
Few-Shot Physically-Aware Articulated Mesh Generation
via Hierarchical Deformation

Xueyi Liu1,5, Bin Wang2, He Wang3, Li Yi1,4,5
1Tsinghua University 2Beijing Institute for General Artificial Intelligence 3Peking University

4Shanghai Artificial Intelligence Laboratory 5Shanghai Qi Zhi Institute

Abstract

We study the problem of few-shot physically-aware artic-
ulated mesh generation. By observing an articulated object
dataset containing only a few examples, we wish to learn
a model that can generate diverse meshes with high vi-
sual fidelity and physical validity. Previous mesh generative
models either have difficulties in depicting a diverse data
space from only a few examples or fail to ensure physical
validity of their samples. Regarding the above challenges,
we propose two key innovations, including 1) a hierarchi-
cal mesh deformation-based generative model based upon
the divide-and-conquer philosophy to alleviate the few-shot
challenge by borrowing transferrable deformation patterns
from large scale rigid meshes and 2) a physics-aware de-
formation correction scheme to encourage physically plau-
sible generations. We conduct extensive experiments on
6 articulated categories to demonstrate the superiority of
our method in generating articulated meshes with better
diversity, higher visual fidelity, and better physical valid-
ity over previous methods in the few-shot setting. Further,
we validate solid contributions of our two innovations in
the ablation study. Project page with code is available at
meowuu7.github.io/few-arti-obj-gen.

1. Introduction

Generative models have aroused a wide spectrum of in-
terests in recent years for their creativity and broad down-
stream application scenarios [30, 31, 35, 18, 8, 27]. Spe-
cific to 3D generation, a variety of techniques such as de-
noising diffusion [24, 44, 6, 41] have also been discussed
for a while. Among them, mesh generation is indeed im-
portant since the mesh representation can support a wider
range of downstream applications such as rendering and
physical simulation compared to other representations such
as point clouds. Existing works mainly focus on generat-
ing meshes for whole objects [8, 27, 6, 20, 31] considering
without modeling object functionalities at all. Besides, they

Large-Scale
Rigid Meshes

Deformable Convexes

A Few
Articulated Meshes

Generated Physically-Plausible
Articulated Meshes

Diversity
Physical Validity

Simulation
Step

𝑡!

𝑡"

𝑡#
𝑡$

Convex-level
Deformation

Module

Pre-training

Fine-tuning 𝑡%

Figure 1. Overview. We present a hierarchical mesh deformation-
based generative model to solve the challenging yet important few-shot
physically-aware articulated mesh generation problem. It tackles the few-
shot challenge by borrowing shared convex level deformation patterns
from large-scale rigid meshes and incorporates a deformation correction
scheme to further enhance the model’s ability to generate physically real-
istic meshes.

mainly rely on reconstructing meshes from other kinds of
representations such as implicit fields [8, 6, 20] instead of
generating meshes directly. In this work, we go one step
further and consider mesh generation for articulated objects
that can support physically realistic articulations. This not
only helps understand the object distribution in real-world
assets, but also allows an intelligent agent to learn segment-
ing [21, 23], tracking [38], reasoning [11] and manipulat-
ing [40] articulated objects through a simulation environ-
ment. We focus on the articulated mesh generative model
that can generate object meshes with diverse geometry, high
visual fidelity, and correct physics.

Training a generative model on publicly available articu-
lated mesh datasets to depict a diverse physically-plausible
data space not limited to training assets presents two main
challenges to the methodology. First, existing articulated
object datasets are usually very restricted in scale. For ex-
ample, the PartNet-Mobility Dataset [39] contains an av-
erage of 51 meshes per category. This naturally requires
a few-shot generative model to learn from a very limited
number of meshes. Adapting previous approaches imme-
diately without carefully considering the few-shot nature
would lead to models suffering from poor generative abil-
ity. Second, we need to pursue physically plausible gen-
eration to ensure the generated meshes are not only visu-

ar
X

iv
:2

30
8.

10
89

8v
1

 [
cs

.C
V

]
 2

1
A

ug
 2

02
3

https://meowuu7.github.io/few-arti-obj-gen/

ally appealing but also functionally sound to support correc-
tion articulation functions, i.e., attached parts without self-
penetrations in the full articulation range.

Despite recent advancements in mesh generation com-
munity such as a wide variety of models proposed in exist-
ing works [8, 43, 6, 34, 20], they are typically challenged by
the following difficulties and always fail to solve our prob-
lem: 1) Lack of the ability to learn a wide data space not
limited to training shapes in the few-shot setting. 2) Dif-
ficulty in modeling crucial object-level shape constraints
imposed by the functionality of articulated objects. Fail-
ure to consider these requirements would result in physi-
cally unrealistic samples [8, 6, 27]. Modeling such physi-
cal constraints for articulated meshes is a non-trivial task,
as it requires accounting for diverse penetration phenomena
caused by different types of articulation motions. To our
best knowledge, we are the first that presents a valid frame-
work to address such two difficulties for articulated mesh
generation.

Our work designs a hierarchical mesh deformation-based
generative model that tackles the aforementioned chal-
lenges using two key innovations: (1) Hierarchical mesh
deformation with transfer learning. We introduce an object-
convex shape hierarchy and learn the hierarchical articu-
lated mesh generative model. The model is trained by
first learning the deformation-based generative model at the
leaf convex level and then synchronizing individual convex-
level deformation spaces at the root level. We identify that
different categories tend to share convex-level deformation
patterns and leverage this insight to learn and transfer rich
deformation prior from large-scale rigid datasets to expand
the model’s generative capacity. (2) Physics-aware defor-
mation correction. To address self-penetrations of deformed
articulated meshes during mesh articulation, we further in-
troduce a deformation correction scheme. It is composed of
an auxiliary loss penalizing self-penetrations during mesh
articulation and a collision response-based shape optimiza-
tion strategy. By integrating this scheme into the hierar-
chical mesh deformation model, we successfully guide the
model to generate more physically realistic deformations,
resulting in physically correct articulated meshes finally.

We conduct extensive experiments on 6 categories from
the PartNet-Mobility dataset [39] for evaluation. As demon-
strated by both the quantitative and qualitative results, we
can consistently outperform all baseline methods regarding
the fidelity, diversity and physical plausibility of generated
meshes, e.g., an average of 10.4% higher coverage ratio,
43.7% lower minimum matching distance score, and 26.5%
lower collision score. Ablation studies further validate the
value of our design in deformation pattern transfer learn-
ing, the hierarchical mesh generation approach, and the ef-
fectiveness as well as the versatility of our physics-aware
correction scheme.

Our key contributions are as follows: (1) We present
the first solution, to our best knowledge, for the challenging
yet important few-shot physically-aware articulated mesh
generation problem with two effective and non-trivial tech-
nical innovations. (2) We propose a hierarchical mesh
deformation-based generative model based upon the divide-
and-conquer philosophy. This design allows us to learn a
diverse data space by borrowing shared deformation pat-
terns from large-scale rigid object datasets. (3) We propose
a physics-aware deformation correction scheme to encour-
age the hierarchical generative model to produce physically
realistic deformations, resulting in improved physical valid-
ity of the generated samples. This scheme can also be effec-
tively integrated into other deformation-based mesh genera-
tive models, thereby enhancing the physical validity of their
samples as well.

2. Related Works

Mesh generative models. There have been vast and long
efforts in devising 3D mesh generative models [27, 8, 43,
6, 22, 37]. Their techniques can be mainly categorized
into three genres: 1) direct surface generation [27], 2)
deformation-based mesh generation [22, 37], and 3) hybrid
representation-based generation [8, 43]. Though methods
of the first type exhibit obvious merits such as synthesiz-
ing high-quality n-gon meshes, they always suffer from lim-
ited generative ability and cannot scale for complex objects.
In contrast, deformation-style mesh generation models de-
form source shapes for new samples which naturally spares
the efforts for mesh structure generation, while restricted
by poor flexibility. The third strategy separates the mesh
surface structure generation problem from the content gen-
eration, which offers them with powerful generative ability.
However, the quality of their samples is coupled with the
power of their surface reconstruction techniques [28, 32]. In
this work, we leverage mesh deformation as our generation
technique for articulated mesh synthesis, taking advantages
of its ability to produce high-quality samples. Instead of
deforming whole objects or parts directly, we design a hi-
erarchical deformation strategy to enhance the deformation
flexibility and to enrich the data space by borrowing defor-
mation patterns shared across categories from large scale
rigid meshes.

Few-shot generation. Along with the flourishing image
generative models emerged in recent years, the few-shot im-
age generation has been widely explored as well [13, 10, 12,
14, 2]. It wishes to create more data given only a few ex-
amples from a novel category that is both diverse in content
and semantically consistent with the target category. At the
high level, their basic philosophy is to design proper ap-
proaches such that the model can benefit from large base
datasets for generation, like local fusion [10], latent vari-

ables matching [12, 3]. adversarial delta matching [13]. In
this work, we leverage transfer learning to adapt shape pat-
terns from large-scale rigid datasets to target articulated cat-
egories. Devising methods in this way requires us to find
correct intermediates on which shape patterns are cross-
category transferrable. Instead of directly using whole ob-
jects or articulated parts, we choose convexes as such in-
termediates. Transferring knowledge at this level presents
further difficulties in fusing them together in a geometri-
cally consistent way and in synthesizing physically realistic
meshes while mainting visual diversity at the same time.

Physics-aware machine learning. Our work is also re-
lated to physics-aware machine learning [29, 11, 15, 25,
33, 26, 19], and mostly relevant to physically-aware gen-
erative models. To ensure physical validity of generated
shapes, typical solutions choose either offline simulations
for training data filtering [33] or online simulations leverag-
ing the development of differentiable simulators [7, 16, 17]
or by designing online simulation layers [25]. Generating
physically-plausible articulated objects presents new chal-
lenges considering self-penetrations during mesh articula-
tion that are more complex than stability issues caused by
gravity for rigid objects. Our method integrates the physi-
cal supervision and a shape optimization strategy. The opti-
mization transforms part shapes to resolve self-penetration
issues. High-dimensional and complex shape deformations
are involved in the process, different from linear fixing op-
erations considered in [11].

3. Method

The problem we are targeting is the few-shot physically-
aware articulated mesh generation. Given a set of articu-
lated meshes from the category of interest, we would like
to learn a conditional generative model which could deform
an articulated mesh from the same category into a wide va-
riety of shapes. This conditional generation setup allows
generating a large number of physically-plausible articu-
lated meshes from a few examples while avoiding the need
to generate the mesh structure. However, it leaves several
challenges to address including how to accurately repre-
sent complex shape deformation spaces from a few exam-
ples and how to ensure that the generated meshes support
physically-realistic articulations.

