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Abstract

We propose an Explicit Conditional Multimodal Varia-
tional Auto-Encoder (ECMVAE) for audio-visual segmen-
tation (AVS), aiming to segment sound sources in the video
sequence. Existing AVS methods focus on implicit feature
fusion strategies, where models are trained to fit the dis-
crete samples in the dataset. With a limited and less diverse
dataset, the resulting performance is usually unsatisfactory.
In contrast, we address this problem from an effective repre-
sentation learning perspective, aiming to model the contri-
bution of each modality explicitly. Specifically, we find that
audio contains critical category information of the sound
producers, and visual data provides candidate sound pro-
ducer(s). Their shared information corresponds to the tar-
get sound producer(s) shown in the visual data. In this case,
cross-modal shared representation learning is especially
important for AVS. To achieve this, our ECMVAE factorizes
the representations of each modality with a modality-shared
representation and a modality-specific representation. An
orthogonality constraint is applied between the shared and
specific representations to maintain the exclusive attribute
of the factorized latent code. Further, a mutual information
maximization regularizer is introduced to achieve extensive
exploration of each modality. Quantitative and qualitative
evaluations on the AVSBench demonstrate the effectiveness
of our approach, leading to a new state-of-the-art for AVS,
with a 3.84 mIOU performance leap on the challenging
MS3 subset for multiple sound source segmentation.

1. Introduction
Audio-visual data can work collaboratively towards a

better perception of the scene. The audio-visual segmenta-
tion (AVS) [1, 2] task aims to segment the objects from the
video sequence that producing the sound in the audio. On
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the one hand, the audio data provides category information
for the localization of the object in the video. On the other
hand, the visual data provides a sound producer pool with
precise structure information of the foreground (sound pro-
ducer(s)). Different from conventional multimodal settings,
where each modality can be used individually for the target
task, audio in AVS task serves as “command” to localize
and segment the sound producer(s) from the visual data. In
this case, the contribution of audio should be extensively
explored for accurate foreground segmentation.

The baseline model [1] focuses on implicit feature fu-
sion via audio-visual cross attention. It purely relies on
fitting the discrete samples in the dataset. Although rea-
sonable performance is obtained, there are no constraints
to guarantee the contribution of each modality, making it
hard to decide if the audio data is effectively used, as the
model can directly regress the final segmentation maps by
only taking the video as input. Fortunately, we discover that
each modality for AVS contains both shared and specific in-
formation. For example, the audio data includes both the
information from the sound producers and the background
noise, while the visual data shows the appearance of the
entire scene, where the sound producers only take a small
portion of it. In our specific task setting, we find modality
factorization is suitable to model both the modality-shared
representation, i.e. information of the sound producers, and
the modality-specific representation toward a better under-
standing of the contribution of each modality.

The straightforward solution to learn the feature repre-
sentation of the input data is through an auto-encoder (AE)
framework. However, AE is mainly used for data com-
pression, as the learned feature space is not continuous,
which cannot provide a rich semantic correlation of the
data. Differently, with latent space regularization, e.g. the
latent space is assumed to be Gaussian in variational auto-
encoder (VAE) [3], VAE obtains semantic meaningful latent
space, which is continuous, and it is also the basic require-
ment for reliable latent space factorization.

To learn the semantic correlated feature representation
of the AVS data, we propose an Explicit Conditional Mul-

ar
X

iv
:2

31
0.

08
30

3v
1 

 [
cs

.C
V

] 
 1

2 
O

ct
 2

02
3

https://github.com/OpenNLPLab/MMVAE-AVS
https://npucvr.github.io/MMVAE-AVS


timodal Variational Auto-Encoder (ECMVAE) for audio-
visual segmentation to learn both the shared and the spe-
cific representation in the latent space of each modality.
Our model is built upon a multimodal variational auto-
encoder [4, 5], with the Jensen-Shannon divergence to
achieve a trade-off between sampling efficiency and sam-
ple quality. Based on the latent space factorization, we im-
pose constraints for the shared and specific representations
to explicitly maximize the contribution of each modality.

Specifically, we first assume that one latent code of the
factorized representation should contain independent infor-
mation compared to others. Furthermore, for the fused rep-
resentation, we further claim that it should be more infor-
mative for the target task compared with each modality.
To achieve the former, we propose an information orthog-
onality constraint between the factorized representations
of each modality to ensure that the modality-shared and
modality-specific representations capture different aspects
of the audio-visual input. For the latter, we fuse the factor-
ized representations of each modality to construct a fused
space. Then we introduce a mutual information maximiza-
tion regularizer between the fused representations of each
modality to extensively explore the contribution of each
modality. Extensive experimental results demonstrate that
our ECMVAE achieves state-of-the-art AVS performance.
Our pipeline achieves a 3.84 mIOU improvement for the
challenging multiple sound source segmentation.

