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point annotation per target is used as supervision during training to obtain these results.

Abstract

Weakly-supervised image segmentation has recently at-
tracted increasing research attentions, aiming to avoid the
expensive pixel-wise labeling. In this paper, we present
an effective method, namely Point2Mask, to achieve high-
quality panoptic prediction using only a single random
point annotation per target for training. Specifically, we for-
mulate the panoptic pseudo-mask generation as an Optimal
Transport (OT) problem, where each ground-truth (gt) point
label and pixel sample are defined as the label supplier and
consumer, respectively. The transportation cost is calcu-
lated by the introduced task-oriented maps, which focus on
the category-wise and instance-wise differences among the
various thing and stuff targets. Furthermore, a centroid-
based scheme is proposed to set the accurate unit number
for each gt point supplier. Hence, the pseudo-mask genera-
tion is converted into finding the optimal transport plan at a
globally minimal transportation cost, which can be solved
via the Sinkhorn-Knopp Iteration. Experimental results on
Pascal VOC and COCO demonstrate the promising per-
formance of our proposed Point2Mask approach to point-
supervised panoptic segmentation. Source code is available
at: https://github.com/LiWentomng/Point2Mask!

1. Introduction

Panoptic segmentation aims to obtain the pixel-wise la-
bels of instance things and semantic stuff in the whole im-
age, which plays an important role in applications such
as autonomous driving, image editing and robotic ma-
nipulation. Although having achieved promising perfor-
mance, most of the existing panoptic segmentation ap-
proaches [91 50, [7] are trained in a fully super-
vised manner, which heavily depend on the pixel-wise mask
annotations, incurring expensive labeling costs.

To deal with this problem, weakly-supervised methods
have recently attracted research attentions to obtain high-
quality pixel-wise masks with label-efficient sparse anno-
tations, such as bounding box [44] 22l 27]], multiple
points [28]], or the combination of them [8} [42]. Such meth-
ods make image segmentation more accessible with lower
annotation efforts for new categories or scene types. In
this paper, we explore a simpler yet more efficient anno-
tation form, i.e., a single random point for each thing and
stuff target, to achieve high-quality panoptic segmentation.
As discussed in [2]], the cost of point-level labels is only
marginally above image-level ones El Such a setting has

10n Pascal VOC [13]], image labels cost around 20 sec./img, single
point labels cost 22.1 sec./img, while full mask labels cost 239.7 sec./img.
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Figure 2: By taking an image with a single random g¢¢ point
label per target as the input, the method in [14] adopts the
minimum distance for each pixel-g¢ pair to determine the
pseudo label, which cannot handle the ambiguous locations
and heavily relies on the defined distance. For example, ds
is shorter than d; for the current pixel in black color, which
results in wrong assignment. Our Point2Mask formulates
this task as a global Optimal Transport problem, and obtains
accurate pseudo-mask labels.

been rarely studied due to the little available supervision
information from a single point for pixel-wise mask pre-
diction. Only one recent study [14] has attempted to build
the minimum traversing distance between each pair of pixel
sample and ground-truth (denoted as gt) point label to de-
termine the accurate pseudo mask label.

Unfortunately, it is sub-optimal to assign the pixel sam-
ples independently for each random gt point label accord-
ing to the defined minimum distance. As shown in Fig. 2]
the previous method [14] heavily relies on the defined dis-
tance and lacks the global context in dealing with the am-
biguous locations (i.e., the border pixels among different
thing-based targets with the same category). The pixel-to-
gt assignment for ambiguous samples is non-trivial, which
requires further information beyond the local view. To this
end, we model this task from a global optimization perspec-
tive to determine the high-quality pixel sample partition for
all gt point labels within an image.

In this paper, we propose a novel single point-supervised
panoptic segmentation method, dubbed as Point2Mask,
which formulates the pseudo-mask generation as an Opti-
mal Transport (OT) problem. Specifically, we firstly de-
fine each gt point label as a supplier who provides a certain
number of labels, and regard each pixel sample as a con-
sumer who needs one unit gt label. To accurately define
the transportation cost between each pixel-gt pair, we intro-
duce two types of task-oriented maps, including category-
wise semantic map and instance-wise boundary map. The
former focuses on the semantic differences among the cate-
gories, while the later aims to discriminate the thing-based
objects with accurate boundary. Furthermore, we propose
an effective centroid-based scheme to set the accurate unit
number for each gt point supplier in the OT problem.

Under our proposed framework, the pseudo-mask gen-
eration is converted into finding the optimal transport plan

at a globally minimal transportation cost, which can be ef-
ficiently solved via the Sinkhorn-Knopp Iteration [11]. By
making use of the pseudo-mask labels, the panoptic seg-
mentation sub-network is optimized in a fully-supervised
manner. The proposed Point2Mask method is an end-to-
end training framework, where only the fully-supervised
sub-network is retained for inference. Extensive experi-
ments are conducted on Pascal VOC [[13] and COCO [31]
benchmarks, and the promising qualitative and quantitative
results demonstrate the effectiveness of our proposed ap-
proach. Notably, Point2Mask surpasses the state-of-the-art
method [14] by 4.0% PQ on Pascal VOC and 3.1% PQ
on COCO with the same ResNet-50 backbone [17], and
achieves comparable performance with the fully-supervised
methods using the Swin-L backbone [32]. Some qualitative
results are shown in Fig. [T}

2. Related Work

Fully-supervised Panoptic segmentation. Image seg-
mentation tackles the problem of grouping pixels. As
the unified image segmentation task, panoptic segmenta-
tion [20] simultaneously incorporates semantic and instance
segmentation, where each pixel is uniquely assigned with
one of the stuff classes or one of the thing instances.

