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Abstract

In recent years, significant progress has been made
in video instance segmentation (VIS), with many offline
and online methods achieving state-of-the-art performance.
While offline methods have the advantage of producing tem-
porally consistent predictions, they are not suitable for real-
time scenarios. Conversely, online methods are more prac-
tical, but maintaining temporal consistency remains a chal-
lenging task. In this paper, we propose a novel online
method for video instance segmentation, called TCOVIS,
which fully exploits the temporal information in a video clip.
The core of our method consists of a global instance as-
signment strategy and a spatio-temporal enhancement mod-
ule, which improve the temporal consistency of the fea-
tures from two aspects. Specifically, we perform global op-
timal matching between the predictions and ground truth
across the whole video clip, and supervise the model with
the global optimal objective. We also capture the spatial
feature and aggregate it with the semantic feature between
frames, thus realizing the spatio-temporal enhancement. We
evaluate our method on four widely adopted VIS bench-
marks, namely YouTube-VIS 2019/2021/2022 and OVIS,
and achieve state-of-the-art performance on all benchmarks
without bells-and-whistles. For instance, on YouTube-VIS
2021, TCOVIS achieves 49.5 AP and 61.3 AP with ResNet-
50 and Swin-L backbones, respectively. Code is available
at https://github.com/jun-long-li/TCOVIS.

1. Introduction

Video instance segmentation (VIS) is a challenging and
representative video understanding task recently introduced
in [37]. It aims at detecting, segmenting and tracking in-
stances across a video. VIS is attracting increasing atten-
tion for various real-world applications such as video edit-
ing, video surveillance, augmented reality and autonomous
driving. Recently introduced VIS methods can be roughly
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categorized into two groups: offline methods and online
methods. Offline methods [2, 16, 19, 31, 33, 35] take as
input the whole video and perform the segmentation of in-
stance sequence for the whole video at once. Online meth-
ods [8, 34, 17, 10, 38], on the contrary, take as input a
video frame by frame and generate the pre-frame object
instances while associating the frame-wise results across
frames. Both offline and online methods have achieved im-
pressing performance on the VIS task.

Offline methods have an inherent advantage in producing
temporally consistent predictions, since delicate temporal
communication and association mechanisms can be adopted
throughout the video [39, 33, 14] to handle the overall tem-
poral information and impose an explicit constraint on the
temporal consistency. However, the video-in and video-out
offline manner is not suitable for real-time scenarios. Con-
versely, online methods are more practical and making con-
siderable progress but suffer from temporal inconsistency
(as shown in Figure 1), remaining a great challenge.

Online methods rely on specific instance association ap-
plied across frames, since only one frame is observed at a
time. Existing association techniques can be grouped into
two categories, including tracking-by-detection and query
propagation-based paradigms. Tracking-by-detection meth-
ods [37, 34, 32] generate the per-frame instances indepen-
dently by existing instance segmentation models [11, 26, 5]
and track instances via tracking heads [37] or instance em-
beddings matching [34, 15]. In this way, the features of
different frames are isolated before tracking, which results
in temporal inconsistency. Query propagation-based meth-
ods [13, 10, 41] are inspired by query-based methods [3, 25]
and they propagate the query across frames to decode a
unique instance without heuristic matching algorithms. De-
spite the explicit temporal link of queries, the temporal con-
sistency is impaired by the Local Matching and Propagating
(LocPro) scheme, where they first perform local optimal
matching between the predictions and ground truth at the
beginning of the video, and then propagate the assignment
across frames, forcing all features from subsequent frames
to follow. The LocPro is not suitable for the holistic op-
timization across frames and results in temporal inconsis-
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Figure 1. Visualization of predictions from the previous online
method (the online GenVIS [13]) and our TCOVIS. The previ-
ous method generates temporally inconsistent predictions, while
our proposed TCOVIS achieves temporal consistency and outper-
forms the previous method (Best viewed in color).

tency. Thus, achieving temporal consistency is challenging
for online methods and also not comprehensively investi-
gated by previous online VIS methods.