We summarize our main contributions as:
• An explicit semantic correlated feature representation

learning framework for audio-visual segmentation is
proposed with latent space factorization to capture
both the modality-shared and specific representations.

• Based on the latent space factorization, we intro-
duce a unimodal orthogonality constraint between the
shared and specific representations and the cross-
modal mutual-information maximization regularizer to
extensively explore the contribution of each modality.

• State-of-the-art segmentation performance is achieved,
showing both the effectiveness of each module and the
contribution of each modality.

2. Related Work
Audio-Visual Segmentation. The Audio-Visual Segmen-
tation (AVS) task is newly proposed, aiming to localize
the sound producers with pixel-wise segmentation masks.
Zhou et al. [1] propose an AVSBench dataset for audio-
visual segmentation and provide a simple baseline based
on temporal pixel-wise audio-visual interaction (TPAVI),
which is a cross-modal attention [6] based fusion strategy.
The other audio-visual collaboration tasks can be classified
as audio-visual correspondence (AVC) [7, 8], event local-
ization (AVEL) [9–14], event parsing (AVP) [15–17], etc.
These methods require the fusion of audio and visual sig-

nals. Such as audio-visual similarity modeling by comput-
ing the correlation matrix [7, 8], audio-visual cross atten-
tion [13, 14, 18], audio-guided Grad-CAM [19], or using a
multimodal transformer for modeling the long-range depen-
dencies between elements across modalities directly [20,
21]. However, the challenge and uniqueness of the AVS
task are how to map the audio signals to fine-grained visual
cues, i.e. per-pixel segmentation maps. This will rely on re-
liable modeling of visual and audio signals, as well as more
effective fusion strategies.

Multimodal Variational Auto-encoders. The Multimodal
Variational Auto-encoders (MVAEs) [4, 22–25] are a type
of latent variable generative model to learn more general-
izable representations from diverse modalities. To achieve
this, the core of MVAE is the joint distribution estimation.
The conventional unimodal VAEs [3, 26] are optimized by
maximizing the evidence lower bound (ELBO), which in-
cludes a reconstruction term and the Kullback-Leibler (KL)
divergence term to measure the divergence from the varia-
tional posterior to the prior distribution of the latent vari-
able. In a multimodal setting, the KL divergence is de-
fined between the joint posterior and joint prior across the
modalities, which is often estimated by the product of ex-
perts (PoE) [27, 28] or the mixture of experts (MoE) [29].
Based on such a prerequisite, many works extend the basic
MVAE definition, such as missing modality handling [25],
latent space modeling [24, 29], effective divergence model-
ing [5], etc. However, previous MVAE based frameworks
essentially focus on the multimodal image generation task.
In this work, we bring the MVAE to the AVS task and pro-
pose the conditional version [26, 30] of MVAE with practi-
cal multimodal information constraints for segmentation.

Mutual Information Estimation. Mutual Information
(MI) captures the nonlinear statistical dependencies be-
tween variables, acting as a measure of actual depen-
dence [31]. Specifically, for a pair of random variables
X and Y , their MI I(X;Y ) is defined as the KL diver-
gence of the joint distribution p(X,Y ) from the product of
the marginal distributions p(X) and p(Y ), which measures
the shared information between X and Y . Although mu-
tual information is simple in formation, as the log density
ratio between the joint distribution p(X,Y ) and product of
marginals p(X) ⊗ p(Y ) is intractable, it is usually esti-
mated [32–34] instead of computed directly, leading to both
MI maximization with a lower bound [35, 36] and MI min-
imization with an upper bound [37]. The MI maximization
is usually applied for effective self-supervised representa-
tion learning [38–42] for the unimodal data to guarantee
reliable feature representation. For the multimodal tasks,
when each modality of data contains partial information of
the target, both MI maximization and minimization can be
applied [43–51], where the former aims to explore the task-
driven feature across the modalities, and the latter is de-



signed to explore the complementary information of differ-
ent modalities. Extensive researches show that effective MI
optimization can not only lead to informative representation
learning [52–59] but also is beneficial for achieving adver-
sarial robustness [60].

