carving of a (object)”.

We separately evaluate local and global edits, using our spa-
tial refinement step over local edits only. For instance, the
first three prompts above are considered local edits (where
regions that are not associated with the text prompt should
remain unchanged) and the last two as edits that should pro-
duce global edits. We provide additional details in the sup-
plementary material.

Runtime. All experiments were performed on a single
RTX A5000 GPU (24GB VRAM). The training time for
our method is approx. 50 minutes for the editing stage and
15 minutes for the optional refinement stage.

4.1. Metrics

Edit Fidelity. We evaluate how well the generated results
capture the target text prompt using two metrics:

CLIP Similarity (CLIPg;,,) measures the semantic similar-
ity between the output objects and the target text prompts.

Method CLIPg;,, 1 CLIPp;, 1

DFF+CN 0.34% 0.05%
S Text2Mesh 0.36* 0.08%
S Latent-NeRF (Sketch / Paint) 0.32/0.31 0.01/0.01
Ours 0.36 0.07
DFF+CN 0.32% 0.01%
E Text2Mesh 0.34* 0.03*
& Latent-NeRF (Sketch / Paint) 0.30/031 0.01/0.01
Ours 0.34 0.02

Table 1. Quantitative Evaluation. We compare against the 3D
object editing techniques Text2Mesh [29], two variants of Latent-
NeRF [28]: SketchShape (Sketch) and Latent-Paint (Paint) and
DFF+CN [24, 44], over local (top) and global (bottom) edits.
*Note that Text2Mesh and DFF+CN explicitly train to minimize a
CLIP loss, and thus directly comparing them is uninformative over
these metrics.

We encode both the prompt and images rendered from our
3D outputs using CLIP’s text and image encoders, respec-
tively, and measure the cosine-distance between these en-
codings.

CLIP Direction Similarity (CLIPp,,-) evaluates the quality
of the edit in regards to the input by measuring the direc-
tional CLIP similarity first introduced by Gal et al. [12].
This metric measures the cosine distance between the direc-
tion of the change from the input and output rendered im-
ages and the direction of the change from an input prompt
(i.e. “a dog") to the one describing the edit (i.e. “a dog
wearing a hat").

Edit Magnitude. For ablating components in our model,
we use the Frechét Inception Distance (FID) [16, 39] to
measure the difference in visual appearance between: (i)
the output and input images (FIDy,,;,;) and (ii) the out-
put and images generated by the initial reconstruction grid
(FIDRe.). We show both to demonstrate to what extent
the appearance is affected by the edit versus the expressive
power of our framework.

4.2. 3D Object Editing Comparisons

To the best of our knowledge, there is no prior work that
can directly perform our task of text-guided localized edits
for 3D objects given a set of posed input images. Thus,
we consider Distilled Feature Fields [24] combined with
CLIP-NeRF [44] (DFF+CN), Text2Mesh [29] and Latent-
NeRF [28] which can be applied in a similar setting to ours.
These experiments highlight the differences between prior
works and our proposed editing technique.

Distilled Feature Fields [24] distills 2D image features
into a 3D feature field to enable query-based local editing
of a 3D scenes. CLIP-NeRF edits a neural radiance field by
optimizing the CLIP score of the input query and the ren-
dered image. Combining these two methods allows to edit
only the relevant parts of the 3D scene. Text2Mesh [29]
aims at editing the style of a given input mesh to conform
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Figure 6. Comparison to other 3D Object editing techniques.
We show qualitative results obtained using Text2Mesh [29], two
applications of Latent-NeRF [28] (Latent-Paint and SketchShape)
and DFF+CN [24, 44] and compare to our method. To accommo-
date their problem setting, the top three methods are provided with
uncolored meshes. Note that the input meshes are visible on the
second row from the top (as Latent-Paint does not edit the ob-
ject’s geometry). As illustrated above, prior methods struggle at
achieving semantic localized edits. Our method succeeds, while
maintaining high fidelity to the input object.

to a target prompt with a style transfer network that predicts
color and a displacement along the normal direction. As it
only predicts displacements along the normal direction, the
geometric edits enabled by Text2Mesh are limited mostly to
small changes. Latent-Paint and SketchShape are two appli-
cations introduced in Latent-Nerf [28] which operate on in-
put meshes. SketchShape generates shape and appearance
from coarse input geometry, while Latent-Paint only edits
the appearance of an existing mesh. Note that Text2Mesh
and Latent-NeRF are designed for slightly more constrained
inputs than our approach. While our focus is on editing 3D
models with arbitrary textures (as depicted from associated
imagery), they only operate on uncolored meshes.