Regarding the first challenge, our idea is to learn the de-
formation space via borrowing knowledge from other object
categories. This seemingly simple idea is not trivial to re-
alize though since we need to figure out what knowledge
is transferrable. We present a hierarchical mesh deforma-
tion strategy to allow deformation prior to transfer at a local
convex segment level while still maintaining the deforma-
tion consistency at the global shape level. Regarding the
second challenge, we introduce a physics-aware deforma-

tion correction scheme to avoid unwanted artifacts such as
self-penetrations during mesh articulation.

In the following, we will provide a pipeline overview in
Section 3.1. Then we will explain our hierarchical mesh de-
formation strategy and our physics-aware deformation cor-
rection scheme in Section 3.2 and Section 3.3 respectively.

3.1. Overview

Given a small set of articulated meshes A from a cer-
tain category of interest with the same number of parts and
joints, sharing a known kinematic chain, our method wishes
to learn a conditional generative model depicting a diverse
and plausible articulated shape space. We adopt the divide-
and-conquer philosophy and develop a hierarchical defor-
mation scheme with transfer learning to tackle the difficulty
of few-shot generation. Instead of learning at the whole
shape level, we structure each articulated shape into an
object-convex hierarchy and solve the generation problem
via two steps. We first learn a generative model depicting
a diverse shape space at the lowest convex level by borrow-
ing common shape patterns from large rigid mesh datasets,
denoted as B. Convexes, with small cross-category distribu-
tion gap, serve as good intermediates for transferring com-
mon shape prior. After that, we devise a synchronization
strategy that composes convex deformations consistently to
form valid object shapes. Besides, a physics-aware correc-
tion scheme is developed to avoid physically-unnatural phe-
nomena such as self-penetrations. Our overall pipeline is
shown in Figure 2.

Specifically, we first decompose the conditional mesh a
into approximately convex segments Ca, forming an object-
convex hierarchy. Then, on the leaf level, we learn to de-
form each convex c ∈ Ca through a convex-level condi-
tional generative model gC(zc|c) where zc is the noise pa-
rameter corresponding to convex c. Finally, on the root
level, we synchronize the convex deformations by replac-
ing the convex-dependent noise parameter zc with Scz,
where Sc is a linear transformation and z is a synchronized
noise parameter shared among all convexes. This aligns
the noise space of different convexes to form a coherent
deformation for the whole mesh. The above hierarchical
deformation strategy can be mathematically represented as
g(z|a) = {gC(Scz|c)|c ∈ Ca}.

During the training time, we first leverage existing unsu-
pervised shape segmentation tools BSP-Net [5] to decom-
pose meshes in both A and B into approximately convex
segments CA and CB. Since BSP-Net decomposes shapes
consistently for each category, we can naturally identify
corresponding convexes within CA or CB. We can then pre-
train a convex-level conditional generative model gC(zc|c)
on CB modeling how corresponding convexes could deform
into each other among the large-scale rigid meshes. We
then fine-tune the pre-trained model gC(zc|c) on convexes

Convex
Decomposition

Large-Scale Rigid Meshes

Convex-level
Deformation

Module
Pre-training

Convex-level
Deformation

Module
Fine-tuning

Physics-Aware
Deformation
Correction

Module

𝑡!

𝑡"

𝑡#

𝓛𝒑𝒉𝒚, 𝓛𝒑𝒓𝒐𝒋

Physics-aware
Deformation Correction

Hierarchical
Mesh Deformation

A Few Articulated Meshes

𝓛𝑪 Physically-Plausible
Articulated Mesh

TransferConvexes

Convexes

Deformable Convexes

Deformable Convexes Synchronized Deformable Convexes

Unsupervised Shape
Co-Segmentation

Unsupervised Shape
Co-Segmentation

Convex
Deformation

Synchronization

Figure 2. Framework overview for our few-shot physically-aware articulated mesh generation. In this figure, yellow blocks represent modules
with learnable weights optimized during pre-training. Orange blocks contain weights optimized during fine-tuning. Gray blocks contain no learnable
weights. Convexes of the same color are of the same type. Our framework consists of a hierarchical mesh deformation scheme that learns and transfers
diverse shared deformation patterns from large-scale rigid datasets at the convex level. We also propose a convex deformation synchronization strategy to
combine individual convex-level deformation spaces into the object-level space. Furthermore, we introduce a physics-aware deformation correction strategy
to address self-penetrations in synthesized articulated meshes.

in CA and at the same time estimate the noise synchroniza-
tion transformation Sc. We further exploit an additional
physics-aware deformation correction scheme to improve
the physical validity of generated articulated shapes. It con-
sists of 1) an auxiliary loss penalizing self-penetrations to
provide physical supervision and 2) a collision response-
based shape optimization strategy to encourage the model
to generate physically realistic meshes. The auxiliary loss
is incorporated into the training pipeline. While the shape
optimization scheme functions at both the training time and
the test time.

3.2. Hierarchical Mesh Deformation

Given an input articulated mesh a and its corresponding
approximately convex segments Ca, our hierarchical mesh
deformation model g(z|a) = {gC(Scz|c)|c ∈ Ca} con-
sists of a convex-level conditional generative model gC as
well as a series of synchronization transformations {Sc}.
We propose to learn the model at the lowest convex level
gC following a transfer learning paradigm so that convex-
level shape patterns can easily transfer across different cat-
egories. Given a reference mesh a, the hierarchical defor-
mation first synthesizes new convex shapes via gC . A de-
formation synchronization strategy is developed to handle
the resulting deformation inconsistency issue across differ-
ent convexes to form a valid object shape.

Convex-level conditional generative model. We propose
to leverage mesh deformation to characterize the convex-
level conditional generative model. For a convex mesh seg-
ment c containing Nc vertices, the conditional generative
model gC(zc|c) should be able to produce diverse and real-
istic vertex-level deformation offset dc ∈ RNc×3 when we
sample different noise parameters zc.

The convex deformation dc lies in a high-dimensional
space which varies from convex to convex, prohibiting the
knowledge transfer across different convexes. We therefore
reparametrize dc using two tricks inspired by [42, 22]: 1)
using cages to control per-vertex deformation; 2) using dic-

tionaries to record the common deformation modes.
In particular, for each convex c, we use a coarse trian-

gle mesh (a cage) tc enclosing c to control the deformation
of convex c [42]. The cage tc usually contains much less
vertices compared with the convex c so that its distribution
is easier to be modeled. The deformation dc of the convex
c can be easily computed as a linear transformation of the
deformation dtc of cage tc: dc = Φcdtc . Here Φc is an
interpolation matrix based upon the generalized barycentric
coordinates of convex c with respect to cage tc. We deform
a template mesh based upon the shape of each convex to
form the cages which we defer the details to supp.

To further reduce the deformation parametrization, we
represent the cage deformation dtc as a linear combination
of K deformation bases Bc = [b1

c ... b
K
c] as dtc = Bczc,

where zc is a K-dimensional deformation coefficient. Here
each deformation basis bc represents a common deforma-
tion pattern and all the bases span the deformation space
of cage tc and therefore convex c. Representing deforma-
tion spaces via deformation bases can effectively reduce the
dimension of shape space compared to other alternatively
such as utilizing latent vectors.

A few-shot deformation learning paradigm. Given the
above deformation reparametrizations, learning the convex-
level conditional generative model for each convex c boils
down to learning the deformation bases Bc as well as the
distribution of deformation coefficient zc. For deformation
bases, we employ a neural network ψθ(·) to predict from
convex shapes. It takes a given convex c as input and out-
puts its deformation bases, i.e., Bc = ψθ(c). We then op-
timize the deformation coefficient zĉc for each convex ĉ in
correspondence to c from the current available dataset. The
distribution of zc is then a mixture of Gaussian fit by the re-
sulting deformation coefficients {zĉc}. We further leverage
a transfer learning approach that transfers deformation pri-
ors learned in large-scale rigid dataset to target datasets at
the convex level based on the observation that the convex-
level deformations usually show similar patterns across cat-

egories, e.g., a slab gets thicker or a strip gets enlongated.
Therefore we can learn a diverse deformation space from a
few examples.

We pre-train gC(zc|c) on the large-scale rigid mesh
dataset B and fine-tune it on each target articulated dataset
A. In particular, at the pre-training time, given a set of
rigid meshes B from large-scale online repositories as well
as the corresponding convexes CB, we first identify pairs
of convexes in correspondence {(c, ĉ)|c, ĉ ∈ CB} from the
same-category shapes, e.g., the noses of two different air-
planes. These correspondences come as a result of some
off-the-shelf unsupervised co-segmentation algorithms [5].
We then optimize gC(zc|c) by alternatively optimizing the
deformation coefficient set {zĉc|c, ĉ ∈ CB}, and the neural
network ψθ(·). To optimize {zĉc}, we fix {Bc} and opti-
mize each zĉc by minimizing the Chamfer Distance (CD),
also denoted as dCD(·, ·), between the deformed convex c
and the target ĉ. Then we optimize {Bc} by fixing deforma-
tion coefficients {zĉc} and minimizing average CD between
deformed c and the target ĉ for each pair (c, ĉ), which leads
to the convex deformation loss LC at the training time:

LC =
1

|CB|
∑

c,ĉ∈CB

dCD(gC(zc|c, zc = zĉc), ĉ). (1)

After the above alternative optimization, the distribution of
zc for each convex c is modeled by a mixture of Gaussian
distribution fit to the final coefficient set {zĉc |ĉ ∈ CB}. At
the fine-tuning time, gC(z|c) is further optimized via the
same procedure by the convex correspondence set CA of the
target dataset A.

Synchronization
MatricesDeformed Cages by

Bases before
Synchronization

Deformed Cages by
Bases after

Synchronization

Source Cages

Source Part

Cage 1 Cage 2

Cage 1 Cage 2 Cage 1 Cage 2Cage 1

Cage 2Cvx 1 Cvx 2

Figure 3. Synchronization Process. The left part illustrates the de-
composed convexes and source cages of the input eyeglass frame. The
right part visualize synchronization matrices (a 4× 4 matrix here for each
cage), cages deformed by bases before synchronization (left two columns),
and cages deformed by synchronized bases (right two columns).

Convex deformation synchronization. After learning the
conditional generative model for each convex c, the next
step is to compose all the deformation spaces for the whole
mesh a. Since for each convex c, gC(zc|c) exploits a sep-
arate set of deformation bases Bc, the noise parameter zc
varies its meaning from convex to convex. As a result, if

we draw independent noise parameters for each convex, the
outcoming deformations could easily contradict with each
other, failing the whole mesh-level deformation. To tackle
this issue, we synchronize different deformation bases Bc

with linear transformations Sc so that a single noise param-
eter z can be shared across all convexes.