3. Explicit Conditional Multimodal Learning
We denote the input data of our used AVSbench

dataset [1] is X = {{xv
t }Tt=1, x

a}, i.e. the visual {xv
t }Tt=1

for T non-overlapping yet continuous frames, audio xa of
the current clip. y = {yt}Tt=1 is the output, i.e. the seg-
mentation maps (we omit t for clear presentation). The
goal of audio-visual segmentation is to segment the objects
from the video {xv

t }Tt=1 that produce the sound shown in
the audio xa. We introduce an Explicit Conditional Multi-
modal Variational Auto-Encoder (ECMVAE) using Jensen-
Shannon divergence (Sec. 3.1) via latent space factorization
(Sec. 3.2) to effectively model the shared representation be-
tween the two modalities (Sec. 3.3 and Sec. 3.4) for audio-
visual segmentation. The overview of the proposed ECM-
VAE is shown in Fig. 1.

3.1. Prerequisite

Conditional Variational Auto-encoder. We begin our pre-
requisite with the definition of the conditional variational
auto-encoder (CVAE) [3, 26], which contains a generative
process and an inference process. The generative process
is to draw the latent variable z from the prior distribu-
tion pθ(z|X) with a given X , and generate the output via
pθ(y|X, z), where in our case X and y in the following
derivations are X = {{xv

t }Tt=1, x
a} and y = {yt}Tt=1, re-

spectively. The inference process of CVAE aims to infer
the informative values of the latent variable z given the ob-
served data X and y by computing the posterior pθ(z|X, y),
which is intractable and usually approximated with the vari-
ational posterior qϕ(z|X, y). θ and ϕ are the parameters of
the true posterior and the approximated variational poste-
rior, respectively. CVAE is trained to find the optimal gener-
ation parameters θ∗ and inference parameters ϕ∗ following
the maximum log-likelihood learning pipeline:

{θ∗, ϕ∗} = argmax
θ,ϕ

log pθ(y|X), (1)

where the log-likelihood term is achieved as:

log pθ(y|X)

= Eqϕ(z|X,y) log pθ(y|X, z)−DKL(qϕ(z|X, y)∥pθ(z|X))︸ ︷︷ ︸
ELBO(X,y,θ,ϕ)

+DKL(qϕ(z|X, y)∥pθ(z|X, y)).
(2)

Please see the supplementary material for the complete derivation.

By Jensen’s inequality, the Kullback–Leibler (KL) di-
vergence term (DKL) in Eq. (2) is always greater or equal
to zero, thus maximizing log pθ(y|X) can be achieved by
maximizing the evidence lower bound ELBO(X, y, θ, ϕ):

{θ∗, ϕ∗} = argmax
θ,ϕ

log pθ(y|X)

= argmax
θ,ϕ

ELBO(X, y, θ, ϕ).
(3)

With the reparameterization trick [3], the KL term in
ELBO(X, y, θ, ϕ) can be solved in closed-form if both the
prior pθ(z|X) and posterior qϕ(z|X, y) are Gaussian.
Multimodal Conditional Variational Auto-encoder. For
the unimodal setting, both pθ(z|X) and qϕ(z|X, y) can be
obtained via the reparameterization trick [3], leading to
closed-form solution of the KL divergence as both pθ(z|X)
and qϕ(z|X, y) are Gaussian. For the multimodal AVS data,
the joint posterior and joint prior need to be estimated be-
fore we perform the joint generation process. The conven-
tional solution to model the joint distribution is through the
product of experts (PoE) [27, 28] or the mixture of experts
(MoE) [29]. For the former, the joint distribution is defined
as the product of each individual expert, which is Gaussian
when each expert is Gaussian, leading to closed form KL
computation. However, for PoE, less accurate modeling
of one expert will completely destroy the joint distribution
modeling. Further, PoE shows limitations in modeling the
unimodal contribution due to its multiplicative nature. The
additive nature of the MoE makes it effective for the opti-
mization of each individual expert. However, as no closed
form exists for the KL term, importance sampling (IS) is
usually needed, which is computationally less efficient.
JS Divergence Instead of KL Divergence. Although MoE
is computationally less efficient compared with PoE, its in-
dividual modal contribution modeling is attractive. Based
on MoE, the DKL term within ELBO(X, y, θ, ϕ) of Eq. (2)
is the lower bound of the weighted sum of individual KLs:

DKL(qϕ(z|X, y)∥pθ(z|X))

≤
K∑

k=1

ϕkDKL(qϕk
(z|xk, y)∥pθ(z|xk)).

(4)

where K is the number of modalities, and
∑

k ϕk = 1. Al-
though Eq. (4) is effective in providing lower bound with in-
dividual modal’s distribution for ELBO in Eq. (2), no joint
distribution is involved. Following [5], a dynamic prior fK
is introduced, which is the mixture of the involved argu-
ments (individual priors and posteriors), i.e. fK can be
defined as the arithmetic means as in MoE.