In this paper, we propose a novel online method for video
instance segmentation, named TCOVIS, to fully exploit the
temporal information within a video. We take as the base-
line framework an existing online VIS model (GenVIS [13])
with the query propagation-based instance association. We
first introduce the global instance assignment strategy to
perform global optimal matching. Different from the pre-
vious online methods [13, 41, 10], which obtain per-frame
matching cost, assign labels locally on the beginning frame
and propagate across frames, we collect the predictions
across frames, compute the global matching cost with the
video segmentation ground truth and supervise the model
with the global instance assignment, encouraging features
across the video to be optimized for a global optimal objec-
tive. As online methods focus on improving the represen-
tative ability of the semantic instance embeddings [38, 34],
which is achieved via learning more discriminative seman-
tic embedding in those using heuristic matching [34, 15],
or via reviewing the memory of semantic embedding across
frames [13] in query propagation-based methods, the spatial
features are not comprehensively investigated. We further
propose spatio-temporal enhancement module, leveraging
the spatial information from the previous frame to enhance
the temporal consistency. We perform spatial matting on
the pixel embeddings to retrieve the instance-wise spatial
features and adopt the cross-attention layer to aggregate the
spatial and semantic features across frames, thus realizing
the spatio-temporal enhancement. As shown in Figure 1,
the previous online method [13] produces temporally incon-
sistent results, as exemplified by an object abruptly appear-
ing in front of the cat in a mid-frame, while the proposed
TCOVIS outperforms the previous one and generates tem-
porally consistent predictions.

To validate the effectiveness of the proposed method, ex-

periments are conducted on four widely adopted VIS bench-
marks, i.e., YouTube-VIS 2019 [37], YouTube-VIS 2021,
YouTube-VIS 2022 and Occluded VIS (OVIS) [24]. With-
out bells-and-whistles, our proposed method achieves state-
of-the-art performance on all benchmarks, outperforming
other online methods, e.g., on YouTube-VIS 2021, TCOVIS
achieves 49.5 AP and 61.3 AP with ResNet-50 and Swin-L
backbones, respectively.

Our main contributions are summarized as follows:

• TCOVIS performs a novel global instance assignment
strategy for online video instance segmentation. The
model is optimized for the global optimal objective to
generate more temporally consistent predictions.

• The further proposed spatio-temporal enhancement
module captures the spatial feature and aggregates it
with the semantic feature between frames, which fully
utilizes the spatial information and facilitates the tem-
poral consistency enhancement.

• The proposed method achieves state-of-the-art perfor-
mance on four widely used video instance segmenta-
tion benchmarks (YouTube-VIS 2019/2021/2022 and
OVIS). Such achievements demonstrate the effective-
ness of our proposed method.

2. Related Works
Offline Video Instance Segmentation. Offline methods
take as input the whole video and predict instance sequence
for all frames at once. Mask propagation and box ensem-
ble techniques are used to improve the predictions and as-
sociation [1, 2, 19], but they are not end-to-end learnable
due to the complex inference process. VisTR [31] ex-
tends DETR [42] from the image domain and introduces
the transformer [27] to the VIS domain. EfficientVIS [35]
and IFC [16] relax the heavy overhead of VisTR via an it-
erative query-video interaction and memory token commu-
nication, respectively. TeViT [39] contains a vision trans-
former [6] backbone instead of CNN and efficiently builds
correspondence between the instance and query. VITA [14]
models relationships among instances with the distilled
condensed object tokens, without using the dense spatio-
temporal backbone features. Offline methods exploit rich
temporal knowledge from the whole clip and have the ad-
vantage of producing temporally consistent results, how-
ever, the offline manner is not suitable for the application
in real-time scenarios.
Online Video Instance Segmentation. Instead of process-
ing the entire video before predictions, online methods only
leverage the information from the previous frames and seg-
ment the video frame-by-frame. The association paradigms
of the previous online methods roughly fall into two groups:
Tracking-by-detection and Query-propagation.



Most online methods [37, 29, 21, 34] follow the
tracking-by-detection paradigm. MaskTrack R-CNN [37]
is the baseline method and extends the Mask R-CNN [11]
with an extra tracking head for temporal association.
CrossVIS [38] proposes a crossover learning scheme to uti-
lize the current contextual information for other frames.
VISOLO [9] builds on the image instance segmentation
method SOLO [30] and takes advantage of the grid form
previous information for memory matching and features ag-
gregation. MinVIS [15] and IDOL [34] make use of the
discriminative instance embeddings for matching between
frames. With the heuristic matching technique designed for
instance association across frames, temporal inconsistency
comes from the frame-wise modeling before tracking.

