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Abstract

Standard semantic segmentation models owe their success
to curated datasets with a fixed set of semantic categories,
without contemplating the possibility of identifying unknown
objects from novel categories. Existing methods in outlier
detection suffer from a lack of smoothness and objectness
in their predictions, due to limitations of the per-pixel clas-
sification paradigm. Furthermore, additional training for
detecting outliers harms the performance of known classes.
In this paper, we explore another paradigm with region-level
classification to better segment unknown objects. We show
that the object queries in mask classification tend to behave
like one vs. all classifiers. Based on this finding, we propose
a novel outlier scoring function called RbA by defining the
event of being an outlier as being rejected by all known
classes. Our extensive experiments show that mask clas-
sification improves the performance of the existing outlier
detection methods, and the best results are achieved with
the proposed RbA. We also propose an objective to optimize
RbA using minimal outlier supervision. Further fine-tuning
with outliers improves the unknown performance, and unlike
previous methods, it does not degrade the inlier performance.

1. Introduction

We address the problem of semantic segmentation of un-
known categories. Detecting novel objects, for example, in
front of a self-driving vehicle, is crucial for safety yet very
challenging. The distribution of potential objects on the road
has a long tail of unknowns such as wild animals, vehicle
debris, litter, etc., manifesting in small quantities on the exist-
ing datasets [73, 6, 17]. The diversity of unknowns in terms
of appearance, size, and location adds to the difficulty. In
addition to the challenges of data, deep learning has evolved
around the closed-set assumption. Most existing models for
category prediction owe their success to curated datasets
with a fixed set of semantic categories. These models fail in
the open-set case by over-confidently assigning the labels of
known classes to unknowns [33, 58].

.

s
‘»,...-1,\-.:’; '\r" Sol &

RbA (Ours)

DenseHybrid

Figure 1: Preserving objectness and eliminating noise.
While state-of-the-art methods PEBAL [65] and DenseHy-
brid [25] suffer from a lack of smoothness and objectness
with high false positive rates, our method RbA clearly seg-
ments the unknown objects and reduces false positives by
eliminating uncertainty at semantic boundaries and in am-
biguous background regions.

The existing approaches to segmenting unknowns can be
divided into two depending on whether they use supervi-
sion for unknown objects or not. In either case, the model
has access to known classes during training, i.e. inlier or
in-distribution, and the goal is to identify the pixels belong-
ing to an unknown class, i.e. anomalous, outlier, or out-of-
distribution (OoD). Earlier approaches resort to an ensemble
of models [40] or Monte Carlo dropout [22] which require
multiple forward passes, therefore costly in practice. More
recent approaches use the maximum class probability [35]
predicted by the model as a measure of its confidence. How-
ever, this approach requires the probability predictions to
be calibrated, which is not guaranteed [64, 58, 26, 54, 38].
In the supervised case, the model can utilize outlier data to
learn a discriminative representation, however, outlier data is
limited. Typically, another dataset from a different domain
is used for this purpose [1 1], or outlier objects are artificially
added to driving images [25, 65].

The existing methods in outlier detection suffer from a
lack of smoothness and objectness in the OoD predictions
as shown in Fig. 1. This is mainly due to the limitations



Unknown Inference

= zk:a(L) ‘:R

Region Class Probs.
N x K

Outlier Supervision
00D Pixel Class Probs Ideal OoD Probs

ik Lnnad

Figure 2: Overview. This figure provides an illustration of
our proposed outlier scoring function RbA and the objective
to optimize it as defined in (6). The class logit scores L are
aggregated as the product of region class probabilities P and
mask predictions M pooled over all regions. We define the
RDbA as the probability of not being assigned to any of the
known classes. With the proposed objective, we push the
probabilities of known classes down, in the outlier pixels.

Membership Maps

Mask2Former NxHxW

of the per-pixel classification paradigm that previous OoD
methods are built on. In this paper, we explore another
paradigm with region-level classification to better segment
objects. To that end, we use mask-classification models,
such as Mask2Former [ 14] that are trained to predict regions
and then classify each region rather than individual pixels.
This endows our method with spatial smoothness, learned
by region-level supervision. We discover the properties of
this family of models which allow better calibration of confi-
dence values. Then, we exploit these properties to boost the
performance of the existing OoD methods that rely on pre-
dicted class scores such as max logit [34] and energy-based
ones [25, 65, 49].

The existing methods also suffer from high false positive
rates due to failing to separate the sources of uncertainty, es-
pecially on datasets in the wild such as Road Anomaly [48].
For example, on the boundaries, segmentation models typi-
cally predict weak scores for the two inlier classes separated
by the boundary, causing these regions to be confused as
OoD by score-based methods [34]. Based on exploring the
behavior of object queries in mask classification, we find
that most of the object queries tend to behave like one vs.
all classifiers. Consequently, we propose a novel outlier
scoring function based on this one vs. all behavior of object
queries. We define the event of a pixel being an outlier as be-
ing rejected by all known classes. In other words, we define
being an outlier as a complementary event whose probability
can be expressed in terms of the known class probabilities.
We show that this scoring function can eliminate irrelevant
sources of uncertainty as in the case of boundaries, resulting
in a considerably lower false positive rate on all datasets.

The state-of-the-art methods in QoD [25, 65] utilize out-
lier data for supervision. While better unknown segmen-
tation can be achieved, it comes at the expense of lower

closed-set performance. Unfortunately, this unintended con-
sequence is not desirable since the primary objective of
unknown segmentation is to identify unknowns while still
accurately recognizing known classes without compromising
the inlier performance.

We propose an objective to optimize the proposed out-
lier scoring function using a limited amount of outlier data.
By fine-tuning a very small portion of the model with this
objective, our method outperforms the state-of-the-art on
challenging datasets with high distribution shifts such as
Road Anomaly [48] and SMIYC [10]. Notably, we achieve
this without affecting the closed-set performance. Our con-
tributions can be summarized as follows:

* We postulate and study the inherent ability of mask
classification models to express uncertainty, and use this
strength to boost the performance of several existing
OoD segmentation methods.

* Based on our finding that object queries behave approx-
imately as one vs. all classifiers, we propose a novel
outlier scoring function that represents the probabil-
ity of being an outlier as not being any of the known
classes. The proposed scoring function helps to elim-
inate uncertainty in ambiguous inlier regions such as
semantic boundaries.

* We propose a loss function that directly optimizes our
proposed scoring function using minimal outlier data.
The proposed objective exceeds the state-of-the-art by
only fine-tuning a very small portion of the model with-
out affecting the closed-set performance.

2. Related Work

Semantic Segmentation Paradigms: Since the success of
Fully Convolutional Networks (FCN) [62], semantic seg-
mentation architectures have revolved around the per-pixel
classification paradigm. This paradigm has been extensively
studied to increase the closed-set performance with various
convolution and pooling operations [12, 13, 18, 80, 71], and
by aggregating multi-scale contextual information [74, 75].
Recent work shifted towards transformer-based architec-
tures [70, 63, 76, 82, 72] and attention mechanisms [29,

, 81,30, 43, 37, 21].