With the non-negative nature of KL divergence and the
definition of JS divergence, we obtain a new lower bound of
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Figure 1. Overview of the proposed ECMVAE for audio-visual segmentation. The feature extractors are used to extract backbone
features for the two modalities. We also design three latent encoders ϕsv , ϕsa , ϕc to achieve latent space factorization and obtain both
task-driven shared representation (c) and modality-related specific representation (sa, sv), achieving explicit multimodal representation
learning. The decoder is introduced to obtain the final segmentation maps, indicating the sound producers of the audio-visual data.

ELBO in Eq. (2) as:

ÊLBO(X, y, θ, ϕ) ≥ Eqϕ(z|X,y) log pθ(y|X, z)

−
K∑

k1=1

πk1DKL(qϕ(z|X, y)∥fK)−
K∑

k2=1

πk2DKL(pθ(z|X)∥fK)

= Eqϕ(z|X,y) log pθ(y|X, z)− JSD(qϕ(z|X, y), pθ(z|X))︸ ︷︷ ︸
ÊLBO(X,y,θ,ϕ)

,

(5)
where

∑2K
k=1 πk = 1, and JSD represents JS divergence.

Eq. (5) provides lower bound of ELBO in Eq. (2), namely
ÊLBO(X, y, θ, ϕ), which is proven more stable for train-
ing [5], and robust to noise.

3.2. Latent Space Factorization

Besides stable training and noise robustness, we are also
interested in modeling both shared and specific information
of the audio-visual input (see Fig. 1) to fully explore their
contribution. For each pair of example (xk, y), where xk ∈
{{xv

t }Tt=1, x
a} indexes the modalities with K = 2 in this

paper, we factorize the latent space z into a modality-shared
latent code c and modality-specific latent codes sa, sv . Then
ÊLBO(X, y, θ, ϕ) is re-defined as::

ÊLBO(X, y, θ, ϕ)

=

K∑
k=1

Eqϕc (c|X,y)

[
Eqϕ

sk
(sk|xk,y)

[
log pθ(y|xk, sk, c)

]]
− β

K∑
k=1

DKL(qϕ
sk
(sk|xk, y)||pθ(sk|xk))

− βJSD(qϕc(c|X, y), pθ(c|X)),

(6)

Please refer to the supplementary material for detailed derivation.

where qϕc(c|X, y) and pθ(c|X) are the posterior and prior
distributions of the shared representation. qϕ

sk
(sk|xk, y)

and pθ
sk
(sk|xk) are the posterior and prior distribution of

the modality-specific latent codes. pθ(y|xk, sk, c) is the
prediction generation model. All these models can be pa-
rameterized by deep neural networks and optimized via
stochastic gradient descent. The hyper-parameter β = 0.1
is introduced to achieve stable learning [61].
Efficient Sampling. The Eq. (6) shows that the generation
process involves sampling from the joint shared posterior
qϕc(c|X, y) and posterior of modality-specific latent code
qϕ

sk
(sk|xk, y) of each modality, which is time-consuming.

In practice, we first perform shared-specific representation
fusion, and then we sample latent code from each fused
space, achieving efficient sampling. Specifically, given the
posterior of the latent codes c ∼ qϕc

(c|X, y) ∈ RT×L,
sa ∼ qϕsa

(sa|xa, y) ∈RT×L, sv ∼ qϕsv
(sv|xv, y) ∈RT×L

(L is the dimension of the latent space), we concatenate the
shared representation with each specific representation to
get the fused representation of each modality. Then we ob-
tain sca, scv , representing the fused feature of audio and
visual data, respectively. To achieve the reconstruction of
pθ(y|xk, sk, c) in Eq. (6), instead of performing sampling
from each specific latent code and shared latent code, we
sample from sca, scv , and rewrite the reconstruction term,
i.e. the first term in Eq. (6), as:

Lrec =
∑

sc∈{sca,scv}

[E [log pθ(y|x, sc)]] , (7)

where x corresponds to the modality of data, i.e. audio or
visual, of the current fused latent code sc.
Hybrid Loss. As the VAE samples from the posterior for
training and prior to testing. To achieve consistent training



and testing, we define a Gaussian stochastic neural network
(GSNN) [26] based objective by sampling from the prior
distribution as well to avoid the posterior/prior distribution
gap, leading to the hybrid objective as:

ĤELBO(X, y, θ, ϕ) = α1ÊLBO(X, y, θ, ϕ)+(1−α1)LGSNN,
(8)

where α1 = 0.5 is used to balance the two objectives,
LGSNN represents the reconstruction term of Eq. (6), which
is achieved by sampling from the prior distribution.