To this end, some methods [20, 46, |6] have been pro-
posed by dealing with things and stuff using separate
network branches within one model. Recently, some
works [29, 9} 45, 150L [7, 23] aim to unify the model for this
task. DETR [3] predicts the boxes for things and stuff cate-
gories with Transformer to perform panoptic segmentation.
Mask2Former [7] further employs an additional pixel de-
coder to take into account of the high-resolution features
and generates the mask predictions by the Transformer de-
coder with the masked-attention. Despite being able to seg-
ment objects with accurate boundaries, these methods rely
on the expensive and laborious pixel-wise mask annota-
tions, which hinders them from dealing with new categories
or scene types in real-world applications [2, 37, 147].

Weakly-supervised Panoptic Segmentation. Weakly
supervised segmentation intends to alleviate the annotation
burden in segmentation tasks by label-efficient sparse labels
for training. According to different kinds of tasks, it ranges
from semantic segmentation [49, |30, |18} 43| to instance seg-
mentation [8} 44} 22} 26} 27, [1]] and to panoptic segmenta-
tion [14} 138, 28]] tasks. As for panoptic segmentation, Li et
al. [28] employed coarse polygons with multiple point an-
notations for each target to supervise the panoptic segmen-
tation model. Recently, Fan et al. [14] adopted a simpler
labeling form, i.e., a single point annotation, for each target
in an image, and introduced the minimum traversing dis-
tance between each pixel sample and the target point label.
In spite of its promising performance, it heavily relies on
the defined distance, which cannot handle the ambiguous



border locations with a local view. Thus, it is still chal-
lenging to obtain the accurate mask predictions for single
point-supervised panoptic segmentation.

Optimal Transport in Computer Vision. The Op-
timal Transport (OT) is a classical optimization problem
with a wide range of computer vision applications. In the
early years, the Wasserstein distance (WD), also known
as the Earth Mover’s distance, was adopted to capture the
structure of color distribution and texture spaces for im-
age retrieval [35]. Recently, Chen er al. [5] employed
OT to explicitly encourage the fine-grained alignment be-
tween words and image regions for vision-and-language
pre-training. Li ef al. [24] built an attention-aware trans-
port distance in OT to measure the discriminant information
from domain knowledge for unsupervised domain adap-
tation. To achieve high-quality label assignment, Ge et
al. [15] formulated the label assignment in object detection
as the problem of solving an OT plan. In this work, we
explore OT for point-supervised panoptic segmentation.

3. Method
3.1. Overview of Point2Mask

As illustrated in Fig.|3| we leverage a unified framework,
namely Point2Mask, for single point-supervised panoptic
segmentation. It consists of two network branches. One
branch generates the mask pseudo-labels, and the other fo-
cuses on the fully supervised learning using Panoptic Seg-
Former model [29] based on the generated pseudo-labels.
The two branches share the basic backbone and neck net-
work, which are trained in an end-to-end fashion. The key
of our proposed approach is how to model the process of
mask pseudo-label generation as the global Optimal Trans-
port (OT) problem, which aims to obtain the accurate pixel-
wise pseudo-masks with only a single point label per target.

3.2. Optimal Transport

We first give a brief review of OT [34], which aims to
find a transportation plan I' minimizing the total cost of
moving goods from one location to another. It is subject to
certain constraints on the amount of goods to be transported
and the cost of transportation.

Given a set of m suppliers, another set of n consumers,
and a cost function ¢;; that specifies the cost of transport-
ing one unit of goods from the ¢-th supplier to the j-th
consumer. The goal of OT is to find a transportation plan
r = {I,;li=1,2,---,m,j5=1,2,--- ,n} that mini-
mizes the total cost of transporting all the goods from the
suppliers to the consumers. Thus, the OT problem can be
formulated as follows:

m,n

min Tiicis 1
r,,er i i7Ci7, ( )

where I';; > 0. The constraints to be satisfied are: the i-th
supplier holds z; = Z?Zl I';; units of goods, and the j-th
consumer needs y; = .-, I';; units goods. Meanwhile,
the total amount of goods held by all suppliers are equal
to the amount needed by all consumers, i.e., Z:’;l T; =
Z;;l y;. To efficiently tackle this problem, we adopt the
Sinkhorn Iteration method [[11]. The details can be found in
the Appendix.

3.3. Pseudo-mask Generation by OT

Given an input image I7*W >3 supposing there are m

gt point labels and n pixel samples (i.e., n = H x W),
we view each gt point label as a supplier who holds k pixel
samples (i.e., x; = k,i = 1,2,...,m). Each pixel of I is
regarded as a consumer who needs one gt point label (i.e.,
y; = 1,7 = 1,2,...,n). Given the defined cost ¢;; to trans-
port one unit from the i-th gt point label to the j-th pixel,
the global OT plan I' € R™*™ can be obtained by solv-
ing the OT problem via the Sinkhorn-Knopp Iteration [[11].
Once I is obtained, the pseudo-mask label generation can
be decoded by assigning the pixel samples to the suppli-
ers who transport point gt labels to them with the minimal
transportation costs.