Formally speaking, given a set of articulated object
meshes A from a certain category and an articulated mesh
a ∈ A, assuming the mesh is segmented into M convexes
{cm}Mm=1 and each convex is equipped with a deformation
model gC(zcm |cm), our goal is to replace zcm with Scmz so
that sampling the shared noise parameter z results in a glob-
ally consistent mesh deformation. To compute the synchro-
nization transformation Scm , we consider the deformation
from a to other articulated meshes ai ∈ A. In particular, for
each ai, we optimize for a set of deformation coefficients
{yi

m} so that each convex cm in mesh a could deform into
the corresponding convex cim in mesh ai following the de-
formation model gC(zcm |cm, zcm = yi

m). We can then esti-
mate the synchronization transformations {Scm} by solving
the following optimization problem:

minimize
{Scm},{zi}

|A|∑
i=1

M∑
m=1

∥BcmScmzi −Bcmyi
m∥2, (2)

where Bcm is the deformation bases of convex cm and zi is
a global deformation coefficient from mesh a to ai shared
across all convexes. We solve the above optimization prob-
lem via alternatively optimizing the synchronization trans-
formations {Scm} and the global deformation coefficients
{zi}:

• Fix {Scm}, optimize each global deformation coeffi-
cient zi from a to ai via Algorithm 4. It takes the con-
vex deformation bases {Bcm}, current synchroniza-
tion transformations {Scm}, convex deformation co-
efficients {yi

m} as input, and outputs the optimized zi.
• Fix {zi}, optimize each synchronization transforma-

tion Scm for each convex cm via Algorithm 3. It takes
the convex deformation bases {Bcm}, current global
deformation coefficients {zi}, convex deformation co-
efficients {yi

m} as input, and outputs the optimized
Scm .

Source Shape Convex Cages Deformed Cages Deformed Part

w/o Sync.

w/ Sync.

Figure 4. Synchronization’s Effectiveness. The synchronized deforma-
tion bases can consistently transform each convex for a valid part shape
(upper row), while those before the synchronization fail (bottom row).

Algorithm 1 Synchronization transformation matrices
optimization.
Input: Deformation bases for each convex {Bcm}. Global deformation

coefficients {zi} from a to other articulated meshes {ai}. Deforma-
tion coefficients {yi

m} from each convex cm to the corresponding
convex of the articulated mesh ai.

Output: Synchronization transformation matrix Scm of the convex cm.
1: Z← Stack({zi})
2: Ym ← Stack({yi

m})
3: [U,Σ,VT]← SVD(Z)
4: [Um,Σm,VT

m]← SVD(Ym)
5: Scm ← UmΣmVT

mVΣ+UT

6: return Scm

Algorithm 2 Global deformation coefficients optimiza-
tion. “lsq” denotes the least square solver.
Input: Deformation bases for each convex {Bcm}. Synchronization

transformations {Scm}. Deformation coefficients yi
m from each con-

vex cm to the corresponding convex of the articulated mesh ai.
Output: Global deformation coefficients zi from a to ai.
1: Szi ← ∅
2: for m = 1 to M do
3: ẑim ← lsq(Scm , zim)
4: Szi ← Szi ∪ {ẑim}
5: zi = Average(Szi)
6: return zi

As an intuitive illustration of the synchronization process,
we select the example of synchronizing the eyeglass frame’s
convex deformations (with 2 convexes and 4 deformation
bases for each convex) and visualize the process (detailed
to the cage level) in Figure 3. The synchronized deforma-
tion bases can transform two convexes more consistently
and symmetrically than those before synchronization (an
example on deformed part shapes is shown in Figure 4).

After deformation synchronization, the distribution of
the shared noise parameter z can be simply set as a mixture
of Gaussian fit to the optimized global deformation coeffi-
cients {zi}.

3.3. Physics-Aware Deformation Correction

Based upon the above design, our hierarchical deforma-
tion model can then synthesize a deformed mesh a via the
noise parameter z by taking a source articulated mesh as
input. However, we may frequently observe physically un-
natural self-penetrations when articulating a. To encourage
the model to produce physically valid articulated meshes,
we further propose a physics-aware deformation correction
scheme, which serves two purposes: 1) to optimize the
weights of the generative model to produce deformations
that are more physically realistic and 2) to optimize the
shape a to improve its physical validity. To accomplish this,
we draw inspiration from previous works on stable rigid ob-
ject generation [25, 26] and develop an online articulation
simulation process that places a into K different articula-
tion states sequentially, denoted as Sim(a) = {ak}Kk=1. The

articulation state sequence is designed by hand particularly
for each category. We then utilize the physical supervision
and a shape optimization strategy to guide the network to
generate physically realistic articulated meshes. We will
elaborate them in the following text.

Physical supervision. To provide physical supervision for
articulated mesh generative models requires us to design
stability signals to measure physically unstable phenomena,
for which we mainly consider self-penetrations during mesh
articulation. We therefore devise a metric named average
penetration depth (APD) measuring the magnitude of each
vertex penetrating through other parts during the articula-
tion simulation process. It is also referred as Lphy when we
treat it as a loss. Formally, Lphy = 1

K

∑K
k=1 PeneD(ak),

where PeneD(ak) measures self-penetrations in a single ar-
ticulation state. We defer details of Lphy to the supp.

One way to provide physical guidance for the network
is to utilize the physical stability signal Lphy as an auxil-
iary loss to supervise the network training. However, phys-
ically unnatural phenomena of articulated meshes during
mesh articulation are more diverse and complex than that of
rigid objects caused by diverse part geometric appearance
and wide articulation variations. Directly exploring phys-
ical supervision to guide the network optimization is not
sufficient to regularize the network to produce physically
realistic deformations. Therefore we further develop a colli-
sion response-based shape optimization strategy to improve
the physical realism of the generated mesh a. Then we first
optimize a for several times to reduce self-penetrations and
then use it to calculate Lphy for network optimization.

Collision response-based shape optimization. To real-
ize the vision of resolving self-penetrations via optimiz-
ing shapes, we draw inspirations from collision response
strategies and devise a heuristic penetration resolving strat-
egy that projects penetrated vertices onto the surface of the
mesh. To guide such projection, we devise an algorithm
that calculates ProjD(a) whose gradient over each pene-
trated vertex in a informs how to project it to resolve pen-
etrations. Then averaging the ProjD(ak) over each articu-
lation state {ak} yields the projection loss, i.e., Lproj =
1
K

∑K
k=1 ProjD(simk(a)). By iteratively using Lproj to up-

date the global deformation coefficient z of the mesh, we
can optimize the shape a to mitigate self-penetrations. At
the training time, Lproj is used to optimize deformation
coefficients z for several iterations at first (i.e., 5 iterations),
followed by leveraging Lphy calculated on the optimized
shape to update network weights. Test-Time Adaptation
(TTA). During the test time, only Lproj is iteratively ap-
plied to refine the result (i.e., for 10 iterations).

Figure 5. Qualitative evaluation on few-shot articulated mesh generation. For every four shapes, the leftmost one (highlighted by blue rectangles)
is the reference shape from the training dataset, while the remaining three are conditionally generated samples. Object categories from top to down are
Eyeglasses, Scissors, TrashCan, and Lamp respectively.

Original

Projected

Original

Projected

Original

Projected

𝑡! 𝑡"

Original

Projected

Figure 6. Visual evaluation on the effectiveness of the physics-aware
projection strategy. For every two lines, the upper line draws shapes with-
out such correction while the second line draws corrected shapes.

4. Experiments

We evaluate our model on 6 articulated object categories
to test its few-shot generation ability for articulated objects.

Datasets. We evaluate our method on 6 categories selected
from PartNet-Mobility [39] dataset following previous stan-

Source Target Neural Cages DeepMetaHandles Ours

Figure 7. Visual comparison on model’s target-driven deformation
ability.

Figure 8. Visual evaluation on synchronized convex-level deforma-
tion bases. The first line draws the template shape with deformation di-
rections of synchronized deformation bases, while the following two lines
are deformed shapes by their corresponding bases. Arrows are drawn to
highlight the deformation direction.

dard [21], namely Storage Furniture, Eyeglasses, Scissors,
Oven, Lamp, and TrashCan. We select 9947 instances
from ShapeNet [4] dataset, covering four categories: Ta-
ble, Chair, Lamp, and Airplane for convex-level deforma-
tion pre-training. For each test category, we split it into a
few-shot training set with 5 instances and a test set contain-
ing the remaining instances. For more details, please refer
to the supplementary material.

Baselines. We compare our method to PolyGen [27],
an auto-regressive style mesh generative model and Deep-
MetaHandles [22], a deformation-based mesh generative
model. To further adapt them for articulated object genera-
tion, we design a part-by-part generation approach for each
of them and we defer details to the supp.

Metrics. We employ two kinds of metrics for evaluation:
1) metrics for mesh generative models following previsou
literature [22, 24, 1], that is the minimum matching dis-

tance (MMD), coverage (COV), 1-NN classifier accuracy
(1-NNA), and Jenson-Shannon divergence (JSD) [41]; and
2) average penetration depth (APD) for physical validity
evaluation. The MMD score evaluates the fidelity of the
generated samples and COV detects mode collapse and
measures the diversity of generated samples. The 1-NNA
score is computed by testing the generated samples and the
reference instances by a 1-NN classifier. We introduce it
following [24]. The classifier is not a network but clas-
sifies shapes into “reference” or “training” class based on
the Nearest Neighbour. The JSD score computes the sim-
ilarity between generated samples and reference samples.
The APD score calculates the per-vertex average penetra-
tion depth averaged over all articulation simulation steps.
We defer its details to the supp.

Experimental settings. The number of projections are set
to 5 and 10 at the training time and the test time respectively.
The number of decomposed convexes may vary across cat-
egories and is detailed in the supp.

Quantitative experimental evaluation: Few-shot artic-
ulated mesh generation. We summarize the quantitative
evaluation results and comparisons to baseline methods on
each articulated object category in Table 1. We can make
the following observations: 1) We can achieve better aver-
age performance on every metric than the baseline models.
It demonstrates the power of our model to generate sam-
ples with better diversity, higher visual fidelity, and better
physical validity than previous models from a small number
of examples. 2) On relatively rich categories (containing
more than 30 instances) such as Scissors and Eyeglasses,
our model can always outperform baseline methods by a
large margin. It indicates that our model can cover a wider
distribution space than baseline methods by only training
on a few examples. 3) Our method can produce shapes with
higher visual fidelity and better physical validity but not as a
trade for diversity. By contrast, PolyGen generate samples
that are more physically correct but exhibits very limited
generative ability, i.e., poor COV and MMD scores.

Qualitative evaluation: Free deformation. In the free de-
formation setting, our model generates articulated meshes
by deforming an input reference shape. It draw samples
from the optimized object-level deformation coefficient dis-
tribution to deform input shapes. We draw deformed shapes
from four representative categories, including Eyeglasses,
Scissors, TrashCan, and Lamp in Figure 5. It demonstrates
the ability of our model to create diverse variations by de-
forming input reference shapes. Compared with previous
mesh deformation literature where the model always strug-
gles to depict large geometry variations in the learned de-
formation space, our model mitigates this issue and is able
to encode such deformations as observed in deformations
of TrachCan bodies (line 3 of Figure 5). It mainly credits

to our deformation coefficient distribution parameterization
strategy, which is fit by discrete deformation coefficients,
other than the uniform range adopted in [22].