The latent space factorization is effective in generating
modality-shared and specific representations. However, no
constraints are applied to the representations, making it hard
to decide the reliability of the latent codes. We tackle this
issue by proposing a representation orthogonality constraint
in Sec. 3.3 and a shared information completeness regular-
ization in Sec. 3.4.

3.3. Representation Orthogonality Constraint

We introduce a representation orthogonality constraint to
ensure that the modality-shared and modality-specific rep-
resentations capture different information within each uni-
modal data. Specifically, given the latent codes c, sa, sv , we
introduce the difference loss [62] as:

Ldiff = ∥cT sa∥2F + ∥cT sv∥2F + ∥(sa)T sv∥2F , (9)

where ∥ · ∥2F is the squared Frobenius norm. With the dif-
ference loss, we aim to obtain the exclusive feature in each
factorized feature representation.

3.4. Shared-Information Completeness

As discussed in Sec. 3.2, we fuse the shared representa-
tion with each modality-specific representation and obtain
sca, scv , representing the task-related information from au-
dio and visual, respectively. To explicitly model the effec-
tiveness of the fused latent space, we treat them (sca, scv) as
two different views of the same target following representa-
tion learning [57, 58, 63], and introduce mutual information
maximization as a regularizer to measure the shared infor-
mation between sca and scv . Given two random variables
SCa, SCv , the mutual information is defined as:

I(SCa;SCv) = Ep(sca,scv)

[
log

p(sca, scv)

p(sca) · p(scv)

]
. (10)

According to Bayesian’s law, we obtain the mutual in-
formation variational lower bound [36], namely Iba via:

I(SCa;SCv) ≥ Ep(sca,scv)[log qκ(sc
a|scv)] +H(SCa) ≜ Iba,

(11)
where qκ(sc

a|scv) is the variational approximation of
p(sca|scv). Following [37], qκ(sc

a|scv) is formulated
as a multivariate Gaussian distribution qκ(sc

a|scv) =

N (sca|µ(scv), σ2(scv)I) to predict mean µ(scv) and vari-
ance σ2(scv), respectively, where each statistic is mod-
eled with two fully connected layers with Tanh activation
function in the middle, and κ represent parameters of the
four fully connected layers. H(SCa) is the differential en-
tropy of SCa. As the audio encoder is fixed in this paper,
we choose to simplify the entropy computation and treat
H(SCa) as a constant [64].

Based on the variational lower bound Iba, we then de-
fine the shared-information completeness loss function as:
Lsic = −Iba. Further, we introduce the hybrid loss function
for the posterior and the prior distribution, leading to:

Lsic = −α2I
po
ba − (1− α2)I

pr
ba, (12)

where Ipo
ba (Ipr

ba) is the lower bound of the mutual informa-
tion for the posterior (prior) distribution, and α2 = 0.5 is
introduced to balance the two objectives.

3.5. The Model

Four central modules or constraints are included in our
framework (see Fig. 1), namely: 1) “modal encoding” to
extract the feature of each modality; 2) “latent space encod-
ing” for multimodal latent feature representation learning;
3) “decoder” for the segmentation maps prediction; 4) “ob-
jective function” for supervised learning and explicit multi-
modal representation constraints.
Modal Encoding. We perform two branches with two en-
coders to encode the visual and audio data. For the vi-
sual branch, we use the ImageNet pre-trained backbone fol-
lowed by a one-layer convolution as neck to produce the
multi-scale visual features {Vm}4m=1 ∈ RT×hm×wm×Cm ,
where (hm, wm) = (H,W )/2m+1, Cm=128. H,W is the
spatial resolution of the input video. We use PVTv2 [65]
or ResNet50 [66] as our visual backbone, which keeps the
same as AVSBench [1]. For the audio branch, we follow [1],
and use a frozen VGGish [67] model pre-trained on Au-
dioSet [68] to process the spectrogram of input audio to ex-
tract audio features A∈RT×d, where d = 128. And T = 5
denotes the length of the video. We also keep the temporal
pixel-wise audio-visual interaction (TPAVI) [1] module in
our framework, which is a cross-modal attention based fu-
sion module that takes visual features as query and value,
audio features as key to achieve multi-scale feature fusion
in the feature space and obtain {V̄m}4m=1.
Latent Space Encoding. The main idea of our proposed
method is achieving modality encoding on a reliable latent
space (Sec. 3.2), as shown in Fig. 1. We use ϕsv , ϕsa , ϕc