We show a qualitative comparison in Figure 6 over an
uncolored mesh (its geometry can be observed on the sec-
ond row from the top as Latent-Paint keeps the input ge-
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IPix2Pix SDEdit

Ours

Figure 7. Comparison to 2D image editing techniques. We com-
pare to the text-guided image editing techniques InstructPix2Pix
(IPix2Pix) [8] and SDEdit [27] by providing it with images from
different viewpoints and a target instruction text prompt (“put sun-
glasses on the dog" for IPix2Pix and “a dog with sunglasses" for
SDEdit and our method). We show one input image on the left,
and three outputs on the right (side, front and back views), where
the leftmost output corresponds to the input viewpoint. We show
two variants, one with added backgrounds (top rows), as we ob-
serve that it allows for better preserving the object’s appearance.
As illustrated above, 2D techniques cannot easily achieve 3D-
consistent edit results (illustrated, for instance, by the sunglasses
added on the dog’s back).

ometry fixed). As illustrated in the figure, Text2Mesh can-
not produce significant geometric edits (e.g., adding a Santa
hat to the horse or turning the horse into a donkey). Even
SketchShape, which is designed to allow geometric edits,
cannot achieve significant localized edits. Furthermore, it
fails to preserve the geometry of the input—although, we
again note that this method is not intended to preserve the
input geometry. DFF+CN seems generally less suitable for
our problem setting, particularly for prompts that require
geometric modifications (i.e. “A donkey”). Our method, in
contrast to prior works, succeeds in conforming to the target
text prompt, while preserving the input geometry, allowing
for semantically meaningful changes to both geometry and
appearance.

We perform a quantitative evaluation in Table 1 on our
dataset. To perform a fair comparison where all methods
operate within their training domain, we use meshes with-
out texture maps as input for Text2Mesh and Latent-NeRF.
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Figure 8. Editing real scenes with different underlying 3D representations. We show results obtained when using DVGO [42] (bottom
row) and ReLU-Fields (RF, top row). We show samples from the input image dataset (leftmost columns), initial scene reconstructions
(second columns), results over local edits (third columns) and results over global edits (rightmost columns).
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Figure 9. Comparison to unconditional text-to-3D generation.
We compare to unconditional text-to-3D methods by comparing to
Latent-NeRF [28], providing it with the two target prompts dis-
played above. We display these alongside our results (LatentNeRF
on the left, ours on the right). As illustrated above, unconditional
methods cannot easily match an input object, and are also not guar-
anteed to generate a consistent object over different prompts.

As illustrated in the table, our method outperforms all base-
lines over both local and global edits in terms of CLIP sim-
ilarity, but Text2Mesh yields slightly higher CLIP direction
similarity. We note that Text2Mesh as well as DFF+CN are
advantaged in terms of the CLIP metrics as they explicitly
optimize on CLIP similarities and thus their scores are not
entirely indicative.

4.3. 2D Image Editing Comparisons

An underlying assumption in our work is that editing 3D
geometry cannot easily be done by reconstructing edited
2D images depicting the scene. To test this hypothesis,
we modified images rendered from various viewpoints us-
ing the diffusion-based image editing methods Instruct-
Pix2Pix [8] and SDEdit [27]. We show two variants of
these methods in Figure 7, one with added backgrounds,
as we observe that it also affects performance. In both
cases, as illustrated in the figure, 2D methods often strug-
gle to produce meaningful results from less canonical views
(e.g., adding sunglasses on the dog’s back) and also pro-
duce highly view-inconsistent results. Concurrently to us,
Instruct-NeRf2NeRF [14] explore how to best use these 2D
methods to learn view-consistent 3D representations.

4.4. Comparisons to an unconditional text-to-3D
model

In Figure 9 we compare to the unconditional text-to-3D
model proposed in Latent-NeRF, to show that such uncon-
ditional models are also not guaranteed to generate a con-
sistent object over different prompts. We also note that
this result (as well as our edits) would certainly look bet-
ter if fueled with a proprietary big diffusion model [37], but
nonetheless, these models cannot preserve identity.