Qualitative results: Target-driven deformation. We
also conduct the target-driven experiments to demonstrate
the superiority of our hierarchical deformation strategy
over previous deformation literature, i.e., DeepMetaHan-
dles [22], and Neural Cages [42]. As shown in Figure 7,
our model can deform shapes to be more similar to their
corresponding target shapes. It demonstrates the enhanced
flexibility of our deformation strategy.

Convex deformation synchronization. We visualize the
effectiveness of our convex deformation synchronization
design by showing how synchronized deformation bases
change shapes to produce plausible global mesh-level defor-
mations in Figure 8. Besides, though not imposed directly,
we do observe cross-instance similar deformation patterns,
as also observed in [22].

Physics-aware projection. We compare objects synthe-
sized by the network directly without and with physics-
aware shape optimization in Figure 6. Our shape optimiza-
tion design can improve the physical validity of sampled
shapes by resolving penetrations caused by either part trans-
lation (example 1 in Figure 6) or revolution (example 2,3,4),
in either the body part (example 1,2) or around the joint (ex-
ample 3,4).

5. Ablation Study

Transfer learning and fine-tuning for the convex-level
deformation module. In the few-shot generation design,
the transfer learning technique plays an important role in
enriching deformation space of the target category. Mean-
while, the fine-tuning process benefits the quality and di-
versity by learning category-specific deformation patterns.
Our further analysis demonstrates that 1) The transfer learn-
ing’s power can be boosted by increasing the amount of
source data and is related to the affinity between source and
target categories; 2) The fine-tuning process is crucial for
us to maintain high quality while achieving high diversity.
We create three ablated models by ablating the transfer-
ring learning (“Ours w/o Transfer”), using half amount of
the original data for transferring (“Ours w/ Transfer (Half
Data)”), and ablating the fine-tuning process (“Ours w/o
Fine-tuning”) and test their performance. Observations in
Table 2 can validate the importance of the transfer learning
and the fine-tuning process.

Hierarchical mesh deformation. We adopt the divide-and-
conquer philosophy and design a hierarchical mesh defor-
mation strategy to learn a diverse mesh deformation space.
To demonstrate its superiority over simple part-level defor-
mation and composition, we ablate such design and treat

Table 1. Quantitative evaluation. Comparison between our method and baseline models on the few-shot articulated mesh generation task. MMD is
multiplied by 103 and APD is multiplied by 102. Bold numbers for best values. “Avg.” means “Average Performance”.

Method
Storage

Furniture Scissors Eyeglasses Oven Lamp TrashCan Avg.

MMD (↓)
PolyGen [27] 4.447 3.020 8.426 7.477 12.478 9.817 7.611

DeepMetaHandles [22] 1.031 1.854 6.414 7.730 8.560 9.213 5.800
Ours 1.058 1.495 6.062 7.009 7.133 8.430 5.198

COV (%, ↑)
PolyGen [27] 19.23 9.76 8.33 60.00 37.50 14.29 24.85

DeepMetaHandles [22] 43.93 24.63 15.00 60.00 50.00 17.14 35.12
Ours 75.33 57.89 29.82 60.00 62.50 17.14 50.45

1-NNA (%, ↓)
PolyGen [27] 99.46 98.28 98.71 98.04 99.22 92.68 97.73

DeepMetaHandles [22] 97.72 98.07 98.33 98.50 94.65 86.05 95.55
Ours 97.76 97.02 98.26 96.59 92.44 72.09 92.36

JSD (↓)
PolyGen [27] 0.0791 0.2317 0.1350 0.2044 0.2761 0.2269 0.1922

DeepMetaHandles [22] 0.0697 0.2277 0.0960 0.1768 0.2172 0.1881 0.1626
Ours 0.0290 0.1274 0.0681 0.1597 0.1874 0.0994 0.1118

APD (↓)
PolyGen [27] 0.1305 0.2592 0.0479 0.2548 5.323 0.0256 1.0068

DeepMetaHandles [22] 0.2990 1.6670 0.3682 0.4408 6.3020 1.6961 1.7955
Ours 0.1700 1.3520 0.1707 0.1602 5.993 0.0693 1.3192

Table 2. Ablation study w.r.t. convex-level deformation transfer learning, hierarchical mesh generation, and physics-aware deformation correction. For
metrics of each ablated version, we report their average value over all categories. MMD is multiplied by 103 and APD is multiplied by 102. Bold numbers
for best values. Italics numbers for the second-best one.

Ablation Type Method MMD (↓) COV (%, ↑) 1-NNA (%, ↓) JSD (↓) APD (↓)
Hierarchical deformation Ours w/o Hier. 7.170 36.41 95.43 0.1492 1.4964

Transfer learning &
Fine-tuning

Ours w/o Transfer 5.424 46.64 93.01 0.1159 1.3822
Ours w/ Transfer (Half Data) 5.201 49.43 92.81 0.1130 1.3365

Ours w/o Fine-tuning 6.538 43.20 94.70 0.1437 1.4530

Physics-aware
deformation correction

DeepMetaHandles w/ Phy. 6.980 37.20 95.69 0.1587 1.5705
Ours w/o Phy. 5.211 50.83 92.57 0.1060 1.8079
Ours w/o TTA 5.214 50.71 92.31 0.0992 1.6443

N/A Ours 5.198 50.45 92.36 0.1118 1.3192

parts as the leaf deformation units (denoted as “Ours w/o
Hier.”). As shown in Table 2, this way we observe imme-
diate dropping of the performance on all metrics measuring
the generative ability. This further evidence the value of
our fine-grained decomposition and the hierarchical defor-
mation space learning.

Physics-aware deformation correction. We design Lphy

and Lproj to provide physical supervision and perform
collision response-based shape optimization respectively.
This way we are able to improve the physical validity
of shapes deformed by our framework. To further vali-
date them as solid contributions and versatile strategies not
only work for our method, we create the following vari-
ants and test their performance: 1) “Ours w/o Phy.” by
ablating both the shape optimization and the physical su-
pervision, 2) “Ours w/o TTA” by only ablating the shape
optimization strategy at the test time, and 3) “DeepMeta-
Handles w/ Phy” by integrating such two designs into the
baseline DeepMetaHandles’s framework. From Table 2,
we can make the following observations: 1) Our physics-
aware correction strategy is a versatile design that can be
easily integrated into another deformation-based mesh gen-
erative model, improving its performance effectively; 2)

Only training-time physics-aware corrections can improve
physical-related performance by guiding the convex-level
deformation module stably and effectively; 3) Further im-
posing test time optimizations is important for us to arrive
at high-quality samples finally.

6. Conclusion and Limitations
We tackle the few-shot articulated mesh generation prob-

lem with 1) a hierarchical deformation model with transfer
learning; and 2) a deformation correction scheme.
Limitations. Currently, our work is limited to a category-
level setting with the articulation chain and the range of ar-
ticulation states assumed known. Developing a generation
method without such assumption would increase its prac-
tical value and is an interesting future research direction.
Besides, the deformation correction scheme relies on hand-
crafted chain of articulation states to detect self-penetrations
and optimize shapes based on that. A natural alternative
can be detecting articulation states from real-world images.
Moreover, the quality of our generated results are restricted
by that of the training data. A smart self-correction strategy,
beyond mitigating self-penetrations only, may be designed
to improve the validity.

References
[1] Panos Achlioptas, Olga Diamanti, Ioannis Mitliagkas, and

Leonidas Guibas. Learning representations and generative
models for 3d point clouds. In International conference on
machine learning, pages 40–49. PMLR, 2018. 7

[2] Antreas Antoniou, Amos Storkey, and Harrison Edwards.
Data augmentation generative adversarial networks. arXiv
preprint arXiv:1711.04340, 2017. 2

[3] Sergey Bartunov and Dmitry Vetrov. Few-shot generative
modelling with generative matching networks. In Interna-
tional Conference on Artificial Intelligence and Statistics,
pages 670–678. PMLR, 2018. 3

[4] Angel X Chang, Thomas Funkhouser, Leonidas Guibas,
Pat Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese,
Manolis Savva, Shuran Song, Hao Su, et al. Shapenet:
An information-rich 3d model repository. arXiv preprint
arXiv:1512.03012, 2015. 7, 15, 20

[5] Zhiqin Chen, Andrea Tagliasacchi, and Hao Zhang. Bsp-net:
Generating compact meshes via binary space partitioning. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 45–54, 2020. 3, 5, 20

[6] Gene Chou, Yuval Bahat, and Felix Heide. Diffusionsdf:
Conditional generative modeling of signed distance func-
tions. arXiv preprint arXiv:2211.13757, 2022. 1, 2

[7] Filipe de Avila Belbute-Peres, Kevin Smith, Kelsey Allen,
Josh Tenenbaum, and J Zico Kolter. End-to-end differen-
tiable physics for learning and control. Advances in neural
information processing systems, 31, 2018. 3

[8] Jun Gao, Tianchang Shen, Zian Wang, Wenzheng Chen,
Kangxue Yin, Daiqing Li, Or Litany, Zan Gojcic, and
Sanja Fidler. Get3d: A generative model of high quality
3d textured shapes learned from images. arXiv preprint
arXiv:2209.11163, 2022. 1, 2

[9] Francisco González Garcı́a, Teresa Paradinas, Narcis Coll,
and Gustavo Patow. * cages: a multilevel, multi-cage-based
system for mesh deformation. ACM Transactions on Graph-
ics (TOG), 32(3):1–13, 2013. 14

[10] Zheng Gu, Wenbin Li, Jing Huo, Lei Wang, and Yang Gao.
Lofgan: Fusing local representations for few-shot image
generation. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 8463–8471, 2021. 2,
15

[11] Yining Hong, Kaichun Mo, Li Yi, Leonidas J Guibas, Anto-
nio Torralba, Joshua B Tenenbaum, and Chuang Gan. Fixing
malfunctional objects with learned physical simulation and
functional prediction. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
1413–1423, 2022. 1, 3

[12] Yan Hong, Li Niu, Jianfu Zhang, and Liqing Zhang. Match-
inggan: Matching-based few-shot image generation. In 2020
IEEE International Conference on Multimedia and Expo
(ICME), pages 1–6. IEEE, 2020. 2, 3

[13] Yan Hong, Li Niu, Jianfu Zhang, and Liqing Zhang. Delt-
agan: Towards diverse few-shot image generation with
sample-specific delta. In European Conference on Computer
Vision, pages 259–276. Springer, 2022. 2, 3, 15