parameterized by three simple neural networks to get latent
feature embedding sv, sa, c ∈ RT×L as prior distributions
(L = 16). For ϕsv , we use five convolutional layers fol-
lowed by leakyReLU [69] with two fully connected layers
to encode the input video sequence. While for ϕsa , we em-
ploy two fully connected layers to map the VGGish encoded



audio features into the latent space. Further, video sequence
and audio features are fed into ϕc jointly, thus we perform
late fusion on the audio features and five convolutional lay-
ers followed by leakyReLU encoded visual features to ob-
tain the joint distribution from the fused features. For the
posterior network, we design three networks with the same
structure and take the segmentation maps y as input by con-
catenating the video sequence and segmentation maps. We
omit drawing the posterior space in Fig. 1 for easy viewing.
Decoder. We adopt the decoder of Panoptic-FPN [70] to
decode the final segmentation maps for its flexibility and
effectiveness, which is the same as AVSBench [1]. We ex-
pand sca, scv to feature map of the same spatial size as V̄4

by adding two-dimensional gaussian noise with the tile op-
eration, “sampling” is used to indicate this process in Fig.1.
The decoder takes both the deterministic features {V̄m}4m=1

produced by the TPAVI [1] module and the expanded latent
codes sca, scv from the fused latent space as input to pro-
duce the final segmentation maps.
Objective Function. As discussed above, our final ob-
jective function contains the optimization of the evidence
lower bound and the practical constraints for latent space
representation, and it can be defined as,

L = −ĤELBO(X, y, θ, ϕ) + λ1Ldiff

+ λ2Lsic + λ3LAVM,
(13)

where ĤELBO(X, y, θ, ϕ) indicates the lower bound for
our proposed ECMVAE optimization, which is defined in
detail in Eq. (8) and Eq. (6). We use a weighted structure-
aware function [71] to compute the hybrid reconstruction
part in ĤELBO(X, y, θ, ϕ). Ldiff and Lsic are the orthogo-
nality constraint and the shared-information completeness
loss defined in Eq. (9) and Eq. (12). LAVM indicates the
audio-visual mapping loss proposed by [1] as a regular-
ization term to promote the similarity between the audio-
visual features. Empirically, we set the hyper-parameters
{λ1, λ2, λ3} as {0.001, 0.01, 0.5} for balanced training.

4. Experimental Results
4.1. Implementation Details

Datasets. We conduct experiments on the AVSBench [1]
dataset, which contains 5,356 video sequences with corre-
sponding audio data and binary per-pixel annotations. Each
video in the dataset contains five frames, extracted sepa-
rately from a five-second video, where the audio length is
also five seconds. This dataset contains two settings, named
S4 and MS3, for semi-supervised Single Sound Source Seg-
mentation with only the first frame labeled, and fully super-
vised Multiple Sound Source Segmentation with all frames
labeled. The evaluation is done for the entire five frames of
the video under both S4 and MS3 settings on the test set.

Table 1. Quantitative results on the AVSBench dataset [1] in
terms of mIOU and F-score under S4 and MS3 settings. We both
report the performance with R50 and PVT as a backbone for the
results of AVSBench [1] and Ours.

Methods
S4 MS3

mIoU F-score mIoU F-score

VOS
3DC [72] 57.10 0.759 36.92 0.503
SST [73] 66.29 0.801 42.57 0.572

SOD
iGAN [74] 61.59 0.778 42.89 0.544
LGVT [75] 74.94 0.873 40.71 0.593

AVSBench (R50) [1] 72.79 0.848 47.88 0.578

AVS
AVSBench (PVT) [1] 78.74 0.879 54.00 0.645

Ours (R50) 76.33 0.865 48.69 0.607
Ours (PVT) 81.74 0.901 57.84 0.708

Training Details. We conduct experiments on Pytorch [76]
with a single NVIDIA A100 GPU. The Adam [77] solver
is used to optimize our network with a learning rate of
1×10−4. The training batch size is set to 4. We train the net-
work on the S4 subset for 15 epochs, and on the MS3 subset
for 30 epochs. For the MS3 setting, we use all ground-truth
of the five frames to build the posterior latent space of our
model. While for S4, we repeat the ground-truth of the first
frame five times to build the posterior latent space.