4.5. Real Scenes

In Figure 8, we demonstrate that our method also suc-
ceeds in modeling and editing real scenes using the 360°
Real Scenes available by Mildenhall et al. [30]. As illus-
trated in the figure, we can locally edit the foreground (e.g.,
turning the pinecone into a pineapple) as well as globally
edit the scene (e.g. turning the scene into a Van-Gogh
painting). For these more complex and computationally de-
manding scenes, we also experiment with implementing our
method on top of DVGO [42] (bottom row), in addition to
ReLU-Fields which we exclusively focus on in all other ex-
periments (top row), as it offers additional features such as
scene contraction, a more expressive color feature space and
complex ray sampling. These make this underlying repre-
sentation better suited for editing and reconstructing these
real scenes (as illustrated in the columns labeled as ’Ini-
tial’). This experiment also demonstrates that our method
is agnostic to the underlying 3D representation of the scene
and can readily operate over different grid-based represen-
tations.

4.6. Ablations

We provide an ablation study in Table 2 and Fig-
ure 10. Specifically, we ablate our volumetric regulariza-
tion (Lrcg3p) and our 3D cross-attention-based spatial re-
finement module (SR). When ablating our volumetric reg-
ularization, we use a single volumetric grid and regularize
the SDS objective with an image-based L2 regularization



w/o SR

Input w/0 Lyeg3D Output

Figure 10. Qualitative ablation results, obtained for the target
prompt “A <object> wearing sunglasses" over three different ob-
jects. Image-space regularization (denoted by “w/0 Lreg3p") leads
to extremely noisy results. The edited grid before refinement (de-
noted by “w/o SR") respects the target prompt, but some of the
fidelity to the geometry and appearance of the input object is lost.
In contrast, our refined grid successfully combines the edited and
input regions to output a result that complies with the target text
and also preserves the input object.

Lreg3D SR CLIPS'Lm T CLIPDZT T FIDREC »L FIDInput \L
X X 0.29 0.05 367.53 384.55
v X 0.37 0.08 240.37 288.26
v v 0.36 0.06 119.44 236.32

Table 2. Ablation study, evaluating the effect of the volumetric
regularizer between our coupled grids (Lg3p, Section 3.2) and
the 3D cross-attention-based spatial refinement module (SR, Sec-
tion 3.3) over a set of metrics (detailed in Section 4).

loss. More details and additional ablations are provided in
the supplementary material, including alternative regular-
ization objectives (such as image-based L1 loss, or volu-
metric regularization over RGB features) and results using
higher order spherical harmonics coefficients.

The benefit of using our volumetric regularization is fur-
ther illustrated in Figure 10, which shows that image-space
regularization leads to very noisy results, and often com-
plete failures (see, for instance, the cat result, where the
output is not at all correlated with the input object). Quan-
titatively, we can also observe that images rendered from
these models are of significantly different appearance (as
measured using the FID metrics).

Regarding the SR module, as expected, it increases sim-
ilarity to the inputs (reflected in lower FID scores). This is
also clearly visible in Figure 10—for example, geometric
differences are apparent by looking at the animals’ paws.
The output textures after refinement also are more similar
to the input textures. However, we also see that this module
slightly hinders CLIP similarity to the edit and text prompt.
This is also somewhat expected as we are further constrain-

“A horse with a pig tail"

“A pink unicorn"

“A horse riding on a
magic carpet”

Figure 11. Limitations. Above, we present several failure cases
(when provided with rendered images of the uncolored mesh dis-
played in Figure 6, top row). These likely result from incorrect
attribute binding (the horse’s nose turning into a pig’s nose), in-
consistencies across views (two horns on the unicorn) or excessive
regularization to the input object (carpet on the horse, not below).

ing the output to stay similar to the input, sometimes at the
expense of the editing signal.

4.7. Limitations

Our method applies a wide range of edits with high fi-
delity to 3D objects, however, there are several limitations
to consider. As shown in Figure 11, since we optimize
over different views, our method attempts to edit the same
object in differing spatial locations, thus failing on certain
prompts. Moreover, the figure shows that some of our ed-
its fail due to incorrect attribute binding, where the model
binds attributes to the wrong subjects, which is a common
challenge in large-scale diffusion-based models [9]. Finally,
we inherit the limitations of our volumetric representation.
Thus, the quality of real scenes, for instance, could be sig-
nificantly improved by borrowing ideas from works such as
[6] (e.g. scene contraction to model the background).