[14] Yan Hong, Li Niu, Jianfu Zhang, Weijie Zhao, Chen Fu, and
Liqing Zhang. F2gan: Fusing-and-filling gan for few-shot
image generation. In Proceedings of the 28th ACM inter-
national conference on multimedia, pages 2535–2543, 2020.
2

[15] Haoyu Hu, Xinyu Yi, Hao Zhang, Jun-Hai Yong, and Feng
Xu. Physical interaction: Reconstructing hand-object inter-
actions with physics. In SIGGRAPH Asia 2022 Conference
Papers. ACM, nov 2022. 3

[16] Yuanming Hu, Luke Anderson, Tzu-Mao Li, Qi Sun, Nathan
Carr, Jonathan Ragan-Kelley, and Frédo Durand. Difftaichi:
Differentiable programming for physical simulation. arXiv
preprint arXiv:1910.00935, 2019. 3

[17] Yuanming Hu, Jiancheng Liu, Andrew Spielberg, Joshua B
Tenenbaum, William T Freeman, Jiajun Wu, Daniela Rus,
and Wojciech Matusik. Chainqueen: A real-time differen-
tiable physical simulator for soft robotics. In 2019 Interna-
tional conference on robotics and automation (ICRA), pages
6265–6271. IEEE, 2019. 3

[18] Ke Lan. Dream fusion in octahedral spherical hohlraum.
Matter and Radiation at Extremes, 7(5):055701, 2022. 1

[19] Jun Li, Kai Xu, Siddhartha Chaudhuri, Ersin Yumer, Hao
Zhang, and Leonidas Guibas. Grass: Generative recursive
autoencoders for shape structures. ACM Transactions on
Graphics (TOG), 36(4):1–14, 2017. 3

[20] Muheng Li, Yueqi Duan, Jie Zhou, and Jiwen Lu. Diffusion-
sdf: Text-to-shape via voxelized diffusion. arXiv preprint
arXiv:2212.03293, 2022. 1, 2

[21] Xiaolong Li, He Wang, Li Yi, Leonidas J Guibas, A Lynn
Abbott, and Shuran Song. Category-level articulated ob-
ject pose estimation. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pages
3706–3715, 2020. 1, 7

[22] Minghua Liu, Minhyuk Sung, Radomir Mech, and Hao Su.
Deepmetahandles: Learning deformation meta-handles of
3d meshes with biharmonic coordinates. arXiv preprint
arXiv:2102.09105, 2021. 2, 4, 7, 8, 9, 12, 13, 15, 16, 18,
20

[23] Xueyi Liu, Ji Zhang, Ruizhen Hu, Haibin Huang, He Wang,
and Li Yi. Self-supervised category-level articulated object
pose estimation with part-level se (3) equivariance. In The
Eleventh International Conference on Learning Representa-
tions, 2023. 1

[24] Shitong Luo and Wei Hu. Diffusion probabilistic models for
3d point cloud generation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 2837–2845, 2021. 1, 7, 8, 20

[25] Mariem Mezghanni, Théo Bodrito, Malika Boulkenafed, and
Maks Ovsjanikov. Physical simulation layer for accurate
3d modeling. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 13514–
13523, 2022. 3, 6

[26] Mariem Mezghanni, Malika Boulkenafed, Andre Lieutier,
and Maks Ovsjanikov. Physically-aware generative network
for 3d shape modeling. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 9330–9341, 2021. 3, 6

[27] Charlie Nash, Yaroslav Ganin, SM Ali Eslami, and Peter
Battaglia. Polygen: An autoregressive generative model of
3d meshes. In International conference on machine learning,
pages 7220–7229. PMLR, 2020. 1, 2, 7, 9, 15, 16, 20

[28] Songyou Peng, Chiyu Jiang, Yiyi Liao, Michael Niemeyer,
Marc Pollefeys, and Andreas Geiger. Shape as points: A dif-
ferentiable poisson solver. Advances in Neural Information
Processing Systems, 34:13032–13044, 2021. 2, 19

[29] Jiawei Ren, Cunjun Yu, Siwei Chen, Xiao Ma, Liang Pan,
and Ziwei Liu. Diffmimic: Efficient motion mimicking with
differentiable physics. 2023. 3

[30] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image
synthesis with latent diffusion models. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10684–10695, 2022. 1

[31] Chitwan Saharia, William Chan, Saurabh Saxena, Lala
Li, Jay Whang, Emily Denton, Seyed Kamyar Seyed
Ghasemipour, Burcu Karagol Ayan, S Sara Mahdavi,
Rapha Gontijo Lopes, et al. Photorealistic text-to-image
diffusion models with deep language understanding. arXiv
preprint arXiv:2205.11487, 2022. 1

[32] Tianchang Shen, Jun Gao, Kangxue Yin, Ming-Yu Liu, and
Sanja Fidler. Deep marching tetrahedra: a hybrid repre-
sentation for high-resolution 3d shape synthesis. Advances
in Neural Information Processing Systems, 34:6087–6101,
2021. 2

[33] Dule Shu, James Cunningham, Gary Stump, Simon W
Miller, Michael A Yukish, Timothy W Simpson, and Con-
rad S Tucker. 3d design using generative adversarial net-
works and physics-based validation. Journal of Mechanical
Design, 142(7):071701, 2020. 3

[34] J Ryan Shue, Eric Ryan Chan, Ryan Po, Zachary Ankner,
Jiajun Wu, and Gordon Wetzstein. 3d neural field generation
using triplane diffusion. arXiv preprint arXiv:2211.16677,
2022. 2

[35] Uriel Singer, Adam Polyak, Thomas Hayes, Xi Yin, Jie An,
Songyang Zhang, Qiyuan Hu, Harry Yang, Oron Ashual,
Oran Gafni, et al. Make-a-video: Text-to-video generation
without text-video data. arXiv preprint arXiv:2209.14792,
2022. 1

[36] Minhyuk Sung, Zhenyu Jiang, Panos Achlioptas, Niloy J Mi-
tra, and Leonidas J Guibas. Deformsyncnet: Deformation
transfer via synchronized shape deformation spaces. arXiv
preprint arXiv:2009.01456, 2020. 16

[37] Chao Wen, Yinda Zhang, Zhuwen Li, and Yanwei Fu.
Pixel2mesh++: Multi-view 3d mesh generation via deforma-
tion. In Proceedings of the IEEE/CVF international confer-
ence on computer vision, pages 1042–1051, 2019. 2

[38] Yijia Weng, He Wang, Qiang Zhou, Yuzhe Qin, Yueqi
Duan, Qingnan Fan, Baoquan Chen, Hao Su, and Leonidas J
Guibas. Captra: Category-level pose tracking for rigid and
articulated objects from point clouds. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 13209–13218, 2021. 1

[39] Fanbo Xiang, Yuzhe Qin, Kaichun Mo, Yikuan Xia, Hao
Zhu, Fangchen Liu, Minghua Liu, Hanxiao Jiang, Yifu Yuan,

He Wang, et al. Sapien: A simulated part-based interactive
environment. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 11097–
11107, 2020. 1, 2, 7, 20

[40] Zhenjia Xu, Zhanpeng He, and Shuran Song. Umpnet: Uni-
versal manipulation policy network for articulated objects.
arXiv preprint arXiv:2109.05668, 2021. 1

[41] Guandao Yang, Xun Huang, Zekun Hao, Ming-Yu Liu, Serge
Belongie, and Bharath Hariharan. Pointflow: 3d point cloud
generation with continuous normalizing flows. In Proceed-
ings of the IEEE/CVF International Conference on Com-
puter Vision, pages 4541–4550, 2019. 1, 8

[42] Wang Yifan, Noam Aigerman, Vladimir G Kim, Siddhartha
Chaudhuri, and Olga Sorkine-Hornung. Neural cages for
detail-preserving 3d deformations. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 75–83, 2020. 4, 8, 20

[43] Xiaohui Zeng, Arash Vahdat, Francis Williams, Zan Goj-
cic, Or Litany, Sanja Fidler, and Karsten Kreis. Lion: La-
tent point diffusion models for 3d shape generation. arXiv
preprint arXiv:2210.06978, 2022. 2

[44] Linqi Zhou, Yilun Du, and Jiajun Wu. 3d shape generation
and completion through point-voxel diffusion. In Proceed-
ings of the IEEE/CVF International Conference on Com-
puter Vision, pages 5826–5835, 2021. 1

The appendix provides a list of supplemental materials
to support the main paper.

• Further Explanations on the Method – We provide
additional details for some components and algorithms
to complement the main paper.

– Convex-Level Deformation Generative Model
(Sec. A.1). We include a more detailed expla-
nation regarding the model including two tricks
we use to parameterize deformations

– Convex Deformation Synchronization (Sec. A.2).
We explain our alternative optimization strategy
to calculate synchronization matrices in more de-
tail.

– Physics-Aware Deformation Correction
(Sec. A.3). We explain the calculation pro-
cesses of the physical penalty Lphy and the
projection loss Lproj in more detail.

– Additional Explanations (Sec. A.4). We include
more details regarding the practical implementa-
tion of the method.

• Additional Experiments – We present additional ex-
periments to further prove the effectiveness of our
method.

– Few-Shot Mesh Generation (Sec. B.1). We fur-
ther examine the few-shot generation ability of
our hierarchical deformation strategy by testing
it on different few-shot generation settings and
also on rigid mesh categories.

– Transfer Learning for Convex Deformations
(Sec. B.2). We demonstrate why we choose to
use convexes as intermediates to transfer cross-
category shared shape patterns. Besides, we also
explore the influence of source categories in the
transfer learning on the few-shot generation per-
formance.

– Generation via Deformation (Sec. B.3). We
leverage a different mesh generation technique
and design a second approach trying to solve
the problem. By comparing this strategy to our
method, we cast some thoughts on the design phi-
losophy of strategies to solve the few-shot and
physically-aware generation challenges.

• Experimental Settings – We provide additional in-
formation about our experimental settings.

– Datasets (Sec. C.1). We provide more informa-
tion on our datasets for pre-training and evalua-
tion.

– Baselines (Sec. C.2). We explain our modifica-
tions and improvements on baseline methods so
that we can adapt them to the articulated mesh
generation problem.

– Metrics (Sec. C.3). We provide additional calcu-
lation details of the evaluation metrics.

– Additional Experimental Settings (Sec. C.4). We
further discuss some additional experimental set-
tings.

A. Further Explanations on the Method

A.1. Convex-Level Generative Model

In the method, we design a convex-level generative
model to parameterize vertex-level deformation offset dc
into a low dimensional space. We leverage two tricks to
parameterize dc: 1) using cages to control per-vertex defor-
mations and 2) using dictionaries to record common defor-
mation patterns. We elaborate on details of the above tricks
that are not covered in the main text in the following text.