On the other hand, mask classification has been mainly
adopted by instance segmentation and object detection mod-
els [31, 28, 7] since it allows pixels to belong to multiple
proposals and provides the flexibility to detect a variable
number of objects in the scene. Max-DeepLab [67] employs
mask classification for panoptic segmentation but with many
auxiliary losses. Although some earlier efforts have been
made to apply mask classification to semantic segmenta-
tion [8, 28], they were quickly outperformed by the per-pixel
methods until recently. MaskFormer variants [15, 14] apply



w

o

-

<

1
per-class loU

Figure 3: Masking object queries. We show the impact on
per-class IoU on Cityscapes [17] when using two types of
masking: hard masking without any interactions between
the queries (top) and soft masking by allowing interactions
in the transformer decoder (middle) compared to the original
model without masking (bottom). The constant color in
most columns shows that most of the object queries can
independently segment their particular classes.

query-based mask classification and attention to obtain a
unified segmentation model which shows competitive perfor-
mance with specialized semantic and instance segmentation
architectures across benchmarks [46, 17, 83, 57].

Unsupervised Anomaly Segmentation: Unsupervised
methods utilize their knowledge about inlier data to de-
tect anomalies at inference time. Early work measures un-
certainty based on the observation that anomaly samples
typically result in low-confidence predictions. The uncer-
tainty of a model can be estimated through maximum soft-
max probabilities [35, 45], ensembles [40], Bayesian ap-
proximation [55], Monte Carlo dropout [22], or by learn-
ing to estimate its confidence [19]. However, posterior
probabilities of a closed-set model are not necessarily cali-
brated, leading to overconfident predictions on unseen cat-
egories [64, 58, 26, 54, 38]. Therefore, follow-up work
focuses on making a clear distinction between inliers and
outliers by using true class probabilities [16], unnormalized
logits instead of softmax probabilities [34], standardized
class-wise logits [39], and the distance to learned prototypes
of known classes [9]. Overall, unsupervised approaches are
typically efficient without any extra training but they are
inherently limited to which extent they can separate inliers
and outliers due to a lack of supervision with outlier data.

Deep generative models are also used for unsupervised
anomaly segmentation. Early methods are primarily based
on density estimation [4 1, 59] while subsequent works focus
on reconstruction. Several works rely on the predicted seg-
mentation maps to resynthesize [48, 68, 27, 66] or inpaint
the inputs [47] and measure discrepancy with comparison
networks. Others apply localized adversarial attacks [1], syn-
thesize negatives using normalizing flows [24], or combine
Gaussian mixture models with discriminative representation
learning [44]. Generative methods are typically imprac-
tical for real-time safety-critical applications due to high
computational costs and long inference times. Additional

comparison modules and the change in input distributions
require extra training. Moreover, synthesized unknowns
often do not generalize well to real anomalies [24]. Sev-
eral works [56, 61, 79] show that generative models tend to
estimate high likelihoods on out-of-distribution samples.

Anomaly Segmentation with Outlier Supervision: Out-
of-distribution data can be used to regularize the model’s
feature space by learning a representation of unknowns. With
the increase in the availability of wide-range datasets, initial
approaches utilize generic datasets such as ImageNet [60]
for OoD. Given data, OoD detection can be simply treated as
binary classification [2, 3]. Outlier data can also be used to
estimate the distributional uncertainty of OoD samples [52]
or to fine-tune parametrized OoD detectors [36]. The energy
score has been proposed as a better alternative to softmax in
terms of separation [49]. SynBoost [4] is a supervised image
resynthesis method that treats void regions as anomalies to
obtain an uncertainty signal.

Recent work uses a subset of COCO [46] or ADE20K
[83], either as entire images [! 1] or after cut-and-paste
into the inlier scenes [65, 25]. Meta-OoD [I1] maxi-
mizes the entropy on outliers, whereas PEBAL [65] learns
adaptive energy-based penalties by abstention learning.
Combining likelihood and posterior evaluation, DenseHy-
brid [25] achieves state-of-the-art results. However, for each
benchmark, different models are fine-tuned using multiple
datasets [83, 57, 78] with high distribution shifts, resulting
in a higher degree of supervision and variety. Our model, on
the other hand, can achieve better performance across bench-
marks by using the same model and only a small subset of
COCO [46] for fine-tuning.

3. Methodology

In this work, we address the limitations of the existing
0OoD methods by using mask classification. We first perform
an analysis of the mask classification models. Then, based
on our analysis, we propose a novel scoring function to
exploit the implicit one vs. all behavior in these models. We
mathematically define the probability of being an outlier
probability as the “none of the above” option for the model.
Finally, we propose a training objective to optimize our
proposed scoring function with minimal outlier data.

3.1. Mask Classification

We build our method on top of the Mask2Former ar-
chitecture [14], which is an improved version of the initial
MaskFormer [ 5]. We give only a brief overview to make the
discussion self-contained; please refer to Cheng et al. [14]
for details. Mask2Former consists of three main parts: the
backbone, the pixel decoder, and the transformer decoder.
The backbone processes the input image x € R3*H*W
to extract features at multiple scales. Then, the pixel de-



coder further processes the multi-scale features to produce
high-resolution per-pixel features F(x) € RC»*H*W The
transformer decoder takes the resulting multi-scale features
{f; }zD:p where D is number of scales, as well as /V learnable
object queries Q € RV*%, where C,, and C, denote the
embedding dimensions. At each layer of the transformer
decoder, object queries are refined by interacting with each
other and with one of the scales f; in a round-robin order.

The refined object queries are first processed with a 3-
layer MLP, resulting in Q,, € RV *C» (o predict IV regions.
The binary masks for all regions are obtained by multiplying
Q,, with pixel features F and applying a sigmoid o to the
result:

M(x) = 0(Qp F(x)) ()

M(x) € RVXHXW represents the membership score of
each pixel belonging to a region. In parallel, refined object
queries are fed to a linear layer followed by softmax to
produce posterior class probabilities P(x) € [0, 1]V*¥ of
K classes.

In contrast to per-pixel semantic segmentation, the ground
truth masks are partitioned into multiple binary masks such
that each mask contains all the pixels that belong to a class.
Then, bipartite matching is used to match every ground truth
mask to an object query using region prediction and classifi-
cation losses as the cost. For region prediction, a weighted
combination of dice loss [53] and binary cross-entropy is
applied to the binary mask predictions. For classification,
cross-entropy loss is used. In inference, the class scores or
logits L(x) € REXHXW are calculated as the product of
mask predictions with class predictions by broadcasting the
class prediction to all the pixels within the region:

N
L(x) =Y P,(x)M,(x) 2)

3.2. Independence of Object Queries

The logit term L as defined in Eq. 2 has a deeper inter-
pretation because of its structure. In essence, L aggregates
weighted votes over all object queries to decide whether
the pixel belongs to a certain class. During training, the
ground truth binary map of each class is matched to an ob-
ject query using bipartite matching. Therefore, we find that
object queries specialize in predicting a specific class after
convergence. We empirically verify this behavior on another
driving dataset (after training on Cityscapes), the validation
set of BDD100K [73]. We identify which class each object
query specializes in by counting how many times it predicts a
certain class with high confidence, e.g. greater than 98%), see
Supplementary for visualization of this specialized behavior.