Object association with query propagation has been ex-
plored in the multi-object tracking (MOT) task [22, 40].
TrackFormer [22] tracks the seen objects of previous frames
with a track query subset and detects the newly appeared
objects in current frame with an extra object query subset.
MOTR [40] extends the paired-frames training scheme to
multiple frames for long-range temporal association. The
query propagation-based object association is recently in-
troduced to VIS [41, 10, 13]. ROVIS [41] follows Track-
Former [22] to detect and track instances with two subsets
of queries. InsPro [10] and GenVIS [13] propagate the
queries without heuristics, i.e., handcrafted rules to com-
bine two types of queries, and achieve association across
frames. However, previous query propagation-based meth-
ods also propagate the local assignment to supervise the
model with the local optimal results, which leads to tem-
poral inconsistency across the entire video. We adopt the
query propagation framework but introduce the global in-
stance assignment to enhance the temporal consistency.

3. Method

Given a video clip with consecutive image frames, on-
line video instance segmentation methods generate frame-
level object instances upon on instance segmentation mod-
els [26, 5], utilizing the instance queries propagated from
previous frames [35, 13]. We have already discussed that
better performance of the online VIS method relies on more
temporally consistent instance features among a video. To
this end, we propose a novel end-to-end online VIS method
TCOVIS (Figure 2), to improve the temporal consistency of
instance features via the global instance assignment strategy
and spatio-temporal enhancement module. In this section,
we first introduce the online VIS pipeline in Section 3.1.
Then the details of the proposed global instance assignment
strategy and spatio-temporal enhancement module will be
described in Section 3.2 and Section 3.3, respectively. Fi-
nally, in Section 3.4, we describe the overall loss for training
the model end-to-end.

3.1. Online Video Instance Segmentation

Following state-of-the-art VIS methods [15, 4], we
adopt the advanced Masked-attention Mask Transformer
(Mask2Former [5]) as the image instance segmentation net-
work (Img. SegNet.) in this paper. Assume that the input
video clip with T frames is denoted as x ∈ RT×3×H×W .
With each frame H × W as input, frame-wise activation
map is extracted by the backbone and Transformer encoder.
Then following the query-based mechanism of DETR [3],
Nfq object queries of C dimensions are used to parse an
input frame, which are called frame object queries f ∈
RC×Nfq . Each object in the frame is decoded by the frame
object queries from the spatial features through a multiple-
level Transformer decoder, and represented as an object em-
bedding of C dimensions. The object embeddings are used
for classification and together with the pixel embeddings
from the pixel decoder generating the mask for object in-
stances. Class predictions are produced through a linear
layer from the object embeddings. Mask embeddings are
generated by an MLP linked to the object embeddings, and
the model finally segments objects by pixel-wise dot prod-
uct between per-pixel embeddings P ∈ RC×H

S ×W
S and

mask embeddings M ∈ RC×Nfq , where S is the stride of
the spatial feature map.

As for online video segmentation, we follow the on-
line scheme of GenVIS [13] which propagates the instance
queries from previous frames. To resolve the computational
limitation, the framework adopts VITA [14] that regards the
frame object queries f as a concise representation of objects
in a frame and then feeds them into the Object Encoder E
for intra-frame relationship. The Object Decoder D takes
as input Nv video instance queries q and aggregates infor-
mation from frame object queries. The temporal instance
association is implemented through a query-based temporal
propagation mechanism, where the output of D , instance
prototypes denoted as p, are concise representations of in-
stances [13], are not only utilized for classifying and seg-
menting in current frame at t, but also serve as the instance
queries for the next frame at t+ 1, i.e.,

qt+1 = pt = D(qt,E (f t)). (1)

With this propagation mechanism, the model can simply run
in an online manner and associate the frame-wise outputs
without heuristic matching algorithms.