Cages to control convex deformation. To form the
cage tc of the convex c containing Nc vertices, we de-
form a template mesh based upon the shape of the con-
vex c. Specifically, given a template mesh, i.e., a sphere
surface mesh, tc with Nt(Nt ≪ Nc) vertices, we deform
tc to form the cage of c via the following steps: 1) As-
sume the vertex sets of tc and c are Vt and Vc respec-
tively. Find a mapping from each cage vertex, saying
vt ∈ Vt, to a vertex vc in the convex c, i.e., m(vt) =
vc, vt ∈ Vt, vc ∈ Vc(m(vt1) ̸= m(vt2),∀vt1 ̸= vt2)
such that we can minimize

∑
vt∈Vt

∥m(vt)− vt∥2. We use
“linear sum assignment” function implemented in package
“scipy” to find the mapping m(·). 2) Deform vt to v̂t =
vt + (1 − ϵ) · (m(vt) − vt), where ϵ is a hyper-parameter,
which is set to 0.05 in our experiment.

Such a heuristic deformation strategy works well in our
problem considering shapes we want to deform here are
near-to-convex segments.

Using dictionaries to record common deformation pat-
terns. We record common cage deformation patterns using
deformation bases. Following a previous work which also
learns deformation bases to represent common deformation
patterns [22], we wish the deformation basses predicted by
our network for each cage should be able to cover the entire
deformation space such that each possible cage deforma-
tion can be decomposed into a linear combination of these
bases. It is encouraged by our learning objective guided via
the convex deformation loss LC that minimizes the Cham-
fer Distance between each deformed convex and the target
convex. The Chamfer Distance between two convexes is
defined on 4096 points sampled from their surfaces.

At the same time, we wish deformation bases predicted
by our network to have the following two properties: 1)
Deformation bases should be relatively orthogonal to each
other to avoid recording redundant deformation patterns and
to cover independent deformation patterns. 2) Deformation
bases should be in a low dimensional space, activating as
few vertices as possible. Therefore, we further add an or-

thogonal loss Lorth and a sparse loss Lsp for regulariza-
tion purpose, following [22]. Among them, Lorth penalizes
“dot products” between different deformation bases. And
Lsp penalizes the l1-norm of each deformation basis. Such
two penalties are added as additional regularization to op-
timize the hierarchical deformation-based generative model
together with LC and the physical penalty term Lphy .

A.2. Convex Deformation Synchronization

After learning the conditional generative model for each
convex c, we further design a convex deformation syn-
chronization strategy to compose all the individual convex
deformation spaces to the whole mesh-level deformation
space. Given a set of articulated object meshes A from a
certain category and an articulated mesh a ∈ A, assuming
the mesh a is segmented into M convexes and each con-
vex is equipped with a deformation model gC(zcm |cm), our
goal is to replace zcm with Scmz so that sampling the shared
noise parameter z results in a globally consistent mesh de-
formation. To compute the synchronization transformation
Scm , we consider the deformation from a to other articu-
lated meshes ai ∈ A. In particular, for each ai, we op-
timize for a set of deformation coefficients {yi

m} so that
each convex cm in mesh a could deform into the corre-
sponding convex cim in mesh ai following the deformation
model gC(zcm |cm, zcm = yi

m). We can then estimate the
synchronization transformations {Scm} by solving the fol-
lowing optimization problem:

minimize
{Scm},{zi}

|A|∑
i=1

M∑
m=1

∥BcmScmzi −Bcmyi
m∥2, (3)

where Bcm is the deformation bases of convex cm and zi is
a global deformation coefficient from mesh a to ai shared
across all convexes. We solve the above optimization prob-
lem via alternatively optimizing the synchronization trans-
formations {Scm} and the global deformation coefficients
{zi}.

Specifically, we optimize equation 3 by alternatively tak-
ing the following two steps:

• Fix {Scm}, optimize each global deformation coeffi-
cient zi from a to ai via the global deformation coef-
ficients optimization algorithm 4. The algorithm takes
the convex deformation bases {Bcm}, current synchro-
nization transformations {Scm}, and convex deforma-
tion coefficients {yi

m} as input, and outputs the opti-
mized zi.

• Fix {zi}, optimize each synchronization transforma-
tion Scm for each convex cm via the synchronization
transformation matrices optimization algorithm 3. It
takes the convex deformation bases {Bcm}, current
global deformation coefficients {zi}, and convex de-
formation coefficients {yi

m} as input, and output the
optimized Scm .

By looping the above two optimization steps several
times (i.e., 100 in our implementation), we finally get the
optimized synchronization transformation matrices {Scm}
and global deformation coefficient {zi}. Then the distribu-
tion of the global shape deformation coefficient z is mod-
eled by a mixture of Gaussian fit to the optimized {zi}.

Please note that the above approach (Algorithm 3, 4)
is an approximate solution and is not affected by {Bcm}.
However, {Bcm} indeed influence the optimization objec-
tive outlined in Eq. 2 in the main text and cannot be omitted.

Algorithm 3 Synchronization transformation matrices
optimization.
Input: Deformation bases for each convex {Bcm}. Global deformation

coefficients {zi} from a to other articulated meshes {ai}. Deforma-
tion coefficients {yi

m} from each convex cm to the corresponding
convex of the articulated mesh ai.

Output: Synchronization transformation matrix Scm of the convex cm.
1: Z← Stack({zi})
2: Ym ← Stack({yi

m})
3: [U,Σ,VT]← SVD(Z)
4: [Um,Σm,VT

m]← SVD(Ym)
5: Scm ← UmΣmVT

mVΣ+UT

6: return Scm

Algorithm 4 Global deformation coefficients optimiza-
tion. “lsq” denotes the least square solver.
Input: Deformation bases for each convex {Bcm}. Synchronization

transformations {Scm}. Deformation coefficients yi
m from each con-

vex cm to the corresponding convex of the articulated mesh ai.
Output: Global deformation coefficients zi from a to ai.
1: Szi ← ∅
2: for m = 1 to M do
3: ẑim ← lsq(Scm , zim)
4: Szi ← Szi ∪ {ẑim}
5: zi = Average(Szi)
6: return zi

A.3. Physics-Aware Deformation Correction

In our method, we further add a physics-aware deforma-
tion correction scheme to 1) encourage the hierarchical de-
formation model to generate physically-realistic deforma-
tions and 2) optimize synthesized articulated meshes such
that they can support correct articulation functions.

We leverage physical simulation and a collision
response-based shape optimization strategy to realize this
vision. Two losses are involved in the correction strategy:
1) a physical penalty termLphy measuring self-penetrations
and 2) a projection loss Lproj guiding how to project pene-
trated vertices to resolve observed penetrations.

We implement Lphy and Lproj manually with no simu-
lators. Given an articulated mesh a, we illustrate the details
of their computing process in Algorithms 5 6.

For each category, the K articulation states is formed by
C independent articulation chains. Each articulation chain

consists of a moving part pmov and other static parts in their
specific articulation states. pmov is articulated through the
whole articulation range when articulating the object by the
articulation chain. However, the valid articulated states for
resting parts may vary across different categories. For eye-
glasses, when articulating one leg, the other one should be
put into 0 degree or 90 degree.

Algorithm 5 Single simulation. Single-part articulation
simulation losses. “NONE MOTION” indicates fixed parts.
Input: Part mesh pmov = (Vmov ,Emov) to articulate at the rest pose;

Convex mesh pref = (Vref ,Eref); The number of simulation steps
for this moving part in the current convex Ns. Joint information set J
of the moving part pmov .

Output: Average penetration depth APD (Lcurphy) for this part pmov in
the current context. Projection loss Lcurproj for this part pmov in the
current context.

1: if J .moving type == NONE MOTION then
2: return 0 , 0
3: Nref ← Face-Normal(Vref ,Eref)
4: d0 ← Vertex-Face-Distance(Vmov ,Vref ,Eref ,Nref)
5: S0 ← Sign(d0)
6: Sphy ← ∅
7: Sproj ← ∅
8: Let [l, u] be the articulation range of pmov which is contained in the

joint information J
9: for t = 1 to Ns do

10: st ← l + (u− l) · t
Ns

11: ptmov = (Vt
mov ,Emov) ←

Articulation-Simulation(Vmov , st,J)
12: Dt ← Vertex-Face-Distance(Vt

mov ,Vref ,Eref ,Nref)
13: St ← Sign(Dt)
14: Ct ← Vertices-In-Faces(Vt

mov ,Vref ,Eref)
15: Ct ← Ct ∧ (St ̸= St−1)
16: PeneD(ptmov , pref)← Mean(Ct ·Dt · St, dim = 0, 1)
17: Sphy ← Sphy ∪ {PeneD(ptmov , pref)}
18: ∆Vmov ← Vt

mov −Vt−1
mov

19: ProjD(ptmov , pref) ← Mean(Sum(Expand(∆Vmov , dim =
1) · Expand(Ct · Dt, dim=2) · Expand(Nref , dim = 0), dim =
2), dim = 0, 1)

20: Sproj ← Sproj ∪ {ProjD(ptmov , pref)}
21:
22: Lcurphy ← Average(Sphy)
23: Lcurproj ← Average(Sproj)
24: return Lcurphy , Lcurproj

Algorithm 6 Physics-aware losses.
Input: An articulated mesh a with a set of moving parts {p1, ..., pkp}

and their joint information {J1, ...,Jkp}, where kp is the number of
parts in a. Number of simulation steps Ns for a single part articula-
tion simulation process, i.e., moving one part when other parts are put
into a specific articulated state. The number of single-part articulation
simulation processes Ndet for each part.

Output: Average penetration depth APD (Lphy). Projection loss Lproj .
1: Sphy ← ∅
2: Sproj ← ∅
3: for pmov = p1 to pkp do
4: for istep = 1 to Ndet do
5: Sample an articulation state for each part expect for pmov :
{sp|p ∈ {p1, ..., pkp}, p ̸= pmov}

6: Put parts except for pmov into their sampled states; Put pmov

into its rest articulation state.
7: pref ← Merge-Meshes({p1, ..., pkp} \ {pmov})
8: Lcurphy ,L

cur
proj ← Single-Simulation(pmov , pref , Ns,Jpmov)

9: Sphy ← Sphy ∪ {Lcurphy}
10: Sproj ← Sproj ∪ {Lcurproj}
11:
12: Lphy ← Average(Sphy)
13: Lproj ← Average(Sproj)
14: return Lphy , Lproj

How to use Lproj to optimize the articulated mesh a?
Since the calculation process of Lproj is differentiable, we
can update shape a by back-propagating Lproj to update the
global shape deformation parameter z. Specifically, we cal-
culate the gradient of Lproj over z, which can be easily re-
alized by the support of PyTorch’s “autograd” package, and
then update z via the gradient, i.e., z ← z − ϵproj ∂Lproj

∂z .
ϵproj serves as the “learning rate” for the deformation co-
efficient z here and is set to 10−4 at the training time and
10−5 at the inference/sampling time in our implementation.