4.2. Comparison with Baseline Methods

Quantitative Comparison. Follow the comparison set-
tings with AVSBench [1], we compare the performance
of our ECMVAE with baseline AVS models and other re-
lated tasks, including video object segmentation (VOS) and
salient object detection (SOD). The performance on Mean
Intersection over Union (mIoU) and F-score is reported in
Table 1. It can be observed that our method consistently
achieves significantly superior segmentation performance
than the state-of-the-art methods, especially with 3.00 and
3.84 higher mIOU than the previous AVS method [1], at the
S4 and MS3 settings with PVTv2 (“PVT”) backbone. There
is also a consistent performance improvement with ResNet
(“R50”) backbone. The performance gain comes from our
designed multimodal VAE with explicit constraints for rep-
resentation learning. Our method also significantly outper-
forms the VOS and SOD methods, demonstrating the addi-
tion of audio information to the segmentation performance.
Qualitative Comparison. We provide a qualitative com-
parison between our proposed method and [1] in Fig. 2.
Our proposed ECMVAE provides a better audio temporal
and spatial localization quality, leading to better segmenta-
tion performance, especially for the left samples, in local-
ization of the piano keys, which is not salient but producing
a sound in this scene. Our method also achieves better seg-
mentation performance for background noise handling and
richer foreground details in the right samples in Fig. 2.
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Figure 2. Qualitative comparison between our proposed ECMVAE and AVSBench [1]. Our method competently achieves high segmen-
tation performance with better audio temporal and spatial localization quality and detail handling.

4.3. Ablation Studies

We conduct ablation studies of our proposed method. All
variations are trained with the PVT backbone.

Table 2. Ablation of the VAE based multimodal learning. We
implement a “CVAE” without audio and “CMVAE” with audio-
visual joint distribution estimation.

Methods
S4 MS3

mIoU F-score mIoU F-score

[1] w/o audio 77.80 - 48.20 -
CVAE 78.12 0.878 49.26 0.643

CMVAE 80.05 0.889 54.99 0.653

Multimodal VAE. We explore the effectiveness of the Mul-
timodal VAE in Table 2. Firstly, we remove the audio
part of the model and disable the TPAVI module to explore
the importance of the audio information, leading to a sim-
ple unimodal CVAE [30] framework with only video input,
which is denoted as “CVAE”. For comparison, we imple-
ment a “CMVAE” using the audio signal but without the
latent space factorization and our proposed constraints. The
better performance of “CMVAE” compared with “CVAE”
indicates the importance of audio for AVS, especially when
multiple sound sources exist. We also brought the abla-
tion result of the model without the audio input from [1]
and compare it with “CVAE”. The results show that in the
absence of audio signals, the VAE structure can still im-
prove segmentation performance, due to the ability of VAE
to model the latent space of visual features.
Latent Space Factorization. As described in Sec. 3.2, we
factorize the latent space of multimodal VAE into modality-
shared (c) and modality-specific (sv and sa) representa-
tions. As reported in Table 3, removing the latent space

Table 3. Ablation of the latent space factorization. “Model”
indicates using VAE for latent factorization or using AE for fea-
ture factorization. “Factor.” denotes whether using factorization.
“dim.” represents the size of the latent dimensions.

S4 MS3

Model Factor. dim. mIoU F-score mIoU F-score

VAE
- 16 80.05 0.889 54.99 0.653
- 48 80.13 0.890 55.09 0.657
✓ 16 80.78 0.893 56.38 0.676

AE
- - 78.74 0.879 54.00 0.645
✓ - 78.92 0.881 54.82 0.651

factorization leads to obvious performance degradation. We
also train a non-factorized model with 2× larger latent di-
mensions, which holds comparable latent space capacities
with the factorized model. It can be seen that the perfor-
mance gain from the larger latent space dimensions is not
as obvious as the factorization strategy. Further, we com-
pare feature factorization (“AE”) on the feature space of [1]
with our proposed latent space factorization (“VAE”). Ta-
ble 3 shows that only performing factorization on a seman-
tic meaningful and continuous latent space, i.e. via using
VAE [3], can achieve larger performance improvements.
JS Divergence. We conduct experiments of PoE and MoE
with KL divergence to show the trade-off of JS divergence
between the computational efficiency of the inference pro-
cess and the predictive quality of the generation process.
The performance in Table 4 shows the effectiveness of JS
divergence on both S4 and MS3 settings. Note that, “PoE”,
“MoE” and “JS” are based on our formulation of the task,
which has not been explored in the AVS area.
Orthogonality Constraint. As reported in Table 5, the or-
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Figure 3. Visualization of the modality-shared and modality-specific latent codes (sv, sa, c) in the MS3 testing set using t-SNE [78]
projections. Best viewed on screen.

Table 4. Ablation of the JS Divergence. We implement “PoE”
and “MoE” with KL divergence, and a simple “KL” model.