5. Conclusion

In this work, we presented Vox-E, a new framework that
leverages the expressive power of diffusion models for text-
guided voxel editing of 3D objects. Technically, we demon-
strated that by combining a diffusion-based image-space
objective with volumetric regularization we can achieve fi-
delity to the target prompt and to the input 3D object. We
also illustrated that 2D cross-attention maps can be ele-
vated for performing localization in 3D space. We showed
that our approach can generate both local and global edits,
which are challenging for existing techniques. Our work
makes it easy for non-experts to modify 3D objects using
just text prompts as input, bringing us closer to the goal of
democratizing 3D content creating and editing.
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Appendix

A. Additional Details
A.1l. Implementation Details

Below we provide all the implementation details of our
method, detailed in Section 3 in the main paper.

Grid-Based Volumetric Representation

We use 100 images uniformly sampled from upper hemi-
sphere poses along with corresponding camera intrinsic and
extrinsic parameters to train our initial grid. We follow the
standard ReLLU Fields [21] training process using their de-
fault settings aside from two modifications:

1. We change the result grid size from the standard 1283
to 160 to increase the output render quality.

2. As detailed in the main paper, we limit the order of
spherical harmonics to be zero order only to avoid un-
desirable view-dependent effects (we further illustrate
these effects in Section B.2).

Text-guided Object Editing

We perform 8000 training iterations during the object edit-
ing optimization stage. During each iteration, a random
pose is uniformly sampled from an upper hemisphere and
an image is rendered from our edited grid G. according
to the sampled pose and the rendering process described
in ReLU Fields [21]. Noise is then added to the rendered
image according to the time-step sampled from the fitting
distribution.

We use an annealed SDS loss which gradually de-
creases the maximal time-step we draw ¢ from. Formally,
this annealed SDS loss introduces three additional hyper-
parameters to our system: a starting iteration ¢s¢q,¢, an an-
nealing frequency f, and an annealing factor . With these
hyper-parameters set, we change our time-step distribution
to be:

t~ U[tO + 57tfinal * ki + 6]7 (6)
1, if 7 < igrare
ki = ki_1%7,, elseifi% f, =0 7
ki_1, otherwise

In all our experiments, the values we use for €, is¢q.¢, fo and
vq are 0.02, 4000, 600, and 0.75. Additionally, we stop an-
nealing the time-step when it reaches a value of 0.35. The
latent diffusion model we use in our experiments is "Sta-
bleDiffusion 2.1" by Stability Al.

12

We use a weight of 200 to balance the two terms (mul-
tiplying Leg3p by this weight value). The volumetric regu-
larization term operates only on the density features of the
editing grid. The optimizer we used in this (and all other
stages) is the Adam optimizer [23] with a learning rate of
0.03 and betas 0.9, 0.999. The resolution of the images ren-
dered from our grid is 266x266. We add a "a render of"
prefix to all of our editing prompts as we found that this
produced more coherent results (and the images the LDM
receives are indeed renders).

Spatial Refinement via 3D Cross-Attention

The diffusion model we use for this stage is "StableDif-
fusion 1.4" by CompVis and it consists of several cross-
attention layers at resolutions 32, 16, and 8. To extract a sin-
gle attention map for each token we interpolate each cross
attention map from each layer and attention head to our im-
age resolution (266x266) and take an average per each to-
ken. The time-step we use to generate the attention maps is
0.2 (the actual step being 0.2 * Nyteps = 200).

The cross-attention grids A, and A,; contain a density
feature and an additional one-dimensional feature a, which
represents the cross-attention value at a given voxel and can
be interpreted and rendered as a grayscale luma value. We
initialize the density features in these grids to the density
features of the editing grid’s (the former stage’s output) and
freeze them. At each refinement iteration we generate two
2D cross-attention maps from the LDM, one for the object
and one for the edit. After obtaining the 2D cross-attention
maps, we render gray-scale heatmaps from A, and A,;; and
use L1 loss to encourage similarity between the rendered at-
tention images and their corresponding attention maps ex-
tracted from the diffusion model. We repeat this process for
1500 iterations, sampling a random upper-hemisphere pose
each time. As in the former optimization stage, we use the
Adam optimizer with a learning rate of 0.03 and betas 0.9
and 0.999 and generate images in 266 x 266 resolution.