A.4. Additional Explanations

Mesh smooth layer. Directly composing deformed con-
vexes together for object-level meshes would usually lead
to unwanted artifacts near convex edges, as shown in each
middle one of every three shapes in Figure 9. To tackle this
issue and to produce smooth object-level meshes, we add a
smooth layer following [9], resulting in the rightmost shape
in every three shapes drawn in Figure 9.

B. Additional Experiments
B.1. Few-Shot Mesh Generation

We further discuss our few-shot mesh generation per-
formance from the following aspects to validate the mer-
its of our hierarchical mesh deformation-based generative
scheme:

• Few-shot generation performance w.r.t. the number of
observed reference examples (#Shots);

• Few-shot generation performance on rigid categories;
• Additional results on human bodies.

Figure 9. The effectiveness of the mesh smooth layer. For every three shapes, the leftmost one is the reference shape for deformation, the middle one is
the generated mesh without smoothing, and the right one is the shape after smoothing.

Table 3. Experimental comparisons on Eyeglasses category. MMD is multiplied by 103. Bold numbers for best values.

#Shots Method MMD (↓) COV (%, ↑) 1-NNA (%, ↓) JSD (↓)

2
PolyGen [27] 9.558 3.18 99.70 0.1543

DeepMetaHandles [22] 8.684 6.67 99.21 0.1585
Ours 7.279 19.30 98.41 0.0903

4
PolyGen [27] 8.669 8.28 98.42 0.1425

DeepMetaHandles [22] 6.685 12.57 98.50 0.1036
Ours 6.303 27.54 98.80 0.0840

8
PolyGen [27] 7.663 15.56 97.24 0.1054

DeepMetaHandles [22] 6.222 17.33 97.99 0.0864
Ours 6.102 34.56 97.25 0.0799

Few-shot generation performance w.r.t. #Shots. For
Scissors, Eyeglasses, and TrashCan containing relatively
rich objects, we try to vary the value of the number of
observed examples (#Shots) and compare the performance
achieved by different methods on each few-shot setting. We
consider three additional settings, namely 2-shots, 4-shots,
and 8-shots. To make results comparable across differ-
ent few-shot settings, we use the same test set for all of
those settings. From Table 3, 4, 5, we can observe that
our method can consistently outperform baseline strategies.
It successfully guides the model to generate diverse sam-
ples even under the 2-shots setting, bypassing baselines by
a large margin, e.g., 189% relatively higher coverage ratio
than DeepMetaHandles on the Eyeglasses category. Notice
that it is not at a cost of sacrificing the mesh quality, i.e., we
can achieve the lowest MMD scores at the same time on all
of those three categories.

Further, as a general empirical rule observed from the
results, more observed examples would always lead to bet-
ter few-shot generation performance, guiding the model to
generate visually plausible samples with higher diversity. It
aligns well with our intuitions and also conclusions made in
few-shot image generation works [13, 10].

Few-shot generation performance on rigid mesh cate-
gories. To further prove the effectiveness of our hierarchi-
cal mesh deformation-based generative strategy as a gen-

eral few-shot generation method not restricted to articu-
lated objects, we test it on four rigid categories from the
ShapeNet dataset [4] (i.e., Table, Chair, Lamp, and Air-
plane) and compare it to the baselines. Categories for pre-
training convex-level deformation models of Table, Chair,
Lamp, and Airplane are Chair, Table, Airplane, and Lamp
respectively. From Table 6, our method can still achieve
better performance on all of those four categories. It further
demonstrates the superiority of our hierarchical mesh de-
formation strategy as a general few-shot generation method
over previous methods. We also report the results achieved
by our method on the other two few-shot learning settings.
We can make similar observations by comparing across dif-
ferent few-shot learning settings. As a qualitative evalua-
tion, we draw samples from our model for the above four
categories in Figure 10 (under the 4-shot setting).

Deformation results on human bodies Ours approach can
indeed generalize to complex shape such as human bodies
as exampled in Figure 11. We mainly leverage this exam-
ple to show the method is not restricted to relatively sim-
ple piece-wise rigid objects demonstrated in main experi-
ments. However, we do not conduct abundant experiments
on it since human bodies are deformable and have rich data
sources, which diverge from our focus on piece-wise rigid
objects with limited examples.

Table 4. Experimental comparisons on Scissors category. MMD is multiplied by 103. Bold numbers for best values.

#Shots Method MMD (↓) COV (%, ↑) 1-NNA (%, ↓) JSD (↓)

2
PolyGen [27] 7.311 4.55 99.65 0.5192

DeepMetaHandles [22] 6.154 12.19 98.39 0.3315
Ours 2.503 26.19 98.31 0.1412

4
PolyGen [27] 4.015 9.52 98.96 0.3459

DeepMetaHandles [22] 1.875 24.20 98.76 0.2173
Ours 1.534 50.45 97.81 0.1299

8
PolyGen [27] 3.108 13.16 97.91 0.2067

DeepMetaHandles [22] 1.747 32.19 96.76 0.2017
Ours 1.184 63.47 96.12 0.1256

Table 5. Experimental comparisons on TrashCan category. MMD is multiplied by 103. Bold numbers for best values.

#Shots Method MMD (↓) COV (%, ↑) 1-NNA (%, ↓) JSD (↓)

2
PolyGen [27] 16.448 4.29 97.44 0.3224

DeepMetaHandles [22] 14.589 6.33 90.24 0.2170
Ours 12.746 9.00 84.81 0.1436

4
PolyGen [27] 10.218 13.22 93.09 0.2331

DeepMetaHandles [22] 9.402 17.14 86.49 0.1913
Ours 8.499 17.14 73.11 0.1003

8
PolyGen [27] 9.001 16.67 90.79 0.1938

DeepMetaHandles [22] 8.970 22.83 84.44 0.1379
Ours 8.134 24.47 71.02 0.0935

B.2. Transfer Learning and Fine-tuning for Convex
Deformations

We examine the role of transfer learning and fine-tuning
in our method and find that 1) Transfer learning’s power
can be boosted by increasing the amount of source data and
is affected by the affinity between source and target cate-
gories; 2) Fine-tuning can help learn category-specific de-
formation patterns, benefiting quality and diversity.

Transfer learning w.r.t. amount of data for transferring.
Table 8 compares the model’s performance when a) using
all source data for transferring, b) using half amount of to-
tal source data, and c) use no transfer learning. The trans-
fer learning’s effectiveness can be boosted increasing the
amount of source data for transferring.

Transfer learning w.r.t. source categories. To test the in-
fluence of source categories for deformation pattern trans-
ferring on the few-shot generation performance, we try to
vary the source categories by using each category individu-
ally as the source and comparing them. We conduct exper-
iments on three relatively rich articulated mesh categories,
namely Eyeglasses, Scissors, and TrashCan. From Table 7,
we can make the following observations: 1) For Scissors,
Lamp is a friendly category to reduce the minimum match-
ing distance for samples of higher quality. 2) For TrashCan,
Lamp as the source category can help with enhancing the

diversity of generated samples, perhaps due to diverse de-
formation patterns transferred to the TrashCan’s body parts.

Fine-tuning. The effectiveness of the fine-tuning process
can be examined by comparing the ablated version and the
full model demonstrated in Table 8.

Intermediates for transferring deformation patterns.
We choose to use convexes as intermediates to learn and
transfer shared deformation patterns in this work. It comes
from the assumption and the observation that the con-
vex distribution is more similar across different categories
than the whole shape distribution (as shown in Figure 12).
Therefore, from our intuition, convexes are more promising
to serve as intermediates for transferring mesh deformation
patterns across different categories. We further validate this
intuition by trying to learn and transfer deformation patterns
at the object level. As shown in Table 9, our model using
convexes as intermediates can perform much better than the
trail on transferring at the object level. This validates one of
our crucial assumptions in this work.

Besides, we cannot even observe trivially transferring
deformation patterns at the object level as a better strategy
than the method without any deformation transferring. Usu-
ally, transferring deformation rules for the whole object re-
quires some special designs [36]. This confirms the value
of our hierarchical deformation design for mesh deforma-

Figure 10. Qualitative evaluation on few-shot rigid mesh generation. For every four shapes, the leftmost one (highlighted by blue rectangles) is the
reference shape from the training set, while the remaining three are conditionally generated samples. Object categories from top to down are Table, Lamp,
Chair, and Airplane.

Source
Shape

Source
Cages

Deformed
Cages

Deformed
Shape

Figure 11. Additional deformation results on human bodies.

Object Convex

Figure 12. Domain gap measured by different levels of shapes.
Heatmaps of minimum matching distances between pre-training and tar-
get datasets.

tion transferring.

Table 6. Experimental comparisons on rigid mesh categories. MMD is multiplied by 103. Bold numbers for best values.

Category #Shots Method MMD (↓) COV (%, ↑) 1-NNA (%, ↓) JSD (↓)

Table

2 Ours 6.162 8.20 98.87 0.1118
4 Ours 4.206 13.63 97.80 0.0763

8 DeepMetaHandles [22] 6.640 7.45 99.34 0.1046
Ours 2.356 25.23 96.33 0.0479

Chair

2 Ours 4.148 15.20 99.42 0.1080
4 Ours 3.363 19.36 98.63 0.0512

8 DeepMetaHandles [22] 5.205 12.70 99.43 0.0738
Ours 2.690 28.43 97.09 0.0294

Lamp

2 Ours 4.029 16.80 97.17 0.0930
4 Ours 3.556 20.70 96.13 0.0749

8 DeepMetaHandles [22] 9.730 11.40 99.75 0.1966
Ours 2.822 30.20 93.67 0.0671

Airplane

2 Ours 1.029 15.93 97.47 0.0906
4 Ours 0.927 21.15 97.33 0.0401

8 DeepMetaHandles [22] 2.295 9.37 99.31 0.1654
Ours 0.869 25.71 97.08 0.0334

Table 7. Few-shot generation performance w.r.t. source categories for transfer learning on Eyeglasses, Scissors, and TrashCan categories. “All”
denotes using all of those four categories as the source category.

Target
Category

Source
Category MMD (↓) COV (%, ↑) 1-NNA (%, ↓) JSD (↓)

Eyeglasses

Table 6.07 25.00 99.13 0.0875
Chair 8.23 20.53 99.57 0.1188
Lamp 6.47 26.67 98.46 0.0973

Airplane 8.28 21.91 99.35 0.1042
All 6.06 29.82 98.26 0.0681

Scissors

Table 1.63 51.07 97.55 0.1579
Chair 1.57 56.76 97.10 0.1752
Lamp 1.34 54.39 97.79 0.1328

Airplane 1.67 52.19 97.36 0.1724
All 1.50 57.89 97.02 0.1274

TrashCan

Table 8.43 17.07 72.87 0.0933
Chair 8.39 17.07 74.29 0.0939
Lamp 9.49 19.29 73.58 0.1138

Airplane 13.20 10.32 74.29 0.1429
All 8.43 17.14 72.09 0.0994

Shape retrieval experiments for comparing quality and
diversity. As a further intuitive demonstration on the ef-
fectiveness of our techniques (i.e., transfer learning, fine-
tuning, and convex as intermediates) on improving the re-
sults’ diversity and quality transfer learning, we conduct a
shape retrieval experiment and compare our model with dif-
ferent ablated versions. Given each target shape, we select
the its closest shape from generated assets as the retrieval
results. The results are presented in Figure 13. Only ours
can give results that are plausible, closet to the target, while
also different from each other.