The pseudo-mask generation consists of task-oriented
map generation, transportation cost definition and centroid-
based unit number calculation, which are introduced in de-
tails in the following subsections. The completed procedure
is summarized in Algorithm

3.3.1 Task-oriented Map Generation

The task-oriented map includes the category-wise seman-
tic map P*® and instance-wise boundary map P°. The
former measures the semantic logit differences among the
various categories. The latter discriminates the different
thing-based targets under the same class from the accurate
instance-level boundary. Based on these maps, the distance
of the adjacent pixels can be calculated to obtain each pixel-
to-gt cost ¢;;.

Category-wise Semantic Map. An input image for
panoptic segmentation task is composed of the stuff-based
and thing-based targets. The semantic parsing is important
to obtain category-wise logits. As shown in Fig.[3] we adopt
the transformer decoder layers [29] to construct the seman-
tic decoder with a set of semantic query tokens, which is
one-to-one match to the semantic categories. The semantic
logits P® with N, classes can be generated by multiply-
ing the mask scores and the class probabilities together as
in [14]. The supervision information for category-wise se-
mantic logits P® with the weak point labels is introduced in
Sec. in detail.

Instance-wise Boundary Map. To discriminate the in-
stances for thing-based targets, especially for the instances



Backbone
&
Neck

_.[

Mask

Decoder

Panoptic
Prediction

I

Cost Matrix

—— -

]<—~\
\\
N

AN .
\ \Superwse

\
M \
. \
init \
\ \

\

minimum cost
_—

Category-wise

Sinkhorn-Knopp
Iteration

: M, M, M, M, \: Centroid-based 1
:E gt1| | | | | | | | | : Calculation for k !
- e gt
Semantic Boundary g o '
[ Decoder ] [ Decoder ] :é + m
,---l— --------- ---~\:8. at Ci; : argmax

I' Il‘a-, t | o

i . 5o [ [ [ ][]

| ps Ph?gh L T Ty ————— - Pseudo-mask Label

:

\

semantic map

+ P

low

Training Only

Figure 3: Overview of Point2Mask. It consists of two branches, one branch for mask pseudo-label generation, and another
for panoptic segmentation based on the generated pseudo-labels. The mask pseudo-label generation is formulated as the OT
problem, where the cost matrix is defined based on the task-oriented maps. The k unit number is calculated by the centriod-
based scheme. The global optimal transportation plan I' can be solved by the Sinkhorn-Knopp Iteration to obtain the accurate
pseudo-mask labels. Only panoptic segmentation branch is kept for inference.

with the same category, we introduce the instance-wise
boundary map P for each target.

To generate the pure boundary, we suggest the high-level
boundary P,ll’i g, that is learnt by the boundary decoder. In
specific, we firstly sum the multi-level feature tokens from
the Transformer-based neck in 2D spatial feature. Then,
two 1x1 convolution layers interleaved by a ReLU activa-
tion are employed. The one-channel boundary map PP, gh 18
obtained via the sigmoid function. For high-level bound-
ary learning objective, we design an effective boundary loss
function and explain it with details in Sec.[3.4.1}

Besides, we employ the Structured Edge (SE) detection
method [[12]] based on the original input image to capture the
low-level contour Pll;w, which takes advantage of the inher-
ent structure in edge patches to focus on the sparse object-
level boundary map.

3.3.2 Transportation Cost

Based on the obtained task-oriented maps, the transporta-
tion cost can be calculated.

In our method, each map can be represented as an 8-
connected planar graph G(V, E), where each pixel is ad-
jacent to eight neighbors. The vertex set V' consists of all
pixels of the map, and the edge set E' is made of the edges
between two adjacent vertices. Let the vertex [ and vertex k
be adjacent on the graph. Based on the P* and P’ maps, the

corresponding distance function dj , and d?, ; can be defined
as follows:

|P (k) — P*(1)],
max{P’(k), P*(1)},

S

k,l

b
dy;1

2

where P(l), P(k) are the map values of vertex [ and vertex
k, respectively. Once the edge length is obtained from the
P# and PP maps, we define the transportation cost ¢;, j from
the ¢-th pixel to the j-th gt point label as the sum of the
lengths of their connected edges along the shortest path P:

cij= Y (di,+Bdyy),

(k,1)EP;;

3)

where [ is the balanced weight. The shortest path P is im-
plemented by the classical Di jkstra algorithm like [[14]].

3.3.3 Centroid-based Unit Number Calculation

Each gt point label P; is regarded as the supplier in our pro-
posed OT problem, which holds z; = k pixels of pseudo
mask label M. To set the accurate number of k, we in-
troduce the centroid-based unit number calculation scheme
that can be divided into two steps, as shown in Fig. 4]
Firstly, we obtain the pair-wise cost values along the
shortest path P for each undetermined pixel to each gt point



Algorithm 1 Optimal Transport for Pseudo-mask Genera-
tion
Input:
IH XW x3

is an input image.
MHXWX1 s the pseudo-mask label with ZerosInit.
P is a set of gt point labels.
T is the iteration number in Sinkhorn-Knopp Iter.
Output:
M is the assigned pseudo-mask label.