After obtaining the two grids A, and A,;, we perform
element-wise softmax on their a values to obtain probabili-
ties for each voxel belonging to either the object, denoted by
P,yj(v), or the edit, denoted by P.(v). We then proceed to
calculate the binary refinement volumetric mask. To do this
we define a graph in which each non-zero density voxel in
our edited grid G, is a node. We define "edit" and "object”
labels as the source and drain nodes, such that a node con-
nected to the source node is marked as an "edit" node and a
node connected to the drain node is marked as an "object"
node. We rank the nodes according to their P,(v) values
and connect the top N;,t—eqit NOdes to the source node.
We then rank the nodes according to their P,,;(v) value
and connect the top Ninit—object NOdes to the drain node.
We then connect the non-terminal nodes to each-other in a


https://huggingface.co/stabilityai/stable-diffusion-2-1
 https://huggingface.co/CompVis/stable-diffusion-v1-4 
 https://huggingface.co/CompVis/stable-diffusion-v1-4 

6-neighborhood with the capacity of each edge being w),
as detailed in the main paper.

We set the hyper-parameters Nyt —edir and Ninit—object
to be 300 and 200. To perform graph-cut [7], we used the
PyMaxflow implementation of the max-flow / min-cut algo-
rithm.

A.2. Evaluation Protocol

To evaluate our results quantitatively, we constructed a
test set composed of eight scenes: *White Dog’, *Grey
Dog’, *White Cat’, ’Ginger Cat’, ’Kangaroo’, ’Alien’,
"Duck’ and "Horse’, and six editing prompts: (1) A {object)
wearing big sunglasses, (2) A (object) wearing a Christmas
sweater, (3) A (object) wearing a birthday party hat, (4) A
yarn doll of a (object), (5) A wood carving of a (object),
(6) A claymation (object). This yields 18 edited scenes in
total. We render each edited scene from 100 different poses
distributed evenly along a 360° ring. In addition to these
18 scenes we also render 100 images from the same poses
on the initial (reconstruction) grid G, for each input scene.
When comparing our result with other 3D textual editing
papers we evaluate our results using two CLIP-based met-
rics. The CLIP model we used for both of these metrics is
ViT-B/32 and the input image text prompts used to calcu-
late the directional CLIP metric is “A render of a (object)".
C LI Pp;, is calculated for each edited image in relation to
the corresponding image in the reconstruction scene. To
quantitatively evaluate ablations we use two additional met-
rics using FID [39]. For this we use the pytorch implemen-
tation given by the authors with the standard settings.

360° Real Scenes

For the 360° Real Scenes edits we follow the same imple-
mentation details as outlined previously, with three modifi-
cations:

1. We alternate between using the DVGO model or the
ReLU-Fields model as our 3D representation. Results
for both models are presented in Figure 6 of the main

paper.

2. Our input poses are created in a spherical manner and
when rendering we sample linearly in inverse depth
rather than in depth as seen in the official implementa-
tion of NeRF .

3. We perform 5000 training iterations during the object
editing optimization stage and the values we use for ¢,
istart, fo and v, are 0.02, 3000, 400, and 0.75.

A.3. 3D Object Editing Techniques

Below we provide additional details on the alternative
3D object editing techniques we compare against. All of

13

the techniques we compare against use only an un-textured
mesh and an editing prompt as input. As such, we used the
meshes our inputs were rendered from as input for the edit-
ing methods. Additionally, we tested an additional scenario
in which we imported the "horse’ mesh from the Text2Mesh
GitHub repository to blender, added a grey-matte material
to it and rendered images of it to use as input for our system.
This scenario used four prompts: (1) A wood carving of a
horse, (2) A horse wearing a Santa hat, (3) A donkey, (4)
A carousel horse, and was used for qualitative comparisons
only.

Text2Mesh

When comparing to Text2Mesh we used the code pro-
vided by the authors and the input settings given in the
"run_horse.sh" demo file.

SketchShape

In this comparison we again use the code provided
by the authors. And the input parameters used are
the default parameters in the ’train_latent_nerf.py’ script
“train_latent_nerf.py’ script with 10,000 training steps (as
opposed to the default 5,000).

Latent-Paint

We compared our method to Latent-Paint only qualitatively
as this method outputs edits that transform only the appear-
ance of the input mesh, rather than appearance and geome-
try. Asin SketchShape we used the code provided by the au-
thors and used the default input settings provided for latent
paint, which are given in the ’train_latent_paint.py’ script.