We leave out the Instance Prototype Memory module
in [13]. During the training process, we freeze the image
instance segmentation model and only train the following
modules, to efficiently make use of memory. More imple-
mentation details are described in Section 4.2.

3.2. Global Instance Assignment

With the query propagation mechanism discussed above,
the associated video instance queries along the temporal
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Figure 2. (a) The overall illustration of our TCOVIS. It supervises the model with a global optimal objective during training and utilizes
spatial features via the enhancement module between frames. (b) Details of global instance assignment. Different from the local matching
and propagating technique, we conduct global optimal matching and assignment. (c) In the spatio-temporal enhancement module, we
perform matting on pixel embeddings according to predicted masks and then aggregate the spatial and semantic features between frames
to enhance temporal consistency. Numbers in colors denote the local matching loss and global matching loss (Best viewed in color).

dimension {q1:Tk }1:Nv , are used to extract the features of
a unique instance, i.e. the k-th instance, throughout the
whole input video clip. Meanwhile, the associated in-
stance prototypes {p1:Tk }1:Nv

, i.e. the corresponding out-
puts from D , represent this unique instance within the
whole video. For brevity, we define the associated instance
prototypes/features as a set of prototypes/features.

Previously, online VIS methods that associate frame-
level results without heuristic matching algorithms [13, 41,
10] adopt a Local Matching and Propagating (LocPro)
technique. This technique matches the predictions and
ground truth on a frame level during training. In other
words, it conducts one-to-one bipartite matching between
ground truth instances and predictions of a frame (what we
regard as Local Matching), and propagates the matching
from previous frames to subsequent frames. Specifically,
given a video clip consisting of T consecutive frames, it
first computes the pair-wise matching cost Lt

match between
predictions and ground truth instances on the initial frame
(the first frame or the frame objects appear):

Lt=1
match = λclsLt=1

cls + λbceLt=1
bce + λdiceLt=1

dice. (2)

The frame-wise Lt
match is composed of categorical loss and

mask loss. The categorical loss adopts the cross entropy loss
Lt
cls. The mask loss consists of a binary cross entropy loss

Lt
bce and a dice loss [23]. From the cost matrix, it follows

DETR [3] and uses Hungarian algorithm [18] for optimal
frame-level matching.

As discussed in Section 1, Local Matching only obtains
optimal matching on the initial frame, and cannot achieve
the global optimal matching of the whole video. As illus-
trated in Figure 2 (b), both dark and light green prototypes
attempt to represent the person. With local matching, the
ground truth will be assigned to the light one with a smaller
local matching cost, however, the dark one performs better
from a global perspective and is supposed to be assigned.
Training the model with LocPro forces all the predictions
of subsequent frames to conform to the initial frame, re-
sulting in temporal inconsistency of the instance features
among the video, because inappropriate previous matching
brings accumulative error to the model.

We introduce Global Instance Assignment (GIA) strat-
egy and expect two functionalities: (1) all frames in the
video clip are considered when conducting global match-
ing, and (2) the global assignment encourages the instance
features among frames to be optimized for a global optimal
objective, both of which serve the temporal consistency of
instance features.

During training, different from previous online VIS
methods [8, 34] that conduct frame-level local matching
and provide supervision signals to each frame according
to the matched pairs, we leave out the halfway matching
and supervision. Consecutive input frames of a video clip
pass through the VIS model in an online manner and the
model generates the predictions of all frames {ŷk}1:Nv

=



{ŷtk}1:T1:Nv
, each of which consists of a category probabil-

ity ĉtk and a segmentation mask probability m̂t
k. To con-

duct global assignment, we collect predictions of all frames
and as well the ground truth video instance segmentation
{yk}1:Ngt

= {y1:Tk }1:Ngt
, including the category label ck

and its binary segmentation masks mk = m1:T
k . Since

the ground truth of an instance only has one category label,
we first compute the average predicted category probability
across a video clip: c̄k =

∑T
t=1 ĉ

t
k/T and also collect the

masks m̂k = m̂1:T
k . The global matching cost is defined as:

Lglobal
match = λclsLcls(ck, c̄σ(k)) + λbceLbce(mk, m̂σ(k))