I m< |Pl,n <+ | M|

2 P*, By, PP,  Forward(l, P)

3: Compute pairwise pixel-to-gt cost c;;.

4 x;(i =1,2,...,m) + Centriod-based k calculation
ssy;j(j=12,...,n)«1 > Init y with ones
6 ul, 00 1 > Init v and v with ones
7: fort = 0to T do:

8 w1ttt Sinkhornlter(c, u?, vt, x, )

9: Compute optimal plan T'".

10: Compute pseudo-mask label: M = argmax(T").

: return M

—_
—_

label ;. The initial gt point label assignment for each pixel
can be achieved with its minimum cost among all gt labels
in the whole image. Note that the gt points are randomly
labeled on each target in the image, which can be located
at any position of the target to be segmented, such as the
corner or the edge. This cannot reflect the typical and accu-
rate characteristics, especially for the border pixels between
thing-based instances belonging to the same category.

Based on the initial g¢ point label assignment, the initial
mask label for each target can be obtained. We then calcu-
late the corresponding centroid C; of initial mask label as the
substitution of gt point label P; for each target. The pair-
wise cost ¢;; for each pixel and C; can be re-calculated along
the corresponding shortest path. The £ unit number (z;) is
computed by counting the ones in /V;; with the minimum
cost values to each centriod C, which can be formulated as
follows:

xi:iNija Nij: {
J

The iterated calculation scheme can obtain a more accu-
rate unit number k, and we leave the detailed performance
analysis in Sec.[#.4]to examine the effectiveness of the pro-
posed scheme.

1, argmin ¢;; = 1,
‘ “)

3
0, otherwise.

3.4. Learning and Inference
3.4.1 Weakly Supervised Learning

In this section, we introduce the objective for category-wise
semantic map P* and instance-wise boundary map P? in a
weakly-supervised manner with only a single point label.

gt labels
centroids

Figure 4: The process of centroid-based & calculation with
two targets in an image. Step 1: The initial assignment
(i.e., the pixels with yellow and green color divided by the
middle curve line of dashes) with the minimal cost can be
achieved based on the gt point labels P; and P,. Step2:
The centroids C; and Cs of each initially assigned mask are
the substitutions of gt points, and the minimal cost can be
re-calculated to achieve the refined assignment and deter-
mine the accurate unit number k for each target.

Semantic Map Learning. Like the weakly-supervised
semantic methods [30l 43]], we adopt the partial cross-
entropy loss Lyqrtiqr, Which is able to make full use of the
available gt point labels to achieve region supervised learn-
ing and generate sparse semantic map.

To obtain the accurate semantic logits for the unlabeled
regions, we further take advantage of both local LAB affin-
ity and long-range RGB affinity based on the input image.
Local LAB affinity explores the color similarity in LAB
color space with the local kernel, which is employed as
the loss term £ZAP as in [44]. Long-range RGB affinity
absorbs the pixel similarity in RGB space, which is imple-
mented by the minimum spanning tree. As in [30], it is
utilized as the loss term £E%B . The objective for semantic
map learning is denoted as:

ﬁsem = £pa7“tial + OllﬁLAB + OLQERGB. (5)

sem sem

Please refer to the Appendix for the detailed formulation of
these loss terms.

High-level Boundary Map Learning. To encourage the
boundary decoder to predict the high-level instance-wise
boundary map P}L’igh, we suggest an effective loss func-
tion Ly, for panoptic segmentation task. In terms of the
existence of a boundary between two adjacent pixels, we
assume that their affinity is small as in [[1]]. Hence, we intro-
duce the high-level affinity A representation. For each pixel
P on P}L’igh, py is one of its eight neighbors Ng. The Ay,
can be represented as follows:

A =1 — max P,Z:Z-gh(pk,pl). (6)

Then, we make full use of the mask affinity equivalence
among the neighbor pixels based on the generated pseudo-



mask M. The loss function £y,,, can be defined as:

Loon = — T 10g;’r4kl _ 3 10g;4kl
(k,z)eM;;mg 2‘ thing (k,z)eM:;uff 2 ‘Mstuff‘
) log(1 — Akl)7
(k,l)eM— |M_‘
@)
where M} . , denotes that the pair of adjacent pixels py,

and p; are inside the same thing-based pseudo mask. Simi-
larly, M:;u  represents that pi, and p; are inside the same
stuff-based pseudo mask. Instead, M ~ denotes that a pair
of pixels are with different pseudo-mask labels. Driven by
the Ly, term, we can learn the accurate high-level bound-
ary. The Appendix show some visual examples for better
illustration.

3.4.2 Training and Inference

Loss Function. Once the pseudo-masks are obtained, the
panoptic segmentation sub-model is trained with these gen-
erated labels in a fully supervised manner. We adopt Panop-
tic SegFormer [29] as the panoptic sub-network. The fully-
supervised loss terms consist of the focal loss for classifi-
cation prediction, the localization loss for box localization,
and the dice loss on mask decoder for final panoptic seg-
mentation, respectively. For simplicity, we denote these
losses to train the panoptic segmentation model as L.
The total 1oss L;,:q; can be formulated as follows:

Etotal = »Cfull + Esem + Lbou~ (®)

Inference. For the inference process of Point2Mask,
only the panoptic segmentation model is maintained after
training, which is the same as the original Panoptic Seg-
Former model [28]]. The process of pseudo-mask genera-
tion with OT incurs about 25% extra computational load in
training, but it is totally cost-free during inference.