Methods
S4 MS3

mIoU F-score mIoU F-score

KL 80.78 0.893 56.38 0.676
PoE 81.38 0.894 57.35 0.688
MoE 81.49 0.897 57.53 0.694

JS 81.74 0.901 57.84 0.708

Table 5. Ablation of the latent space constraints. Ldiff,Lsic indi-
cate our proposed loss functions for multimodal learning.

S4 MS3

Ldiff Lsic mIoU F-score mIoU F-score

- - 81.09 0.895 57.01 0.684
✓ - 81.51 0.899 57.65 0.692
- ✓ 81.47 0.898 57.51 0.694
✓ ✓ 81.74 0.901 57.84 0.708

thogonality constraint provides 0.64 mIOU gain under the
MS3 setting, which facilitates the latent space factorization.
We also perform t-SNE [78] projection to visualize the fac-
torized latent code with and without such constraint. As
compared between Fig. 3 (a) and (b), the three latent codes
in the latent space are divided into different subspaces to
ensure that each latent code encodes different information.
Mutual Information Maximization. As compared in Ta-
ble 5, the mutual information maximization by Lsic also
serves a crucial impact for the explicit constraint of the
shared latent space and improves the mIOU from 57.51 to
57.84. Since the Lsic maximizes the mutual information be-
tween scv and sca, which are fused from the factorization
latent codes sv, sa, c. This increases the amount of informa-
tion contained in latent space and makes it more effective
for facilitating factorization. Fig. 3 also confirms this view
and demonstrates the effectiveness of Lsic in achieving ef-
fective “multi-view” representation learning [57, 58, 63].

4.4. Analysis

Pre-training on the Single-source Subset. In AVS-
Bench [1], they conducted experiments by initializing

model parameters by pre-training on S4 dataset. We also
perform experiments with such setting (see Table 6). We
can observe that both our method and AVSBench [1] can
benefit from the model pre-trained on S4. The PVT-based
model can gain 2.97% mIOU performance by such a strat-
egy and reach 60.81% mIOU. The pre-training strategy
can bring more significant improvements (8.87% mIOU) to
ResNet50-based models and reach 57.56% mIOU, which is
even higher than PVT-based models (57.34%).

Table 6. Performance comparison with different initialization
strategies for MS3 dataset. As AVSBench [1] does not report
its F-score in the paper, we only report its mIOU. The values in
parentheses indicate the performance improvement based on S4
pre-training compared with training from scratch.

Methods
From scrach Pre-trained on S4

mIoU F-score mIoU F-score

AVSBench (R50) [1] 47.88 - 54.33 (↑ 6.45) -
AVSBench (PVT) [1] 54.00 - 57.34 (↑ 3.34) -

Ours (R50) 48.69 0.607 57.56 (↑ 8.87) 0.674
Ours (PVT) 57.84 0.708 60.81 (↑ 2.97) 0.729

Table 7. Parameters and inference time.

Methods
R50 PVT

Param. (M) Time (ms) Param. (M) Time (ms)

AVSBench [1] 70.50 28 101.32 53
Ours 33.97 23 91.18 46

Parameters and Efficiency. In Table 7, we compare the pa-
rameters and inference time between ours and AVSBench.
Note that although posterior nets and prior nets are used
in our framework, as all the latent space encoders are
quite lightweight (1M), thus our model capacity will not
change significantly. Moreover, we replace the neck from
ASPP [79] to one-layer convolution and reduce the number
of neck channels from 256 to 128, which leads to smaller
parameter numbers and faster inference speed.
Limitations. Similar to the other VAE [3] based solu-
tions, our model also suffers from the risk of posterior col-
lapse, where the posterior of the latent variable is equal to



prior [80,81], making y in our case not encoded in the latent
variables. To avoid such phenomenon, contrastive learn-
ing [82, 83] can be studied to learn more compact features
of each modality or score based diffusion models [84–87]
can be investigated for more informative latent space.

5. Conclusion

We have worked on audio-visual segmentation (AVS),
aiming to segment the sound producers of the scene. As
audio data can be treated as “command”, we argue exten-
sive exploration of audio is critical for effective AVS. In-
spired by this observation, we have introduced an Explicit
Conditional Multimodal Variational Auto-Encoder (ECM-
VAE) for an audio-visual segmentation model with latent
space factorization with explicit constraints to extensively
explore the shared and specific representations of audio and
visual data. Extensive experimental results verify the effec-
tiveness of our proposed framework. Although we focused
on AVS with two modalities, the proposed framework can
be extended to more modalities and other audio-visual col-
laboration tasks [7, 14, 15].
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