+ λdiceLdice(mk, m̂σ(k)),
(3)

where σ ∈ SNv is a permutation of Nv elements. One-
to-one bipartite global matching between {ŷk}1:Nv and
{yk}1:Ngt

is performed to find the global optimal assign-
ment and the objective can be formally described as:

σ̂ = argmax
σ∈SNv

Ngt∑
k=1

Lglobal
match(yk, ŷσ(k)). (4)

Following prior work [28, 7, 42], we use Hungarian algo-
rithm [18] to search for the global optimal assignment. In
contrast to the prior methods that compute matching loss
only for t = 1, our method considers the masks and ground
truth of the whole clip, computes the matching loss glob-
ally, and conducts the global assignment. Finally, given the
global optimal assignment, we use the Ngt matched video-
level predictions to supervise the model with the globally
matched instances across the entire video.

With the proposed assignment strategy, GIA, the tem-
poral consistency of instance features across the video clip
can be effectively enhanced, since we consider all frames
as a whole to search for the optimal objective. Specifically,
when the set of instance features across the video represents
the target instance well in the first few frames, but fails to
track it later, this strategy helps to find a more appropriate
set to be optimized. As the global matching cost is lower,
the selected features fit the target more closely and are more
temporally consistent.

3.3. Spatio-temporal Enhancement

Previous online video instance segmentation methods fo-
cus on improving the representative ability of the semantic
instance embeddings [38, 34, 15, 13]. The spatial features
are not comprehensively investigated to boost the tempo-
ral association for online VIS. Thus, we further introduce
Spatio-temporal Enhancement module (STE), leveraging
the spatial information from the previous frame to enhance
the temporal consistency of the online model.

Given the t-th frame in the video clip, with the frame-
work described in Section 3.1, the mask embedding of

the k-th instance is generated from the instance proto-
type through an MLP: Mt

k = MLP (ptk), and then the
model segments the mask m̂t

k by pixel-wise dot product be-
tween Pt

k and Mt
k, which can be formulated as: m̂t

k,i,j =

⟨Pt
k,i,j ,Mt

k⟩, where i and j denote the spatial position of
the pixel.

As illustrated in Figure 2 (c), the spatial information
of the frame is encoded in the pixel embeddings. To ex-
tract instance-wise spatial features, they can be exploited
together with the predicted mask. Specifically, we perform
spatial matting on pixel embeddings Pt

k, similar to image
matting, to retrieve the instance-wise pixel embedding ac-
cording to m̂t

k. For each instance, we conduct pixel-wise
multiplication between the original pixel embeddings and
the binary mask to obtain the retrieved embeddings:

Rt
k = Pt

k ⊙ m̂t
k, (5)

where ⊙ denotes the element-wise multiplication. Many
of the retrieved embeddings Rt

k are redundant since they
describe the same instance, and directly mining the spatial
information with them is computationally inefficient. Aver-
age pooling is adopted to obtain a concise representation of
the spatial features for each instance:

St
k =

∑
i,j Rt

k,i,j∑
i,j 1(m̂

t
k,i,j = 1)

, (6)

where 1(·) is the indicator function. The concise spatial fea-
tures St

k are sent to the next frame for temporal association.
Having received from the previous frame the propagated

semantic instance queries, i.e., qt+1 = pt, and the spatial
features, we follow the standard multi-head cross-attention
layer (MHCA) [27] to incorporate the features from two as-
pects. The instance prototype pt is used as the query to
decode the spatial features:

qt+1
k = MHCA(ptk,St

1:Nv
), (7)

where qt+1
k is the updated instance query now. Notably,

the positional embedding is shared by the spatial feature
and instance query with regard to the same instance, which
helps the model align the instance-wise information be-
tween frames. Finally, the updated instance query is fed
into the Object Decoder D to produce spatio-temporally en-
hanced features.

By performing the proposed enhancement module on the
spatial features between frames, we effectively boost the
spatio-temporal association of the features. In this way, the
temporal consistency of the features is enhanced via the in-
formation from the spatial dimension, and the online video
instance segmentation model manages to predict more tem-
porally consistent results.