4. Experiments

To evaluate our proposed approach, we conduct experi-
ments on Pascal VOC [[13]] and COCO [31]]. Only a single
point label per target is used to train our method, which is
randomly sampled with the uniform distribution from the
original pixel-wise mask annotations.

4.1. Datasets

Pascal VOC [13]]. Pascal VOC consists of 20 “thing” and
1 “stuff” categories. It contains 10,582 images for model
training and 1,449 validation images for evaluation [16].
COCO [31]. COCO has 80 “thing” and 53 “stuff” cate-
gories, which is a challenging benchmark. Our models are
trained on train2017 (115K images), and evaluated on
val2017 (5K images).

4.2. Implementation Details

The models are trained with the AdamW optimizer [33].
We make use of the mmdetection toolbox [4] and fol-
low the commonly used training settings on each dataset.
ResNet [17] and Swin-Transformer [32] are employed as
the backbones, which are pre-trained on ImageNet [36]. On
Pascal VOC, the initial learning rate is set to 10~4, and
the weight decay is 0.1 with eight images per mini-batch.
The models are trained with 2x schedule at 24 epochs. On
COCO, the initial learning rate is set to 2 x 10~—%, which is
reduced by a factor of 10 at the 8-th epoch and 12-th epoch
with 16 images per mini-batch. The models are trained with
15 epochs. The iteration number in Sinkhorn Iteration for
solving the defined OT problem is set to 80. (3 is 0.1 in
Eq.[3l and oy = o = 3.0 in Eq.[5]in our implementation.
As in [28]], the number of query tokens for fully panoptic
segmentation sub-model is set to 300. The manifold pro-
jector proposed in [14] is employed to better stand for the
instance-wise representation based on our baseline model.
Unless specified, our centroid-based unit number calcula-
tion scheme is not iterated in the main experiments. We
report the standard evaluation metrics [20] of panoptic seg-
mentation task, including panoptic quality (PQ), segmenta-
tion quality (SQ) and recognition quality (RQ).

4.3. Main Results

We compare our proposed Point2Mask method against
state-of-the-art weakly supervised panoptic segmentation
approaches. Moreover, the results of representative fully
mask-supervised methods are reported for reference.

Results on Pascal VOC. Table [1] reports the compari-
son results on Pascal VOC val. It can be clearly seen that
Point2Mask with the ResNet-50 backbone outperforms the
recent single point-supervised method PSPS [14] by abso-
lute 4.0% PQ (from 49.8% to 53.8%). The performance im-
provement mainly stems from the thing-based objects, from
47.8% PQ™ to 51.9% PQ'" (+4.1% PQ™), in contrast to
the improvements on PQ*! (89.5% vs. 90.3%). It demon-
strates the effectiveness of our presented pseudo-mask gen-
eration scheme by OT for thing-based instances. Our ap-
proach even outperforms Panoptic FCN [28] with 10 point
labels by 5.8% PQ (53.8% vs. 48.0%). Moreover, our pro-
posed method obtains 61.0% PQ with Swin-L [32] back-
bone, which achieves comparable results against the fully
supervised methods. When the point-label COCO dataset
is used for model pre-training, we achieve significant per-
formance improvements, such as from 53.8% PQ to 60.7%
PQ under the ResNet-50 backbone. With the Swin-L back-
bone, Point2Mask obtains 64.2% PQ, surpassing the fully
supervised method [25] by 1.1% PQ.

Results on COCO. Table [2] gives the evaluation re-
sults comparing to the state-of-the-art (SOTA) methods on
COCO. Our proposed Point2Mask method achieves 32.4%



Method Backbone Supervision Voc 2012 VOC 2012 with COCO
PQ Pch PQst PQ Pch PQst
Li et al. [25]] ResNet-101 62.7 - - 63.1 - -
Panoptic FPN [20] ResNet-50 657 645 908 - - -
Panoptic FCN [28] ResNet-50 67.9 666 929 731 721 93.8
Panoptic SegFormer [29] ResNet-50 67.9 66.6 92.7 - - -
Li et al. [25]] ResNet-101 B+Z 59.0 - - 59.5 - -
JTSM [38] ResNet-18-WS [39]] 7 39.0 37.1 77.7 - - -
PSPS [14]] ResNet-50 P 498 47.8 89.5 - - -
Panoptic FCN [28] ResNet-50 P1o 48.0 46.2 852 524 50.8 86.0
Point2Mask ResNet-50 P 53.8 519 905 60.7 59.1 91.8
Point2Mask ResNet-101 P 548 530 904 632 618 92.3
Point2Mask Swin-L P 61.0 594 93.0 642 62.7 93.2

Table 1: Performance comparisons on Pascal VOC2012 val. M denotes the pixel-wise mask annotations. P and P are
point-level supervision with 1 and 10 points per target, respectively. Z and 5 are the image-level and box-level supervisions
(the same below). Besides, VOC 2012 with COCO represents training and validation on VOC 2012 dataset with COCO

pre-trained model.