DFF + CN

In this comparison we use the code provided by the authors
and the default input parameters provided for this method.

A 4. 2D Image Editing Techniques

When comparing to InstructPix2Pix and SDEdit we con-
structed two image sets for each scene / prompt combina-
tion we wanted to test. Both sets were created by rendering
one of our inputs in evenly spaced poses along a 360° ring,
one set was rendered over a white background and the other
over a ’'realistic’ image of a brick wall. We used these sets
as input for each 2D editing method along with an editing
prompt and compared the results to rendered outputs from
our result grids. When comparing to InstructPix2Pix we
used the standard InstructPix2Pix pipeline with 16bit float-
ing point precision and 20 inference steps. We used the
default guidance scale (1.0) for the images rendered over
the ’realistic’ background and increased the guidance scale


 https://github.com/pmneila/PyMaxflow 
https://github.com/openai/CLIP
 https://github.com/mseitzer/pytorch-fid 
 https://github.com/mseitzer/pytorch-fid 
https://github.com/bmild/nerf
https://github.com/threedle/text2mesh/blob/main/data/source_meshes/horse.obj
https://github.com/threedle/text2mesh/blob/main/data/source_meshes/horse.obj
https://github.com/threedle/text2mesh
https://github.com/threedle/text2mesh
https://github.com/eladrich/latent-nerf
https://github.com/eladrich/latent-nerf
https://github.com/eladrich/latent-nerf/tree/main/scripts
https://github.com/eladrich/latent-nerf/tree/main/scripts
https://github.com/pfnet-research/distilled-feature-fields
https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/pix2pix

to 3.0 for the images rendered over a white background, as
we found it to produce higher quality results specifically for
these more ’synthetic’ images. When giving prompts to In-
structPix2Pix we rephrased our prompts as instructions, for
example turning "a dog wearing sunglasses" to "put sun-
glasses on this dog". When comparing to SDEdit we used
the standard SDEdit pipeline with guidance scale of 0.75
and a strength of 0.6.

B. Ablations

In this section, we show a more detailed ablation study
which evaluates the effect of our volumetric regularization
loss (Section B.1) and an additional experiment, demon-
strating the effect of using high order spherical harmonics
coefficients (Section B.2).

B.1. Alternative Regularization Objectives

Table 3 shows a quantitative comparison over differ-
ent image-space and volumetric regularizations. Only the
image-space L1 loss also appears in the main paper. Below
we provide additional details on these ablations.
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Figure 12. Regularizing RGB colors in addition to volumetric
densities. We show results obtained when using our default reg-
ularization objective L,eg3p (top-row) compared against results
obtained when using L,cg3p++- an alternative version of L,e¢g3p
(bottom-row) in which we penalize the miscorrelation between
both density and color features. These results show that regular-
izing both density and RGB can be limiting, especially when the
edit requires a drastic change in color, such as changing the white
fur of the dog into a vibrant christmas sweater.

Image-space Regularization In this setting we render
images from our editing grid G, in the poses corresponding
to the input images during each iteration of the optimization
stage. Rather than using a volumetric regularization, we in-
cur a loss between the images rendered from G and the cor-
responding input image while using the same weight used
to balance L.g3p with the annealed SDS loss (this weight
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Loss Function CLIPg;, T CLIPp;s  FIDgec 4 FIDrppu |

o Lt 0.26 0.02 415.96 437.09
Lo 0.25 0.02 437.68 467.14
I 0.36 0.05 22291 284.86
3D L, 0.35 0.05 240.50 284.83
Lregspit 0.34 0.02 210.46 242.73
Lreg3p 0.36 0.06 223.89 272.73

Table 3. Detailed ablation study, evaluating the effect of differ-
ent regularization objectives. We compare the performance using
Lreg3p, With image-space (top rows) and volumetric (bottom rows)
Ly and Ly losses, as well as Lreg3p++, Which also penalizes mis-
correlations between color features.

is set to 200, as detailed in Section A.1). We evaluate this
ablation using L, and Lo image space loss functions.