B.3. Generation via Deformation

There are a variety of generation techniques that have
been developed recently in the tide of AIGC, such as score-
based generative models and diffusion models. Along with
them, many works try to explore the possibility of leverag-
ing such techniques for 3D content generation. They mostly
aim at generating shapes as a whole without considering
their functionalities.

In this work, we wish to generate physically-realistic ar-
ticulated meshes and resort to a relatively traditional gener-

Table 8. Ablations w.r.t. the effectiveness of pre-training and fine-tuning.

Method MMD (↓) COV (%, ↑) 1-NNA (%, ↓) JSD (↓) APD (↓)
Ours w/o Transfer 5.424 46.64 93.01 0.1159 1.3822

Ours w/ Transfer (Half Data) 5.201 49.43 92.81 0.1130 1.3365

Ours w/o Fine-tuning 6.538 43.20 94.70 0.1437 1.4530

Ours 5.198 50.45 92.36 0.1118 1.3192

Table 9. Comparison between methods using the transfer learning strategy at the object level and the convex level. For metrics of each version, we
report their average value over all categories. MMD is multiplied by 103 and APD is multiplied by 102. Bold numbers for best values.

Method MMD (↓) COV (%, ↑) 1-NNA (%, ↓) JSD (↓)
Ours (Transfer Obj.) 7.339 32.70 96.11 0.1557

Ours w/o Hier. 7.170 36.41 95.43 0.1492
Ours 5.198 50.45 92.36 0.1118

Ours

w/o Transfer

w/o Fine-tuning

Part as Intermediates

Baseline

Target Shapes

Shape Retrieval for Comparing Quality and Diversity

Figure 13. Shape retrieval for comparing quality and diversity.

ation technique, i.e., generation via deformation. The rea-
sons of our choice are mainly as follows: 1) Deformation-
based generation could let us parameterize shape variations
into a low-dimensional space, by leveraging cages to con-
trol deformations and by using deformation bases to record
common deformation patterns. 2) Deformation-based gen-
eration could easily let us find suitable intermediates such
that shared deformation patterns can be transferred across
different categories easily. 3) It also enables us to devise
an effective physics-aware correction scheme to guide the
model to generate physically-realistic deformations.

To explore more possibilities, we try to design another
method that leverages point cloud diffusion, surface recon-
struction, and a physics-aware correction designed for the
reverse diffusion process, supported by the differentiable
surface reconstruction algorithm. However, sometimes we
observe that it tends to produce meshes of poor quality.
We suppose that it comes from the difficulty to impose
physics-related constraints on the generated meshes from
point cloud diffusion.

We would elaborate on details of this method and its re-
sults in the following text.

Method: Hierarchical generation via point cloud dif-
fusion. It proceeds as follows: 1) Represent the shape
via an object-convex hierarchy via convex decomposition.
2) Train a convex-level conditional point cloud diffusion
model on source categories. 3) Transfer the pre-trained
convex-level point cloud diffusion model to the target cat-
egory via fine-tuning. 4) Compose convex point clouds for
object point clouds. 5) Reconstruct the mesh surface for
part-level point clouds via a pre-trained differential poison
solver model (an SAP model) [28] which is further fine-
tuned on the target category. 6) Compose parts together for
the final articulated mesh with a physics-aware correction
scheme.

Existing problems. Despite the flexible generation abil-
ity and high diversity of the sampled shapes, this strategy
suffers from the poor articulated mesh quality when we fur-
ther add a physics-aware correction scheme on top of recon-
structed part surfaces, as shown in Figure 14.

Discussions. Generating physically-realistic articulated
meshes are usually challenged by the few-shot difficulty,
mesh quality, and the physically-realistic expectations. We
explore a mesh deformation-based physics-aware genera-
tion strategy in this work by transferring deformation pat-
terns from large categories and further with a physics-aware
correction scheme that can improve the physical validity of
generated samples while at the same time preserving trans-
ferred knowledge.

As for two key designs in our work, transferring cross-
category shared shape patterns at the convex level is a rel-
atively general idea that can also be adapted to other gen-
eration techniques for shape space enrichment. However,
further imposing physical validity on top of the generated
samples is not a trivial thing. Our physics-aware correction
works well for the deformation-based generation. But what
is the most ideal strategy that can be combined with other
generation techniques naturally worth further exploring.

Figure 14. Examples of articulated meshes generated by the point cloud diffusion-based strategy (Category: Eyeglasses).

C. Experimental Settings

C.1. Datasets

Rigid mesh datasets for pre-training. For pre-training
data from rigid object categories, we select 9947 instances
from ShapeNet [4] dataset, including Table, Chair, Lamp,
and Airplane. We list the number of instances in each cate-
gory in Table 11.

Articulated mesh datasets for evaluation. For articu-
lated object datasets, we select six articulated object cat-
egories from [39] and four rigid object categories from
ShapeNet [4]. We list the number of its instances in Ta-
ble 10.

C.2. Baselines.

We compare our method with two typical mesh genera-
tive strategies, namely PolyGen [27] that falls into the genre
of direct surface generation strategies, and DeepMetaHan-
dles [22] that leverages mesh deformation for generation.
To further adapt them to our articulated mesh generation
scenario, we make further modifications to their original
algorithms. We briefly summarize our implementations of
such two methods as follows.

For PolyGen [27], we download the official TensorFlow
implementation. We then design a part-by-part genera-
tion strategy to leverage it for articulated mesh genera-
tion. We define a part order (P1, ...,Pk), where k is the
number of parts, and generate joints of each part via gen-
erating two joint points (if any, otherwise generating no
points, equivalent to generating an empty joint point set),
i.e., Ji(1 ≤ i ≤ k). Therefore, we generate mesh ver-
tices, mesh surfaces, and joint points via the following or-
der: [(V1,F1,J1), ..., (Vk,Fk,Jk)].

For DeepMetaHandles [22], we use the official imple-
mentation. To leverage it for articulated mesh generation,
we train a deformation-based generative model for each part
individually. Then, an object is generated by generating its
part. Directly using the above strategy yields the default
version of our compared DeepMetaHandles (“DeepMeta-
Handles”). We could further add a physics-aware deforma-
tion correction scheme on top of it, leading to the improved
version (denoted as “DeepMetaHandles w/ Phy.”).

C.3. Metrics.

For generative model-related metrics, we follow the
computing processes adopted in [24] and evaluate corre-
sponding values on 4096 points sampled from mesh sur-
faces. Average Penetration Depth evaluates the average per-
vertex penetration depth further averaged over all articula-
tion states. Its computing process is the same as that ofLphy

(see Algorithms 5 6 for details).

C.4. Additional Implementation Details

Convex decomposition. We use BSP-Net [5] to provide
intra-category consistent shape co-segmentation for each
category. It’s worth further mentioning that the number of
convexes that we set for BSP-Net performs only as the up-
per bound of the number it uses for decomposition. For
rigid categories, we set the number of convexes to 256. For
articulated objects, we list their settings in Table 12. For
each part, we first try the 128 convexes setting and double
the number of convexes by 2 if BSP-Net’s training loss can-
not converge.

For a visual understanding of the convex decomposition,
we draw some examples of decomposed convexes of in-
stances from the Table category in Figure 15.

Convex-level generative model. For the convex-level gen-
erative model, we use a sphere mesh containing 42 vertices
and 80 faces [42] as the template of cages. The number of
deformation bases is set to 16.

We use a neural network ψθ(·) to parameterize defor-
mation bases. It takes a convex c as input and predicts its
deformation bases Bc = ψθ(c). It first extracts the convex
feature for c via a PointNet encoder (applied on 4096 points
sampled from c’s surface). Then we feed the convex feature
and the cage tc of the convex c to a MultiFold network, same
as the network used in [42] for per-point features with the
bottleneck size set to 512 and the number of folds set to 3.
We then use an MLP for basis prediction with weight size in
each layer set to (128, 128), (128, 128), and (128, 48) with
LeakyReLU layer using the default α value between every
two fully-connected layers.

Training protocols. In the pre-training stage, total losses
for optimizing the convex-level deformation-based genera-
tive model is composed of the convex deformation loss LC

and two penalty terms, i.e., Lsp and Lorth. Specifically, the

Figure 15. Examples for decomposed convexes (converted to point clouds) of instances for the Table category. Different colors represent different
convexes.

Table 10. Number of instances in each articulated object category.

Method
Storage

Furniture Scissors Eyeglasses Oven Lamp TrashCan

#Instances 31 46 65 10 13 43

total loss is L = LC + λsp · Lsp + λorth · Lorth, where λsp
and λorth are both set to 10−4 in our implementation.

In the fine-tuning stage, the object-level physical penalty
Lphy (calculated on the final shape optimized via Lproj)
is further added to encourage the network to produce
physically-realistic deformations. Therefore, the total loss
becomes L = LC +λphy · Lphy +λsp · Lsp+λorth · Lorth.
We empirically set λphy to 1.0.

We use the Adam optimizer with the momentum set to
(0.9, 0.999) for optimization in both the pre-training and the
fine-tuning stages. The initial learning rate is set to 10−4.
And it decayed by 0.5 after every 100 epochs.

Evaluation protocols. We adopt the few-shot generation
evaluation strategy. The default number of shots is set to
5. We use the same test set to compare different meth-
ods. Specifically, for each articulated mesh category, we
randomly select 5 instances for training while using the re-
maining instances for test. At the test time, such 5 instances
serve as reference examples to generate new samples. For
each reference example, we generate 40 samples from it.
It is realized by passing the example mesh into the hier-
archical deformation generative model and randomly sam-
pling 40 global deformation coefficients z from its defor-
mation coefficient distribution model. Each global defor-
mation coefficient z together with the synchronized defor-
mation bases {ScBc} are used to deform the example to a
new shape.

As for the 2-shot, 4-shot, and 8-shot settings present in
the supplementary material, we use the same strategy to
split instances in the articulated mesh category into a few-
shot training set and a test set.

Table 11. The number of instances in each rigid object category.

Method Table Chair Lamp Airplane
#Instances 3000 2447 1500 3000

Table 12. The number of convexes used for convex decomposition for each kind of part of each articulated object category.

Method
Storage

Furniture Scissors Eyeglasses Oven Lamp TrashCan

Link 0 128 128 128 128 128 128
Link 1 512 128 128 512 128 512
Link 2 512 - 128 - 128 -
Link 3 - - - - 128 -