Method Backbone Supervision PQ  PQ" PQ  SQ RQ
AdaptIS [41] ResNet-50 M 359 403 29.3 - -
Panoptic FPN [20] ResNet-50 M 394 459 296 77.8 483
Panoptic-DeepLab [6] Xception-71 [[10] M 39.7 43.9 33.2 - -
Panoptic FCN [28] ResNet-50 M 436 493 350 80.6 52.6
Panoptic SegFormer [29]  ResNet-50 M 480 523 41.5 - -
Mask2Former [[7]] ResNet-50 M 51.9 57.7 43.0 - -
JTSM [38]] ResNet-18-WS T 53 8.4 0.7 30.8 7.8
PSPS [14]] ResNet-50 P 293 293 294 - -
Panoptic FCN [28] ResNet-50 P1o 31.2 35.7 24.3 - -
Point2Mask ResNet-50 P 324 326 322 751 415
Point2Mask ResNet-101 P 34.0 34.3 335 75.1 435
Point2Mask Swin-L P 37.0 370 369 75.8 472

Table 2: Panoptic segmentation results on COCO val2017. Weakly and fully supervised methods are compared.

PQ with single point supervision when ResNet-50 is em-
ployed as the backbone. It outperforms the previous SOTA
method PSPS [14] by 3.1% PQ, 3.3% PQ'* and 2.8%
PQ%! under the same setting. Compared with Panoptic
FCN [28] with 10 point labels, our approach surpasses it
by 1.2% PQ (32.4% vs. 31.2%). With Swin-L as the back-
bone, Point2Mask achieves 37.0% PQ performance, which
is comparable with some fully mask-supervised methods,
including AdaptIS [41]], Panoptic FPN [20] and Panoptic-
DeepLab [6] with ResNet-50 backbone.

4.4. Ablation Studies

We analyze the design of each component in Point2Mask
on Pascal VOC dataset.

Different Task-oriented Maps. We employ the
category-wise semantic map P°, low-level and high-level
boundary map Plbow, P}Zi o to calculate the cost for opti-
mal transport. Table [3] shows the evaluation results with

different task-oriented maps. Our method achieves 50.6%
PQ using the P® map only, which focuses on the seman-
tic logit differences among the categories. When P}, and
P, o, are employed separately, our method achieves 51.1%

PQ and 53.4% PQ, respectively. More specifically, Pfl’i oh
brings +2.9% PQ gains driven by the designed boundary
loss function Ly,,,. When all maps are adopted, Point2Mask
achieves the best performance of 53.8% PQ.

Semantic Map Learning. Single point-supervised se-
mantic parsing is the bedrock to obtain the panoptic seg-
mentation results in our Point2Mask. As shown in Table ]
when both local LAB loss £X45 and long-range RGB loss
Liﬁ? are adopted for the semantic map learning, the best
69.5% mloU and 53.8% PQ are obtained comparing to each
individual loss term.

Different Unit Number Calculation Schemes. We ex-
plore three different schemes to calculate the unit number
k for gt supplier, including “Equal Division”, “Nearest gt



P Ph,  Pha  PQ_PQT PQT

v 50.6 48.7 90.1
v 4 511 49.1 90.3
v v 534 51.6 90.3
v v v 53.8 51.9 90.5

Table 3: The impact of different task-oriented maps to cal-
culate the pixel-to-gt point label cost c;; in OT.

Lpartiar LEAP LECBE mloU PQ PQM™ PQ*!

4 61.6 404 38.1 86.1
4 v 69.0 51.2 493 90.0
4 v 68.0 495 475 893
v v v 69.5 538 519 905

Table 4: Comparison of different weakly-supervised loss
terms for category-wise semantic map learning.
centroids

current point m ) closer

gt point label

-

@ (b) ©
Figure 5: Visual comparisons on distance heatmap with dif-
ferent calculation schemes of k. (a) shows the gt point label
and pixel-wise mask label. (b) indicates the heatmap based
on the Nearest gt Point scheme. (c) is the heatmap based on
our proposed Nearest Centroid scheme. The corresponding
shortest paths are shown for better illustration.

Point” and “Nearest Centroid”. The Equal Division treats
the mean value as k for each gt point supplier from all pix-
els. The Nearest gt Point indicates that the total number of
pixels are with the nearest distances measured by the cost
for each gt point. For simplicity, we denote the presented
centroid-based unit number calculation scheme in Sec.[3.3.3]
as the Nearest Centroid. Table 5 reports the comparison re-
sults. Our Nearest Centroid scheme obtains the best perfor-
mance with 53.8% PQ, which outperforms Equal Division
and Nearest gt Point by 1.4% PQ and 1.0% PQ, respec-
tively. Furthermore, we report the visual comparisons on
distance heatmap, as shown in Fig.[5] It can be clearly seen
that the proposed Nearest Centroid scheme obtains the ac-
curate unit number k for each gt point supplier.

In addition, as shown in Table [6] the Nearest Centroid
scheme with more iterations (8 iterations) can bring a per-
formance gain of +0.48% PQ. With 10 iterations, the model
achieves the saturated performance with 54.07% PQ.

Different Pseudo-mask Generation Methods. To ex-

Scheme PQ PQt* PQs!
Equal Division 524 50.5 90.2
Nearest gt Point 52.8 50.9 90.1
Nearest Centriod 53.8 51.9 90.5

Table 5: Performance with different calculation schemes of
k for our defined OT problem in Point2Mask.