3.4. Overall Loss

The overall loss for training with a video clip as input is
a linear combination of categorical and mask losses using
the one-to-one global optimal assignment σ̂:

Loverall = λclsLcls(ck, c̄σ̂(k)) + λbceLbce(mk, m̂σ̂(k))

+ λdiceLdice(mk, m̂σ̂(k)),
(8)

where Lcls is the cross entropy loss, Lbce is the binary cross
entropy loss and Ldice is the dice loss [23].

4. Experiments
In this section, we evaluated the proposed TCOVIS on

four benchmark datasets. Furthermore, we provided in-
depth ablation studies of the effectiveness of TCOVIS. Fi-
nally, we presented several visualizations of the predictions
from our model.

4.1. Datasets

We evaluated our approach on four VIS datasets:
YouTube-VIS 2019 dataset [37], YouTube-VIS 2021
dataset [37], YouTube-VIS 2022 dataset [37] and OVIS
dataset [24]. We present a brief description of them:

YouTube-VIS 2019 & 2021 & 2022: YouTube-VIS
2019 [37] is the first VIS dataset and comprises 40 pre-
defined categories of objects. This dataset included 4,883
unique video instances with 131,000 high-quality manual
annotations. We followed the widely utilized training/test
set split: 2,238 videos were selected for training, 302 videos
were adopted for validation and 343 videos were used for
testing. Further, YouTube-VIS 2021 improved the 40-
category label set and added 4883 more unique video in-
stances. Then, YouTube-VIS 2022 contained 71 additional
long evaluation videos on the top of YouTube-VIS 2021.

OVIS: Occluded video instance segmentation (OVIS) is
also a challenging VIS dataset. OVIS included 901 videos
in total with 25 semantic categories. This dataset contained
5,223 unique video instances and we followed the widely
utilized training/test set split: 607 videos were selected for
training, 607 videos were used for validation and 154 videos
were adopted for testing.

Following [37], the video-level average precision (AP)
and average recall (AR) were adopted as the evaluation met-
rics on both YouTube-VIS and OVIS.

4.2. Implementation Details

We adopted the framework of GenVIS [13] which is built
on VITA [14], but left out the similarity loss in VITA and
the memory module in GenVIS. With the global assign-
ment, the total loss as well the hyper-parameters were set
the same as the video-level loss in VITA, which is a tem-
porally extended loss function [16]. The model was trained

with pseudo-videos from COCO images [20] as data aug-
mentation, and with a batch size of 8 video clips of 6 frames.
As we froze the backbone and image segmentation model,
all experiments were conducted with 8 RTX 2080 Ti GPUs.
The method was implemented on detectron2 [36].

4.3. Main Results

Following the standard evaluation metrics [37], we com-
pared TCOVIS with state-of-the-art approaches on four VIS
benchmarks: YouTube-VIS 2019/2021/2022 and OVIS.

YouTube-VIS 2019&2021. From Table 1, we can ob-
serve that TCOVIS has achieved very competitive per-
formance using both lightweight backbones (ResNet-50)
and powerful ones (Swin-L). Moreover, our method can
even show better performance than offline methods, such
as VITA [14] and offline version GenVIS [13]. On the
more difficult YouTube-VIS 2021 dataset, TCOVIS sur-
passes GenVIS [13] in AP not only with ResNet-50 by 2.4
but also with Swin-L by 1.7.

YouTube-VIS 2022. As shown in Table 2, TCO-
VIS performed best in both AP and AR on YouTube-VIS
2022 dataset, which is more challenging than 2019&2021
datasets. Especially with powerful backbone Swin-L, TCO-
VIS outperformed GenVIS [13] in AP with a huge margin
of 4.9, which shows the effectiveness of our method for the
complex scenarios.

OVIS. Table 3 presents the comparisons on OVIS
dataset, and we can find that TCOVIS also achieved the best
46.7 AP and 19.1 AR with Swin-L backbone. The results
demonstrate that TCOVIS can deal with complicated situ-
ations where objects are heavily occluded in others. With
ResNet-50 backbone, the performance is still the second
best compared to the previous state-of-the-art methods.