After identifying which object query predicts which class,
we test their independence, i.e. the ability of each object
query to predict its class without relying on other object

queries. To evaluate the predictions of class k, we mask
out all but its specialized query. We do this in one of two
ways: 1) before the transformer decoder (& in Fig. 2), where
each object query only interacts with the image features and
not with each other (hard masking), or 2) after the trans-
former decoder (# in Fig. 2), allowing queries to interact
with each other weakly (soft masking). In both cases, only
the specialized query is used to predict the mask and class.

Fig. 3 shows per-class IoU scores on Cityscapes [17]
using both strategies compared to the original model without
any masking. We observe that the performance in most of
the classes is not affected compared to the original model.
The drop in performance occurs only in rare classes, such as
train, truck, or bus, indicating that their object queries rely
on other queries in prediction, which explains the slightly
better performance of soft masking than hard masking. This
behavior of object queries resembles multiple independent
binary classifiers, implicitly embedded in a single model.
Note that this is only for analysis purposes and not part of
the proposed method.

3.3. Rejected by All (RbA) Scoring Function

Inspired by the independent behavior of object queries,
we propose to model the prediction of each class as an in-
dependent binary classification problem. We consider it as
K one vs. all classifiers where the predicted score for each
class is independently modeled as follows:

p(y = kix) = o (L (x)) 3)

where y € K”*W is a random variable representing the

predicted class label over a predefined set of known classes
K ={1,..., K} and o is a normalization function applied
to per class logits to map them to a probability, i.e. a value
between 0 and 1. Based on this definition, we assume that
the latent space is partitioned into K + 1 mutually exclusive
and exhaustive regions, such that the label K + 1 represents
the region where the outliers reside, rejected by all other
known classes. By assuming the mutual exclusiveness of
per-class probabilities for a given input, we can define the
probability map of an input x being an outlier as follows:

ply =K +1]x) =1—p (U,y = k[x)
K

=1-> ply=Fkx)
2 @

=1-> o(Li(x))

k=1
Dropping the constant 1 (which does not affect the optimiza-

tion), we define our outlier scoring function RbA:

K
RbA(x) = = ) o(Li(x)) )
k=1
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Figure 4: Categorizing the behavior of logits. Outlier pixels receive extremely low votes from object queries (a). Inlier
pixels receive a high vote from a single object query (b). Boundary pixels separating two inlier classes receive moderate votes
from both object queries (c). Ambiguous regions receive weak votes from multiple object queries (d). Clustering clearly
outlines these four behaviors of logits (e). Pixels in (e) are color-coded with the same colors of the respective histograms (a-d).

We choose o to be the tanh function to map Ly > 0 more
uniformly to the range [0, 1].

3.4. Fine-tuning with Minimal Outlier Supervision

We propose to regularize our scoring function with super-
vision from a small amount of synthetically created outlier
data. Our goal is to improve the OoD segmentation while
preserving the closed-set performance. Without retraining
the entire model, we only fine-tune the mask prediction MLP
and classification layer after the transformer decoder (see
Supplementary), which constitutes only 0.21% of the to-
tal model parameters. For OoD data, we use a modified
version of Anomaly Mix proposed in [65], where objects
from COCO dataset [46] are randomly cut and pasted on
Cityscapes images [17]. We regularize the scores by max-
imizing RbA for outlier pixels, with a squared hinge loss.
This is also equivalent to suppressing high-confidence proba-
bilities of known classes for outlier pixels as shown in Fig. 2.
The loss is formally defined as follows:

Lrpa = Y (max(0,a —RbA(x)))® (6)
XEQout
€ . ,
= Z max (O7 a+ Z o(Ly (X)))
x€EQout k=1

where €, is the set of outlier pixels. We experimentally
set the hyper-parameter « to 5 but we found that any o > 0
works well in practice. See Supplementary for an ablation.

3.5. Analyzing RbA

The term L in Eq. 2 aggregates the independent decisions
of object queries about whether a pixel belongs to a certain
class. Based on this behavior, we can identify several distinct
modes of L. We cluster the logits over classes at each pixel,
i.e. K-dimensional vector, using k-means to characterize
the modes, visualized in Fig. 4e. For an inlier pixel, only a

single object query votes for it with high confidence (Fig. 4b),
whereas true outlier pixels do not receive any votes from
any object query (Fig. 4a). These two modes, especially the
outliers in Fig. 4a, due to the one vs. all behavior, reduces the
overconfidence issue in the existing outlier scoring functions
used in max logit [34] and energy-based methods [25, 65,
49], therefore improve their results (Table 3).

However, there are pixels that disrupt the separability
between the inliers and the outliers which max logit and
energy-based methods fail to capture. For example, pixels
on a boundary between two inlier classes (Fig. 4c) or am-
biguous background pixels (Fig. 4d) end up with a higher
anomaly score than the inliers, causing them to be mistaken
as an outlier. Boundary and ambiguous regions are com-
monly characterized by having more than one weak vote
from object queries. Since RbA aggregates votes from all
classes, summing these weak votes results in a lower outlier
score and hence reduces the false positive rate. Fig. 5 high-
lights the differences between the anomaly maps predicted
by RbA and the state-of-the-art methods, also trained using
Mask2Former. Note that RbA assigns low outlier scores at
boundaries separating known classes.

4. Experiments
4.1. Datasets

We train the model on Cityscapes [|7], which consists
of 2975 training and 500 validation images. It contains 19
classes which are considered as inliers in anomaly segmen-
tation benchmarks. The classes in the dataset can be seen
in Fig. 3. For evaluation, we consider multiple datasets.
First, Segment Me If You Can (SMIYC) benchmark [10]
with two datasets: anomaly track and obstacle track. The
anomaly track has 100 images that contain unknown objects
of various sizes in diverse environments. The obstacle track
contains 412 images with typically small unknown objects
on the road, 85 of which are taken at night and in adverse
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Figure 5: Visual comparison to the state-of-the-art. We show visualizations of outlier score maps predicted by our method,
RDbA compared to the ones predicted by state-of-the-art methods PEBAL [65] and DenseHybrid [25] trained using the same
architecture as the RbA for a fair comparison. The other two methods falsely identify the inlier classes such as person and
bike, which are correctly ignored by the proposed RbA. It is noteworthy that RbA also eliminates the false positives in the
background region, especially at the boundaries separating inliers and better preserves the smoothness of the outlier map
compared to other methods despite being also trained with mask classification.