Iterations 1 2 4 8 10
PQ 5376 53.80 5391 54.24 54.07

Table 6: Performance with various iterations in centroid up-
dating of the Nearest Centroid scheme.

Method PQ PQ** PQ*?

Minimum Cost 51.9 50.1 90.2
Optimal Transport 54.2(12.3) 52.4(12.3) 90.3(70.1)

Table 7: Comparisons between Minimum Cost (MC) and
Optimal Transport (OT) based on the defined cost for
pseudo-mask label generation.

amine the effectiveness of our proposed OT-based scheme,
we study the different methods on pseudo-mask genera-
tion in Point2Mask. Based on the presented cost on the
task-oriented maps, we compared OT with the direct mini-
mum cost (MC) method. Similar to [14], MC assigns the
gt point label to each pixel with its corresponding mini-
mum cost individually. Table [/| shows the comparison re-
sults. Point2Mask with our proposed OT method outper-
forms the MC scheme by +2.3% PQ. Specifically, the per-
formance gains mainly stem from the thing-based targets
(+2.3% PQ' vs. +0.1% PQ®!). This is because it takes
consideration of the global optimization in dealing with the
ambiguous locations, like the border pixels between differ-
ent thing-based targets with the same category.

5. Conclusion

An effective single point-supervised panoptic segmen-
tation approach, namely Point2Mask, was presented. The
accurate pseudo-mask was obtained by finding the opti-
mal transport plan at a globally minimal transportation cost,
which was defined according to the task-oriented maps.
Moreover, an effective centroid-based scheme was intro-
duced to obtain the accurate unit number for each gt point
supplier. Extensive experiments were conducted on Pascal
VOC and COCO benchmarks, validating the leading perfor-
mance of the proposed Point2Mask over the previous state-
of-the-arts on point-supervised panoptic segmentation.
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Appendix
A. Sinkhorn Iteration

The transport solver involves the resolution of a linear
program in polynomial time. In our OT-based approach, the
dimension of pixel samples can be as high as the square of
hundreds. To efficiently tackle such a large-scale transport
problem, we adopt the Sinkhorn Iteration method [[11} [15],
which computes the OT problem through the Sinkhorn’s
matrix scaling algorithm.

The Sinkhorn Iteration converts the OT optimization tar-
get into a non-linear but convex form with an entropic reg-
ularization term R, which can be formulated as below:

min ; Lijeij + AR(T35), ©)
where R(I';;) = I';;(logT';; — 1), and A is a regulariza-
tion coefficient. According to the Sinkhorn-Knopp Iteration
method [11, 40], v; and u; are introduced for updating the
solution:

t+1 _ Y t+1 _ Li
; 10
J ZKU ol v; ZK'L t+1’ (10)

where K;; = e(=¢ii/2) - After performing the iteration for
T times, the optimal plan I" can be obtained as:

I' = diag(u) K diag(v). (11)

B. Semantic Map Learning

The local LAB affinity and the long-range RGB affinity
are integrated to generate the accurate semantic map P* for
the unlabeled regions. In the following, we introduce the
two loss terms in detail.

Local LAB Loss. As in [44], the local LAB loss £LAP

explores the color similarity S; 4p in LAB color space of
the input image with the local kernel. Sy, 4 5 is defined as:

Spap = S(ri, ;) =exp (_Hn—rj) , (12)
JENs(i) 01

where 7; is the LAB color value of pixel 7 and Ng(7) denotes
its eight local neighbors. 6, is the constant parameter. The

LLAB Joss term is formulated as follows:

ﬁgeilB = Z Z ]].{8LAB>T}IOgPSTPS (13)
i= ljeNs(t)

the indicator function, being 1 if SiL,JAB > 7 and 0 other-
wise. As in [44], 7 is set to 0.3 and 6 is set to 2 by default.

Long-range RGB Loss. Similar to [30], the long-range
RGB loss LEGB absorbs the global pixel affinity in RGB
space. Each pixel in the input image can be constructed by
the global RGB pixel similarity Sgp through the mini-
mum spanning tree (MST) algorithm. The pixel similarity

Srep in each tree-connected edge E is defined as follows:

SRGB _ S(Tiﬂ”j) = exp < Z ||"1l92 Tk” > , (14)

(1,k)€E(4,5)

where r; is the RGB pixel value of pixel <. [ and k are the
adjacent pixels in the tree-connected edge E; ;. Like 01, 6
is a constant value, which is set to 0.02 by default. The
L% loss term is defined as:

n

L£REB — —% > o\p; Z SEeBpsl (15)

=1 VJEQ

where zo = >, SfJGB , Q denotes the set of pixels in P*.

C. Additional Results
C.1. Performance on Multiple Point Labels

To further investigate the effectiveness of our approach
with multiple point labels, we conduct the experiments
with ten-points annotation per target. The results of fully
mask-supervised and single point-supervised methods are
also listed as reference. As shown in Table [AT] we com-
pare Point2Mask with the state-of-the-art methods, includ-
ing Panoptic FCN [28]] and PSPS [14] with ten-points la-
bels on Pascal VOC and COCO datasets. With ResNet-50
backbone, Point2Mask outperforms Panoptic FCN [28] by
11.1% PQ (59.1% vs. 48.0%) on Pascal VOC and 4.0% PQ
(31.2% vs. 35.2%) on COCO. Compared with PSPS [14],
Point2Mask surpasses PSPS [14] by 2.5% PQ and 2.1%
PQ on Pascal VOC and COCO, respectively. Furthermore,
Point2Mask achieves more competitive performance with
60.2% PQ on Pascal VOC and 36.7% PQ on COCO using
ResNet-101 backbone.