4.4. Ablation Study

In this section, we provided ablation studies and discuss
the effects of different settings in the proposed method. The
experiments are conducted with a ResNet-50 [12] backbone
on YouTube-VIS 2019/2021 [37] valid set.
Effectiveness of the proposed assignment strategy and
enhancement module. The ablation studies on the global
instance assignment strategy and the spatio-temporal en-
hancement module are shown in Table 4. As for the as-
signment strategy, compared to LocPro as the baseline, the
model with the proposed global assignment outperformed
the baseline model by more than 0.8 on AP, AP50 and AP75

on YouTube-VIS 2019, and more than 1.2 on YouTube-VIS
2021. The consistently significant improvement indicates
that the strategy with global optimal matching contributes
to better overall segmentation, while LocPro only considers
the local optimal results. Besides, the baseline forces the
posterior features to conform to those at the very beginning
leading to temporal inconsistency, since the accumulative



Method Type YouTube-VIS 2019 YouTube-VIS 2021
AP AP50 AP75 AR1 AR10 AP AP50 AP75 AR1 AR10

R
es

N
et

-5
0

EfficientVIS [35] Offline 37.9 59.7 43.0 40.3 46.6 34.0 57.5 37.3 33.8 42.5
IFC [16] Offline 41.2 65.1 44.6 42.3 49.6 35.2 55.9 37.7 32.6 42.9
Mask2Former-VIS [4] Offline 46.4 68.0 50.0 - - 40.6 60.9 41.8 - -
TeViT† [39] Offline 46.6 71.3 51.6 44.9 54.3 37.9 61.2 42.1 35.1 44.6
SeqFormer [33] Offline 47.4 69.8 51.8 45.5 54.8 40.5 62.4 43.7 36.1 48.1
VITA [14] Offline 49.8 72.6 54.5 49.4 61.0 45.7 67.4 49.5 40.9 53.6
GenVISsemi-online [13] Offline 51.3 72.0 57.8 49.5 60.0 46.3 67.0 50.2 40.6 53.2

CrossVIS [38] Online 36.3 56.8 38.9 35.6 40.7 34.2 54.4 37.9 30.4 38.2
VISOLO [9] Online 38.6 56.3 43.7 35.7 42.5 36.9 54.7 40.2 30.6 40.9
MinVIS [15] Online 47.4 69.0 52.1 45.7 55.7 44.2 66.0 48.1 39.2 51.7
IDOL [34] Online 49.5 74.0 52.9 47.7 58.7 43.9 68.0 49.6 38.0 50.9
GenVISonline [13] Online 50.0 71.5 54.6 49.5 59.7 47.1 67.5 51.5 41.6 54.7
TCOVIS Online 52.3 73.5 57.6 49.8 60.2 49.5 71.2 53.8 41.3 55.9

Sw
in

-L

SeqFormer [33] Offline 59.3 82.1 66.4 51.7 64.4 51.8 74.6 58.2 42.8 58.1
Mask2Former-VIS [4] Offline 60.4 84.4 67.0 - - 52.6 76.4 57.2 - -
VITA [14] Offline 63.0 86.9 67.9 56.3 68.1 57.5 80.6 61.0 47.7 62.6
GenVISsemi-online [13] Offline 63.8 85.7 68.5 56.3 68.4 60.1 80.9 66.5 49.1 64.7

MinVIS [15] Online 61.6 83.3 68.6 54.8 66.6 55.3 76.6 62.0 45.9 60.8
IDOL [34] Online 64.3 87.5 71.0 55.6 69.1 56.1 80.8 63.5 45.0 60.1
GenVISonline [13] Online 64.0 84.9 68.3 56.1 69.4 59.6 80.9 65.8 48.7 65.0
TCOVIS Online 64.1 86.6 69.5 55.8 69.0 61.3 82.9 68.0 48.6 65.1

Table 1. Quantitative results on YouTube-VIS 2019 and 2021 validation sets. The results are respectively grouped by method types
(Offline or Online) and backbone networks (ResNet-50 and Swin-L). We bold the best performance and underline the second. † denotes
using MsgShifT [39] backbone which has a similar weight scale with ResNet-50.