Method OoD  Extra Anomaly Track Obstacle Track
Data Net. APt FPR] sloUgtt PPVT meanF11 AP{T FPR| sloUgtt PPV{ meanFl T

Emb. Density[5] X X 375 708 339 20.5 7.9 0.8 46.4 35.6 29 23
JSRNet[66] X v 336 439 20.2 29.3 13.7 28.1 28.9 18.6 24.5 11.0
Road Inpain.[47] X v - - - - - 54.1 471 57.6 39.5 36.0
Image Resyn.[48] X v 523 259 39.7 11.0 12.5 377 4.7 16.6 20.5 8.4
ObsNet[ 1] X v 754  26.7 44.2 52.6 45.1 - - - - -
NFlowJS[24] X v 56.9 347 36.9 18.0 14.9 85.6 04 45.5 49.5 50.4
RbA (Ours) X X 86.1 159 56.3 41.4 42.0 87.8 33 47.4 56.2 50.4
Max. Entropy[43] v X 855 15.0 49.2 39.5 28.7 85.1 0.8 47.9 62.6 48.5
DenseHybrid[25] v X 78.0 9.8 54.2 24.1 31.1 87.1 0.2 45.7 50.1 50.7
PEBAL[65] v X 49.1 4038 38.9 272 14.5 5.0 12.7 29.9 7.6 55
SynBoost[4] v v 564 619 34.7 17.8 10.0 71.3 32 443 41.8 37.6
RbA (Ours) v X 909 11.6 55.7 52.1 46.8 91.8 0.5 58.4 58.8 60.9

Table 1: Results on the SMIYC benchmark. We report results on both the anomaly and the obstacle track. Both tracks cover
a wide variety of scenarios and unknown objects. We report both pixel-level (AP, FPR@95) and component-level metrics
(sIoU, PPV, mean F1). We show the results with (lower part) and without (upper part) outlier supervision with the best in bold
and the second best underlined for each.

weather conditions. Both datasets are characterized by a Supplementary). For outlier supervision, we fine-tune the
high domain shift compared to Cityscapes, making them mask prediction MLP and the classification layer for 2K
particularly challenging. Road Anomaly [48] is an earlier iterations with a batch size of 16 using the standard loss
and smaller version of SMIYC. It consists of 60 images with functions used in [14] in addition to the RbA loss defined in
diverse objects in diverse environments. We also report re- Eq. 6. Previous work [65] samples 300 new images every
sults on the Fishyscapes Lost&Found [5], which has 100 epoch out of 40K COCO images with objects different than
validation and 275 test images. The domain of this dataset is Cityscapes inliers. Differently, we sample 300 images only
similar to that of Cityscapes, and the anomalous objects are at the beginning and fix them, then at each iteration, an
mostly small and less diverse compared to other datasets. image is randomly chosen and pasted on inlier images with

robability p,,:. We experimentally set p,,: to 0.1.
4.2. Experimental Setup P Y Pout P Y3 Pout

Evaluation Metrics: For comparison to previous meth-
Implementation Details: We follow the setup of [14] for ods on the Road Anomaly and the Fishyscapes, we report
closed-set training on Cityscapes. We use the Swin-B [50] Average Precision (AP), Area under ROC Curve (AuROC),
architecture as the backbone. Differently, we use only one and False Positive rate at the threshold of 95% True Positive
decoder layer in the transformer decoder instead of nine (see Rate (FPR@95). On SMIYC, the public benchmark reports



OoD  Extra Road Anomaly FS LaF
Method

Data Net. AUCtT APtT FPR] AUCT APt FPR]
MSP (R101) [35] X X 7376 20.59  68.44 86.99 6.02 45.63
Entropy (R101) [35] X X 75.12 2238  68.15 88.32 1391 44385
Mahalanobis [41] X X 76.73 22.85  59.20 92.51 27.83  30.17
SML [39] X X 81.96  25.82 49.74 96.88 36.55 1453
GMMSeg (SF) [44] X X 89.37 57.65 44.34 97.83  50.03  12.55
SynthCP [68] X v 76.08 2486  64.69 88.34 6.54 45.95
RbA (Ours) X X 95.60 7845 11.83 96.43 60.96  10.63
Maximized Entropy [11] v X - - - 93.06 4131  37.69
PEBAL [65] v X 88.85 4441  37.98 98.52 6443 6.56
SynBoost (WRN38) [4] 4 4 81.91 3821 6475 96.21 60.58  31.02
RbA (Ours) v X 9799 8542 6.92 98.62  70.81 6.30

Table 2: Results on Road Anomaly and Fishyscapes LaF. We show the results with (lower part) and without (upper part)
outlier supervision with the best in bold and the second best underlined for each. We report the results of RbA both with and
without outlier supervision. Our method RbA notably improves the results in all metrics on both datasets.

AP and FPR@95 for per-pixel metrics as well as component-
level metrics that are designed to measure the statistics of
detected objects [10]. Specifically, the proposed metrics aim
at quantifying true positives (TP), false negatives (FN), and
false positives (FP) of detected unknown objects. Please see
the benchmark paper [10] for more details on these metrics.

4.3. Quantitative Results

4.3.1 Segment Me If You Can Benchmark

Table 1 shows the results on anomaly and obstacle tracks of
the public SMIYC benchmark. Without outlier supervision,
RbA outperforms all the models, including those trained
with outlier supervision, in AP while maintaining a compet-
itive FPR@95. In terms of component metrics, the gains
with RbA are more pronounced, which is due to an improved
ability to characterize objectness, compared to the previous
work. With outlier supervision, the performance gap im-
proves with respect to the previous best method consistently
across both tracks: +5.4% and +4.7% in AP and +1.7% and
+10.2% in mean F1 for anomaly and obstacle tracks respec-
tively. DenseHybrid [25] achieves a slightly better FPR @95
on the anomaly and obstacle tracks, but RbA achieves signif-
icantly better AP, +12.9% and +4.7% respectively, and better
performance in all component-level metrics. ObsNet [ 1] has
impressive performance at the component-level, however,
not at the pixel-level. RbA consistently performs well across
both tracks in both pixel and component-level metrics.

SMIYC is characterized by high domain shift and diver-
sity of objects in terms of size and appearance, making it
particularly challenging. While some methods, like Dense-
Hybrid [25], rely on highly diverse data when fine-tuning,
RbA with mask classification shows that outlier supervision
is not necessary to perform well under domain shift, thereby
surpassing the limitations of the existing methods.

4.3.2 Road Anomaly & Fishyscapes LaF

Table 2 shows the results on the Road Anomaly [48] and
the Fishyscapes Lost and Found (LaF) validation set [5].
Without outlier supervision, RbA improves the state-of-the-
art significantly in almost all metrics on both datasets, even
outperforming methods with outlier supervision in some
metrics. With minimal supervision from a limited number
of outlier objects, we obtain significant performance gains
without hurting the closed-set performance (Table 3).