Alternative Volumetric Regularization Functions In
this setting we replace our correlation-based regulariza-
tion with other functions that encourage similarity between
the density features of the grids using the same balancing
weight. Namely we compare against L1 and L2 volumet-
ric loss functions, both penalizing the distance between the
density features of G; and those of G.. We additionally
compare against an alternative version of L..3p in which
we penalize the miscorrelation between both density and
color features, formally:

Cou( 17, 57)

Vel Var ()

We find that using this loss yields better reconstruction
scores, at the expense of significantly lower CLIP-based
scores (e.g., CLIPp;,- scores drop from 0.08 to 0.02). Qual-
itatively, constraining RGB values as well as density fea-
tures appears too limiting for our purposes. This can be seen
in Figure 12, where we compare results obtained when us-
ing L,cg3p++ against results obtained when using L,¢43p.
When observing these results, we can see that the edit in-
tegrity is reduced at the expense of the preservation of the
origin object’s color. This is evident in the duck, for in-
stance, where the brown wooden color of the body is only
clearly visible in the L,.43p example. Furthermore, the
colors of the sweater on the dog are significantly faded
when regularized with £,.43p+ as the colors of a standard
christmas sweater are typically much more vibrant than the
white fur of the dog.

) ®)

»CregSD++ = EregSD + (]-

B.2. Ablating the Color Representation

As mentioned in Section 3.1 of the main paper, we do not
model view dependent effects using higher order spherical
harmonics as that leads to undesirable effects. We demon-
strate this by observing these effects in examples rendered
with 1st and 2nd order spherical harmonic coefficients as


https://huggingface.co/docs/diffusers/using-diffusers/img2img
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Figure 13. Visualizing 2D cross-attention maps and 3d cross-attention grids over different diffusion timestamps. We visualize the
trained 3d cross-attention grids and the corresponding 2D cross-attention maps used as supervision across different diffusion timestamps.
We show them for the edit region corresponding to the token associated with the word “rollerskates" (top two rows) and “hat" (bottom two

TOWS).

color features. These results can be seen in videos available
on our project page.

When observing these results we can clearly see how
view-dependent colors yield undesirable effects such as the
feet of the “yarn kangaroo" varying from green to yellow
across views or the head of the dog becoming a birthday
party hat when it faces away from the camera. We ad-
ditionally see the colors become over-saturated, especially
when using second-order spherical harmonic coefficients. It
is also evident that the added expressive capabilities of the
model allow it to over-fit more easily to specific views, cre-
ating unrealistic results such as the “cat wearing glasses" in
the first and second order coefficient models, where glasses
are scattered along various parts of its body. We note that
while this expressive power currently produces undesirable
effects it does potentially enable higher quality and more
realistic renders, and therefore, we believe that constraining
this power is an interesting topic for future research.

15

B.3. Cross-attention Grid Supervision

As explained in Section A.l, we use a constant time-
stamp of 0.2 when extracting attention maps for training our
attention grids A. and A,;. This value was chosen empir-
ically as we found that higher time-steps tend to be noisier
and less focused, while lower time-steps varied largely from
pose to pose producing inferior attention grids. This can be
seen qualitatively in Figure 13. As illustrated in the figure,
the attention values for the edit region get gradually more
smeared and unfocused as the time-steps increase. This is
evident, for instance, in warmer regions around the kanga-
roo’s tail or the head of the duck. While perhaps less visu-
ally distinct, we can also observe that in lower timestamps
the warm regions denoting high attention values cover a
smaller area of the region which should be edited. We em-
pirically find that this makes it more challenging for sepa-
rating the object and edit regions.



C. Additional Visualizations and Results

Visualizing 2D cross-attention maps and images ren-
dered from our 3D cross-attention grids While the at-
tention maps used as ground-truth are inherently unfocused
(as they are up-sampled from very low resolutions) and are
not guaranteed to be view consistent, we show that learn-
ing the projection of these attention maps on to our object’s
density produces view-consistent heat maps for object and
edit regions (Figure 14).

16



2D cross-attention

3D grid (A,)

3D grid (Aep;) 2D cross-attention

a
o
=
=]
O
=
=
«
72
o
=
15}
a
(q\l

3D grid (A.)

3D grid (Aop;) 2D cross-attention

Figure 14. Visualizing 2D cross-attention maps and 3d cross-attention grids over multiple viewpoints. We visualize the optimized 3d
cross-attention grids and the corresponding 2D cross-attention maps used as supervision. We show them for the edit region corresponding
to the token associated with the word “rollerskates" (top two rows) and “hat" (fifth and sixth rows) and the object region (third and fourth
rows for the kangaroo and bottom two rows for the duck). 17