C.2. Hyper-parameter Selection in OT

We perform the following experiments to examine the
impact of hyper-parameters in our OT-based method.

Different Number of Sinkhorn Iterations. We per-
form Sinkhorn Iteration with different number of iterations
to solve the OT problem. Table[AZ]reports the panoptic seg-
mentation results. When the iteration number is set to 80,
Point2Mask achieves the best performance with 53.8% PQ.

Impact of 8. In our paper, 3 in Eq. [3|indicates the im-
portance of boundary map P’ to calculate the pixel-to-gt
cost ¢; ;. Table[A3|shows the results with different values
of 5. When = 0.1, Point2Mask obtains the best per-
formance. This indicates that the cost from instance-wise



Method Backbone Supervision Vo€ 2012 €oco

PQ Pch PQst PQ Pch PQst
Panoptic FPN [20] ResNet-50 M 657 645 90.8 415 483 312
Panoptic FCN [28]] ResNet-50 M 679 666 929 436 493 350
Panoptic SegFormer [29] ResNet-50 M 679 66.6 9277 480 523 415
PSPS [114] ResNet-50 P 498 478 895 293 293 294
Point2Mask (Ours) ResNet-50 P 542 524 903 324 326 322
Panoptic FCN [28] ResNet-50 P1o 480 462 852 312 357 243
PSPS [114] ResNet-50 P1o 56.6 548 914 331 33.6 322
Point2Mask (Ours) ResNet-50 P1o 59.1 575 91.8 352 36.1 340
Point2Mask (Ours) ResNet-101 P1o 60.2 58.6 921 36.7 373 35.7

Table Al: Performance comparison on Pascal VOC val and COCO val2017. M is pixel-wise mask label. P and P;g
denote 1 and 10 point labels per target, respectively. The results with M and P supervision are listed as reference to illustrate

the performance with 10 point labels.

Iter. Num. PQ PQ* PQst
40 53.0 51.2 90.1
60 53.5 51.7 90.1
80 53.8 51.9 90.5
100 52.7 50.8 90.1
120 522 50.3 90.2

Table A2: The results with different number of iterations in
the Sinkhorn Iteration.

6 PQ Pch PQst
1.0 52.3 50.4 90.2
0.5 52.4 50.5 90.2
0.2 52.8 50.9 90.3
0.1 53.8 51.9 90.5

0.05 53.1 51.2 90.1
0.01 51.9 50.0 89.6

Table A3: Results with different values of 3 in Eq.

boundary map P? plays a complementary role to the main
cost term based on P?°. Furthermore, the visual examples of
learnt high-level boundary P}Zi o, are shown in Fig.

C.3. More Visualization Results

To further illustrate the performance of our single point-
supervised approach, we give more visualization results.

Fig.[A2]shows the qualitative comparison with the state-
of-the-art method PSPS [14]. It can be seen that our pro-
posed Point2Mask approach is able to find the ambigu-
ous locations of nearby instances precisely. This demon-
strates that our OT-based approach can discriminate the
thing-based targets with the accurate boundaries. In addi-
tion, Fig. [A3] provides the panoptic segmentation results of
Point2Mask on general COCO and Pascal VOC datasets.

D. Discussion

Differences against the existing works. Like previous
weakly-supervised methods [14} 144, 27, 26], our method

Figure Al: Visual examples of high-level boundary map.
The accurate boundary for thing-based objects can be learnt.

aims to achieve high-quality segmentation with the label-
efficient sparse labels, which is different from the existing
promptable segmentation model [21] with a large amount
of data and the corresponding mask labels.

We adopt the same base architecture as PSPS [14],
i.e., generating pseudo labels firstly and then training the
panoptic segmentation branch. To generate the panoptic
pseudo labels, both our method and PSPS [14] employ
the category-wise and instance-wise representations. For
category-wise representation, we firstly employ the local
LAB and long-range RGB pixel similarities (Sec.3.4.1), in-
stead of the local LAB semantic parsing only as in [14].
Secondly, for instance-wise representation, we adopt the
boundary map and define different distance functions.
Compared with the high-level manifold cues in [14], the
boundary map is more suitable for the shortest path-based
implementation to calculate the instance-wise differences.
More importantly, the key difference lies in the presented
OT formulation for global assignment to generate more ac-
curate mask labels.

Limitations. For the dense objects with the same cat-
egories, such as in autonomous driving and remote sens-
ing scenarios, the proposed method may not perform well
with the supervision of only a single point label. Bet-
ter performance can be obtained by adopting the more
powerful segmentation network, like Mask2Former [7] and
MaskDINO [23], into our method.



PSPS Point2Mask PSPS Point2Mask

Figure A2: Qualitative comparisons on Pascal VOC. The left two columns show that Point2Mask can precisely discriminate
the nearby instances of the same category. The right two columns indicate that Point2Mask can obtain more fine-grained
boundaries.



Figure A3: Visual examples of panoptic segmentation by our Point2Mask with single point label per target on COCO and
Pascal VOC datasets.