4.4. Ablation Study

We ablate our contributions to justify our decision choices
with the scoring function, loss function, and backbone. First,
we show that mask classification improves the performance
of the existing methods in OoD, but RbA better utilizes its
potential. We then report the performance of the squared
hinge loss compared to alternative loss functions. Lastly, we
experiment with different backbones and show that optimiz-
ing for RbA improves the results with different backbones.

Method mioU 4 Road Anomaly FS LaF
APt FPR] APt FPR|
Max Logit [34] 82.25 77.31 16.90 58.52 22.14
PEBAL [65] 7532 7901 721  62.67 25.60
DH [25] 80.27 78.57 12.28 36.94 21.12
RbA (Ours) 82.20 85.42 6.92 70.81 6.30
Table 3: Other methods with Mask2Former. We

show the performance of the state-of-the-art methods with
Mask2Former. Our method RbA achieves the best results in
all metrics with a clear margin, without affecting the closed-
set performance, unlike previous methods. The mloU before
fine-tuning is shown in the first row of the table. The rest of
the models are fine-tuned from the same checkpoint.



Other Methods with Mask Classification: To clearly
demonstrate the effectiveness of our method and decouple it
from the gains obtained by the Mask2Former, we report the
results of other SOTA methods using Mask2Former, includ-
ing PEBAL [65], DenseHybrid [25], and Max Logit [34]
in Table 3. The existing OoD methods perform well with
Mask2Former, for example, the performance of PEBAL sig-
nificantly improves compared to the official results reported
in Table 2. As discussed in Section 3.2, the improvement
comes from reducing the overconfidence issue owing to the
independent behavior of object queries. Our method, RbA,
performs better than the other methods in all metrics. More
importantly, we achieve this performance in OoD without
affecting the closed-set performance, unlike the other meth-
ods such as PEBAL causing a significant drop in mloU. This
experiment shows that we can better utilize the properties of
mask classification with RbA.

Method Road Anomaly FS LaF
AP1T FPR | AP1T FPR]
KL Div. 79.91 11.33 63.58 8.78
MSE 80.71 15.79 69.14  22.06
L1 80.94 15.75 67.19  20.44
BCE 80.66  10.29 64.90 6.89
RbA (Ours) 85.42 6.92 70.81 6.30

Table 4: Ablation study on alternative loss functions. We
compare our loss function based on the squared hinge loss to
other commonly used loss functions. The results show that
our method with squared hinge loss (RbA) performs the best
in terms of OoD segmentation.

Alternative Loss Functions: We verify our choice of loss
function which is a squared hinge loss by optimizing our
method with other commonly used loss functions. As can be
seen in Table 4, squared hinge loss outperforms other loss
functions. Mean Squared Error (MSE) and L1 result in a
higher false positive rate. We define the OoD as a binary
classification problem and optimize it with BCE by using
the outlier score given by the RbA as the positive class logit.
While it improves the FPR compared to MSE and L1, it
performs worse than the squared hinge loss in all metrics.
Using KL Divergence, we minimize the distance between
class probabilities of outlier pixels from a fixed distribution
with maximum entropy. It performs comparably in FPR but
poorly in AP, especially on the Fishyscapes LaF. Detailed
formulations can be found in Supplementary.

Different Backbones: We use the same Mask2Former
model with Swin-B backbone [50] in all our experiments.
In Table 5, we report the results with different backbones
including transformer-based Multiscale ViT (MViT) [69]
and Mix Transformer (MixT) [70] as well as convolutional
WideResnet38 (WR38) [77] and ResNet101 (R101) [32]

Backbone Road Anomaly FS LaF

AP 1 FPR | AP 1 FPR |
R101 [32] 38.1/619 82.7/37.2 30.1/47.1  263/12.7
WR38 [77] 21.6/52.0 90.0/43.8 248/446 763/13.4
MVIT [69] 57.2/73.1 85.8/24.9 47.8/63.7 59.8/ 6.2
MixT [70] 65.7/78.1 24.6/12.4 40.3/51.3 23.0/17.1
Swin-B [50] 785/854 11.8/ 6.9 61.0/70.8 10.6/ 6.3

Table 5: Ablation study on the backbone. We show the
effect of varying the backbone used for feature extraction
on the OoD performance. Comparing the results before and
after fine-tuning with the proposed method, we observe clear
improvements in the performance in all backbones.

backbones. We keep all the other parameters the same as
the default version for a fair comparison. Fine-tuning with
RDbA brings consistent improvements in all metrics for all
backbones. While Swin-B performs the best, R101, MViT,
and MixT can still outperform previous methods on Road
Anomaly and achieve competitive results on Fishyscapes
LaF. This experiment shows that the proposed scoring func-
tion improves the performance regardless of the backbone.

5. Conclusion and Future Work

In this work, we explore the potential of mask classifi-
cation to segment unknown classes. We show that object
queries behave like one vs. all classifiers and their inde-
pendent behavior reduces the overconfidence issue in the
predicted scores, resulting in improvements in the perfor-
mance of the existing scoring-based methods such as max
logit and energy-based methods. By treating the result of
mask classification as multiple one vs. all classifiers, we
propose a novel outlier scoring function called RbA defined
in terms of known class probabilities. We also propose an
objective to optimize the RbA with limited outlier data, ob-
taining significant performance gains without affecting the
closed-set performance. We show that the RbA eliminates
irrelevant sources of uncertainty, such as inlier boundaries
and ambiguous background regions, leading to a consider-
able decrease in false positive rates. Moreover, our proposed
method can preserve objectness and smoothness due to the
region-level inductive biases learned by the mask classifier.

As this work represents an initial attempt to utilize mask
classification for unknown segmentation, its properties can
be further explored with potential improvements. Given the
increased ability to preserve objectness, open-world incre-
mental learning is one step closer, as unknown masks are
more reliable as a source of supervision. While current ef-
forts are limited to static image datasets, temporal or depth
information can provide important cues to detect unknowns.
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Appendix

Overview

This supplementary document contains the implementa-
tion details that are necessary to reproduce our approach
(Section A), additional ablation results to justify hyper-
parameter choices (Section B), additional details about anal-
ysis and ablation experiments reported in the main paper
(Section C), additional qualitative results to showcase our
method compared to state-of-the-art (Section D), and some
challenging cases that cause failure (Section E).

A. Implementation Details
A.1. Architecture

Fig. 6 illustrates the full Mask2Former architecture along
with our unknown inference procedure. The main compo-
nents of the model are the backbone, the pixel decoder, and
the transformer decoder. We explain the details of each next.

Backbone: We use the Swin-B variant as the backbone [50].
It can take an RGB image with any resolution higher than
32 x 32 as input and outputs feature maps at several reso-
lutions to the pixel decoder. Specifically, the output feature
maps are downsampled with strides 4 (x4), 8 (x3), 16 (X16),
and 32 (x32) with respect to the input image.

Pixel Decoder: Following [14], the pixel decoder mainly
consists of 6 layers of deformable attention (MSDefor-
mAttn) [84]. The multi-scale feature maps with strides xg
X16, and x3o are processed with MSDeformAttn layers to
produce fi, f5, and f3, respectively. In [14], the three pro-
cessed feature maps are passed to 9 transformer decoder
layers in a round-robin fashion. However, we found that
using a single layer in the transformer decoder works better
for unknown detection. Therefore, we only pass the last
layer f3 to the transformer decoder. The feature map x4 is
processed with a 1 x 1 filter-size convolutional layer and then
added to the processed feature map f; after bilinear upsam-
pling. Finally, the output is passed to a 3 x 3 convolutional
layer to produce per-pixel features F € RE»*HXW 'where
Cp = 256 is the embedding dimension. The computation
can be summarized as follows:

F = Convsys (Convy «1(x4) + Upsample(f;))  (7)

Transformer Decoder: Learnable object queries Q €
RN *C are fed to the transformer decoder layer to be pro-
cessed with the feature maps from the pixel decoder, where
N = 100 is the number of object queries and C; = 256
is the embedding dimension. A single transformer decoder
layer consists of a cross-attention layer followed by self-
attention and feed-forward network (FFN), each of which
is followed by a LayerNorm. The cross-attention operation

is performed with mask-attention, where each object query
only attends to regions it predicted in the previous layer.
Since we use only a single layer, each object query attends to
the region it predicts directly from the input feature map be-
fore being processed in the transformer decoder. Learnable
positional embeddings are added to the object queries. The
transformer decoder outputs a refined set of object queries
Q- that predict the regions and classify them.

Region Class Prediction: The refined object queries Q,
are fed into a single linear layer followed by a softmax to
produce the class probability of each region P € RV*K
where K is the number of classes.

Membership Maps Prediction: The refined object queries
Q) are also fed into a 3-layer MLP, so that Q,’s dimension-
ality matches that of F. Then, Q, and F are multiplied
before being fed into a sigmoid activation to produce the
per-pixel membership maps M € RV*H*W

A.2. Closed-Set Training

Loss Functions: Before applying any loss function, bipar-
tite matching is used to match object queries to ground truth
binary masks, where each mask contains all the pixels of a
certain class. The matching cost is computed as a weighted
sum of the individual losses. The classification is performed
with the cross-entropy loss. A weighted combination of dice
loss and binary cross-entropy is used to predict regions.

Hyper-Parameters: Following [14], the model is trained
for 90K iterations using a batch size of 16. AdamW [51]
optimizer is used with 0.05 for weight decay and an initial
learning rate of 10, which is reduced using a polynomial
scheduler. The learning rate for the backbone is multiplied
by 0.1.

Data Augmentation: We use the same augmentations as
in [14]. First, the short side of the input image is resized by
a scale uniformly chosen between [0.5 — 2]. Then a random
crop of size 512 x 1024 is applied. After that, large-scale
jittering augmentation [20, 23] is applied with a random
horizontal flip.

A.3. Outlier Supervision

Data Sampling: We use a slightly modified version of
AnomalyMix proposed in [65] for outlier supervision. After
eliminating the samples that contain Cityscapes classes [17],
around 40K images remain for outlier supervision on the
COCO [46] dataset. For a single fine-tuning experiment, we
randomly sample 300 images and fix them throughout the
entire fine-tuning phase.

Fine-tuned Components: For all the fine-tuning experi-
ments, we only fine-tune the 3-layer MLP and linear layers
shown in pink in Fig. 6. Their weights together constitute
approximately 0.21% of the entire model parameters.
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Figure 6: Detailed architecture. This figure provides a more detailed view of the Mask2Former [14] architecture, including
our modifications and unknown inference computation. We use a single transformer decoder layer as opposed to the original
implementation that uses 9 layers. Therefore, only a single scale feature f5 from the last layer is passed from the pixel decoder
to the transformer decoder. For outlier supervision, all modules are frozen except for the MLP and the linear layers shown in
pink.
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Figure 7: Ablation study on architectural choices. With more decoder layers, in-distribution performance on Cityscapes
improves but the outlier performance drops in terms of AP and FPR@95 on Road Anomaly a. Good performance is mainly
due to better mask prediction at the cost of a higher semantics loss b. The drop in mIoU with hard masking (HM mloU) is
another indicator of semantic information loss in the object queries with more decoder layers. The performance improves as
the number of object queries increases c.

Hyper-Parameters: After the model is trained on the
closed-set setting, we fine-tune it for 2000 iterations on
Cityscapes [17] using the setting of the closed-set train-
ing; AdamW [51] optimizer with 0.05 weight decay and
10~* initial learning with polynomial scheduling. For every
Cityscapes image used in fine-tuning, an object from the
300 COCO samples is uniformly chosen and pasted on the
Cityscapes image with probability p,,; = 0.1, which is in-
dependent for each image. The RbA score for outlier pixels
is optimized with the squared hinge loss Lrp4 using o = 5.

B. Additional Ablation Study

Number of Transformer Decoder Layers: As shown in
[14], more transformer decoder layers improve the inlier

performance, i.e. mloU on Cityscapes. However, we found
that using fewer decoder layers results in better performance
in terms of outliers. Fig. 7a highlights the decrease in per-
formance in terms of the AP and FPR@95 on the Road
Anomaly dataset as the number of decoder layers increases.
We investigate this behavior by isolating the sources of error
with respect to the number of decoder layers. Fig. 7b shows
semantic and mask losses of the Mask2Former [14] aver-
aged over the validation samples on Cityscapes. With more
decoder layers, we observe that the semantic cross-entropy
loss increases while the mask-related BCE and dice losses
decrease. This shows that the increase in inlier mloU with
more decoder layers can be attributed to increased perfor-
mance in detecting masks at the cost of a higher semantic



Num Iter AP ¢ FPR@95 | “ APT FPR@95
Pout AP 1 FPR@95 | mloU 1

1000 8320+ 0.11 8.69 £ 0.04 0.1 84.014+0.18 925+ 0.06
2000 85.49 + 0.08  7.25+ 0.04 0.05 8434 +£0.15 9.124+0.10 82.28 + 0.02 -0.01 84.41+£0.14 9.06 £ 0.11
3000 85724012 7824011 0.1 8548 +0.12 7.24+0.06 82.15 4 0.09 0.0 8430 £ 0.06 9.10 £ 0.07
2000 8489 + 007 745+ 005 0.2 8574 £0.11 790+ 0.11 81.54 £0.02 2 85.30 £0.07 7.80 £ 0.06
5000 84.66 + 0.06 814+ 0.03 0.4 8497+ 0.11 9.19+0.05 81.27 £ 0.06 5 8524 +£0.08 6.95 + 0.08

: : : : 10 8561+£0.10 7.26+0.07

. (b) Outlier Selection Probability
(a) Number of Iterations () Outlier Threshold

Table 6: Ablation study on outlier supervision. Finetuning with RbA loss for 2000-3000 iterations achieves the best
performance and the performance deteriorates after 3000 iterations as shown in a. A higher probability of exposure to outlier
data results in a consistent decline in the closed-set performance. A probability of 0.1 achieves the best balance between outlier
and inlier performance b. Finally, we ablate the RbA loss parameter « in c and find that the best results are achieved with

a > 0.
Module Params (%) mloU Road Anomaly FS LaF
AP? FPR| APt FPR|
Full Model 100 80.81 76.00 9.50 73.88 6.02
Transformer Dec. 1.93 80.24 85.08 10.18 72.6 5.51
Pixel Dec. 4.66 81.59 7583 10.51 69.8 6.77
MLP+Linear 0.21 8220 8542 692 7081 630

Table 7: Ablation study on fine-tuning different modules.
We show the effect of fine-tuning different components of
the model on the Road Anomaly and Fishyscapes LaF val-
idation sets. Fine-tuning MLP+Linear maintains the best
performance in unknown detection without sacrificing the
closed-set performance.

error. By using fewer decoder layers, we regulate the seman-
tic confusion, which helps to better align the logit scores,
resulting in better outlier performance.

Fig. 7b also shows the mloU evaluated by applying hard
masking on the specialized object queries. Specialized ob-
ject queries perform worse with more decoder layers. The
information loss in the object queries as well as the increase
in the semantic loss show the importance of semantics for
outlier segmentation compared to precise masks.

Number of Object Queries: The original Mask2Former
[14] uses 100 object queries. We train different models by
varying the number of object queries to observe its effect on
detecting outliers. We focus on the AP values on both Road
Anomaly [48] with large objects and on Fishyscapes LaF [5]
with small objects. Fig. 7c shows that more object queries
result in better AP on both datasets. Even if some object
queries specialize in predicting a particular class, the other
object queries still play a role, especially for rare classes, as
shown in Fig.3 in the main paper.

Outlier Data Exposure: We perform an experiment to
show the effect of the number of iterations required for fine-
tuning with our RbA loss in Table 6a. We report the AP and
FPR metrics on the Road Anomaly dataset, averaged over 5

different runs to eliminate the effect of randomness. We can
see that the best results can be achieved after around 2000
and 3000 iterations and then begin to degrade. We also eval-
uate the effect of the amount of outlier data exposed during
training, which is controlled by the parameter p,,:. We ex-
periment with different values for p,,; and report the outlier
performance on Road Anomaly and closed-set performance
on Cityscapes averaged over 5 different runs in Table 6b. We
can see that more exposure to outlier data negatively affects
the closed-set performance. Consequently, even the outlier
segmentation performance starts to degrade for py; > 0.2.
We choose the p,,+ = 0.1 because it strikes a reasonable
balance between outlier and closed-set performance.

RDbA Loss Parameter: In Table 6c, we report the perfor-
mance of our loss function Lgpa using different values of «,
averaged over 5 different runs. We find that positive values
of o work similarly well and set « to 5 in our experiments.

Fine-tuned Component: In Table 7, we analyze the ef-
fect of fine-tuning different parts of the model on valida-
tion sets of Road Anomaly [48] and Fishyscapes Lost and
Found [5] using RbA loss. The alternative components we
experimented with are the full model, only the transformer
decoder (blue + pink in Fig. 6), only the pixel decoder (red in
Fig. 6), and MLP+Linear layers (pink in Fig. 6). On the Road
Anomaly dataset, fine-tuning MLP+Linear achieves the best
performance in terms of AP and FPR. On Fishyscapes LaF,
the best AP is achieved by fine-tuning the entire model, while
the best FPR is obtained by fine-tuning only the transformer
decoder. Both options cost a decrease in performance on
Road Anomaly and negatively affect the closed-set perfor-
mance. Fine-tuning MLP+Linear achieves the best balance
between outlier detection and closed-set performance and is
the least costly option in terms of the number of parameters
finetuned.
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Figure 8: Specialization of Object Queries. Certain object queries specialize in predicting a specific class. For each query,
we show how many times it predicts a region to belong to a class with high confidence. The sparsity in the plot clearly shows

the specialization of queries.

C. Details of Experiments

In this section, we provide further illustrations and de-
tailed settings of our analysis and ablation experiments in
the main paper. We first perform an experiment to verify the
specialization of object queries. We then provide a detailed
formulation of our ablations on the loss functions and other
methods using Mask2Former including the hyper-parameters
that we use to obtain the results presented in the main paper.

C.1. Specialization of Object Queries

Our method is based on our finding that the object queries
in mask classification enjoy a degree of independence from
one another and that each object query in a subset specializes
in segmenting a specific class from the closed set. Due to
bipartite matching being applied between queries and ground
truth class masks during training, this behavior can be antici-
pated. Here, we empirically verify it using a different dataset
than the one used in training (BDD100K [73]). For each
object query, we count how many times it predicts a certain
class with high confidence. Fig. 8 shows the heatmap of
counts for the Mask2Former model with 100 object queries.
For each of the closed-set classes, there is a single object
query dominantly predicting it.

In the main paper, we test the independence of the spe-
cialized queries by applying hard masking and soft masking
and evaluating per class IoU on Cityscapes. Fig. 9 shows an
illustration of hard and soft masking applied.

C.2. Other Loss Functions

In the main paper, we perform an ablation study with
different loss functions in comparison to squared hinge loss.
In this section, we provide the formulation and the parameter
setting of each loss function. In the following, €2,,; denotes
the set of outlier pixels, and 2;,,, the set of inlier pixels on
an image.

Mean-Squared Error (MSE): With MSE loss, we opti-
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Figure 9: Illustration of hard vs. soft masking of object
queries. In hard masking, when predicting class k, all but
the object queries specialized to predict class k are masked
before the transformer decoder so that the specialized query
can only interact with the image features. In soft masking,
the queries are allowed to interact within the transformer
decoder but are dropped after, and only the specialized query
is used to predict class k.

mize the RbA to be closer to a = 5 for outlier pixels:

EMSE = Z (RbA(X) — 04)2 (8)

X€EQout

L1: Similar to MSE, we optimize the RbA with L1 loss by
setting « to 5:

Lri= )Y [RbA(x)—al )

X€EQout

Binary Cross Entropy (BCE): We formulate the scoring
of outliers as a per-pixel binary classification problem, where
outliers correspond to the positive class. We use the RbA
score as the logit score for the positive class. Assuming that
y corresponds to the binary label (outlier vs. inlier) of a pixel



x, we optimize the BCE loss as follows:

Loce = Y ylog (RbA(x))+(1-y)log (1 — RbA(x))
XEQout

(10)
KL Divergence: We use the KL Divergence to minimize
the distance between the predicted class distribution to a
fixed distribution. For inlier pixels, we minimize the dis-
tance to the Dirac delta function where the correct class
has a probability of 1.0. For outlier pixels, we minimize
the distance to a uniform distribution where the entropy is
maximum. Even though this loss function does not optimize
our proposed score function RbA, it helps us estimate the
contribution of RbA by pushing the predicted class proba-
bilities toward the ideal distributions for outliers and inliers.
Let L, (x) be the class probability distribution of a pixel x
with ground truth label y. Let P;,, (y) be a fixed probability
distribution where class y has probability 1.0. Let I/ be a
fixed uniform probability distribution. Formally, the loss
function is defined as follows:

Ein = Z DKL || Pm( ))
XENin
Low= Y Drr(Lyx)|U) (11)
xXEQout
1
LKL = 5 (Ezn + Eout)

C.3. Other Methods with Mask2Former

To disentangle the contribution of our scoring function
RbA from the architecture, in the main paper, we present
the results of the state-of-the-art methods PEBAL [65]
and DenseHybrid [25] using the Mask2Former architecture.
Here, we provide the details of this ablation experiment for
each method. For a fair comparison, we train both methods
by fine-tuning the same components as the RbA, that is the
MLP+Linear layers as shown in Fig. 6, and also using the
same outlier data supervision method as described in the
main paper.

PEBAL: The optimized objective as per the official imple-
mentation [65] consists of three components. First, there
is the pixel-wise anomaly abstention loss (PAL) with the
abstention term and penalty defined as follows:

> log (Ly(x) + I”;&gx))

xe)

Lpar =—

where () is the set of all pixels on a given image, y €
1,..., K + 1is the ground truth class of pixel x € (2, and
K + 1 is the class for the outliers. In Mask2Former, class
K + 1 is assumed to be the no object class, therefore we
avoid dropping it from the region class probabilities term

P (see Fig. 6) while fine-tuning with the PEBAL objective.
The abstention penalty term a(x) is defined as follows:

K 12
—log Z exp(Lg(x)) (12)

k=1

where F(x) is the free energy function. When the penalty
term is high, the prediction is discouraged from abstaining
and vice versa.

The second component of the loss optimizes the energy
terms such that it is maximized for outlier pixels and mini-
mized for inlier pixels as follows:

Lenergy = Y max(0, B(x) — min)*+

x€Qin

Z max (0, Moy — E(x))2

XEQout

(13)

where m;, and m,,; are hyper-parameters to be set. In

our experiments, we experimentally use Mg, = —2.5 and
The last component is a regularization term for the

smoothness and sparsity of the predicted energy map:

Lreg= Y BilE() -

xe

NI+ B2lEx)] (14

where A/ (x) is the set of vertical and horizontal neighboring
pixels of x, and 8, and (35 are hyper-parameters. We use
B1=3x10""Tand By =5 x 107°

The full objective is defined as the weighted sum of the
three loss functions:

LPEBAL = £PAL + /8£67Le7'gy + ["r'eg (15)

where we set § = 0.1. Starting from the same checkpoint
that we use fine-tuning RbA, we optimize the model with
Lprpar for 5K iterations. We set other hyper-parameters
to be the same as the ones that we use for RbA.

DenseHybrid: Following the official implementation of
DenseHybrid [25], we added an additional outlier prediction
head D(x) € R2*#XW (o the Mask2Former model which
is defined as follows:

D(x) = Convsxs (ReLU(BatchNorm(x))) (16)
The outlier prediction head takes the output feature map of
the highest resolution from the pixel decoder and predicts
a binary output for every pixel denoting the probability of
being an outlier. The objective for DenseHybrid is defined
as follows:

»CDH = CE(L(XM),

an) + ﬂlCE(D(X)v Yout) + 52['0

a7



where CE is short for the cross-entropy loss, x;, € Q;,
denotes the set of inlier pixels, Y, denotes the ground truth
for the closed-set and Y ,,; denotes the binary map where
the outlier pixels are set to one. We experimentally set the
hyper-parameters $; = 0.3 and 52 = 0.03. L, is defined as
follows:

L, |Q N Z logZexp Li(x
ou

XEQout

))+sglmean(L(x))

(18)
where sg is short for the stop gradient operation, and mean
denotes the mean of all the elements of the input tensor.

D. Additional Qualitative Results

In Fig. 10 and Fig. 11, we show additional qualitative
results of RbA compared to the state-of-the-art methods PE-
BAL [65] and DenseHybrid [25]. For other methods, we
show both the outputs of the models reported in their respec-
tive repositories and our implementations of the methods
using Mask2Former. The proposed scoring function RbA
reduces the false positives on the boundaries of inliers and
ambiguous background regions compared to the baselines.
These improvements can be observed more prominently on
the obstacle track (Fig. 11) under adverse weather and light-
ing conditions. Moreover, compared to the baselines, RbA
results in fewer false positives as a result of reducing confu-
sion with inlier classes.

E. Failure Cases

We analyze some failure cases of our method in this
section. A common reason for the failure cases is the high
similarity to the inlier classes.

Tractors and Boats: As shown in Fig. 12, RbA fails to
detect tractors and boats as outliers due to their similarity to
inlier vehicle instances. Although the objects are partially
identified, the model cannot decisively predict the whole ob-
ject regions as outliers. The existing methods either segment
the boats and tractors at the cost of more false positives, as in
the case of PEBAL, or also suffer from a lack of smoothness,
as in the case of DenseHybrid.

Far away Animals: As shown in Fig. 13, animals that are
situated relatively far from the camera are confused as the
inlier pedestrian class. This can be attributed to the domi-
nance of pedestrian class in the training data as well as the
similarity of legged animals to a pedestrian in appearance.

Toy Cars: Fig. 14 shows that the model fails to detect a
toy car on the road and predicts it confidently as the inlier
car class. While the class assignment can be considered
semantically correct, it is still a hazard in a real driving
scenario. Note that a small car can either be a toy car or a
real car that is far away. Therefore, distinguishing real cars

from toy cars might require additional information such as
depth or scale.
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Figure 10: Qualitative Results on SMIYC Anomaly Track. On the anomaly track of the SMIYC benchmark, we compare
RbA with outlier (OoD) supervision to the state-of-the-art methods PEBAL [65] and DenseHybrid [25] using the models
that were shared in their respective repositories, as well as the versions we trained using Mask2Former (M2F). RbA better
distinguishes outliers from inliers and produces more smooth outlier maps with fewer false positives.
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Figure 11: Qualitative Results on SMIYC Obstacle Track. We compare RbA with outlier supervision to the state-of-the-art
methods PEBAL [65] and DenseHybrid [25]. Under adverse weather and difficult lighting conditions, RbA can detect
anomalies consistently better compared to DenseHybrid and reduce false positives more compared to PEBAL.
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Figure 12: Failure Cases: Tractors and Boats. Due to their high similarity to inlier car and truck classes, unknown objects
like tractors or boats are sometimes predicted as inliers.
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Figure 13: Failure Cases: Animals Confused As Pedestrians. As the pedestrian is one of the most frequent classes on
Cityscapes, the model sometimes predicts animals that appear at a distance as pedestrians (highlighted in circles) on images
from SMIYC Anomaly Track.
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Figure 14: Failure Cases: Toy Cars Predicted As Real Cars. One confusing anomaly case for our model is small toy cars
placed in front of the vehicle. Even though they can be semantically considered as cars, they are considered obstacles in a real
driving scenario.