Method Type AP AP50 AP75 AR1 AR10

R
es

N
et

-5
0 VITA [14] Offline 32.6 53.9 39.3 30.3 42.6

GenVIS [13] Offline 37.2 58.5 42.9 33.2 40.4

MinVIS [15] Online 23.3 47.9 19.3 20.2 28.0
GenVIS [13] Online 37.5 61.6 41.5 32.6 42.2
TCOVIS Online 38.6 59.4 41.6 32.8 46.7

Sw
in

-L

VITA⋆ [14] Offline 41.1 63.0 44.0 39.3 44.3
GenVIS [13] Offline 44.3 69.9 44.9 39.9 48.4

MinVIS⋆ [15] Online 33.1 54.8 33.7 29.5 36.6
GenVIS [13] Online 45.1 69.1 47.3 39.8 48.5
TCOVIS Online 51.0 73.0 53.5 41.7 56.5

Table 2. Quantitative results on YouTube-VIS 2022 validation
dataset. We bold the highest accuracy and underline the second.
⋆: Reproduced by [13].

error impairs the model during the training process. Our
proposed assignment strategy encourages the features of all
time to fit the global optimal objective, which effectively
enhances the temporal consistency.

As for the effectiveness of the spatio-temporal enhance-
ment module, the comparison is also shown in Table 4. The
results show that the enhancement module brings improve-
ments of 0.9 AP on YouTube-VIS 2019&2021, compared
to using the proposed assignment strategy individually. In
particular, the proposed module improved the performance

Method Type AP AP50 AP75 AR1 AR10

R
es

N
et

-5
0

TeViT† [39] Offline 17.4 34.9 15.0 11.2 21.8
VITA [14] Offline 19.6 41.2 17.4 11.7 26.0
GenVIS [13] Offline 34.5 59.4 35.0 16.6 38.3

CrossVIS [38] Online 14.9 32.7 12.1 10.3 19.8
VISOLO [9] Online 15.3 31.0 13.8 11.1 21.7
MinVIS [15] Online 25.0 45.5 24.0 13.9 29.7
IDOL [34] Online 30.2 51.3 30.0 15.0 37.5
GenVIS [13] Online 35.8 60.8 36.2 16.3 39.6
TCOVIS Online 35.3 60.7 36.6 15.7 39.5

Sw
in

-L

VITA [14] Offline 27.7 51.9 24.9 14.9 33.0
GenVIS [13] Offline 45.4 69.2 47.8 18.9 49.0

MinVIS [15] Online 39.4 61.5 41.3 18.1 43.3
IDOL [34] Online 42.6 65.7 45.2 17.9 49.6
GenVIS [13] Online 45.2 69.1 48.4 19.1 48.6
TCOVIS Online 46.7 70.9 49.5 19.1 50.8

Table 3. Quantitative results on OVIS validation set. We bold
the highest accuracy and underline the second. † denotes using
MsgShifT [39] backbone.

by 1.2 and 1.7 in AP50 on two datasets, respectively. The
performance improvements demonstrate that the proposed
module effectively captures the spatial information from the
previous frame and aggregates the semantic and spatial fea-
tures across time. As a result, the delicate spatio-temporal
design further enhances the temporal consistency of fea-



LocPro GIA STE YouTube-VIS 2019 YouTube-VIS 2021
AP AP50 AP75 AR1 AR10 AP AP50 AP75 AR1 AR10

✓ - - 50.6 71.5 56.1 47.6 58.2 47.4 68.1 52.1 39.8 53.1
- ✓ - 51.4 72.3 57.0 49.5 59.9 48.6 69.5 53.6 40.6 55.0
- ✓ ✓ 52.3 73.5 57.6 49.8 60.2 49.5 71.2 53.8 41.3 55.9

Table 4. Ablation study of the method for Global Instance Assignment strategy (GIA) and the Spatio-temporal Enhancement module
(STE) on the YouTube-VIS 2019 / 2021 validation sets. LocPro denotes the Local Matching and Propagating technique.

Architecture AP AP50 AP75 AR1 AR10

Cross-Attn. 49.5 71.2 53.8 41.3 55.9
Concat. 47.9 68.6 52.7 41.4 55.1

Self-Cross 48.2 70.0 51.8 41.0 54.1
Dec. Mod. 48.5 69.7 53.9 40.6 54.7
Resp. Pos. 48.8 70.3 52.5 41.5 55.5
Ins. Attn. 49.2 70.6 53.5 40.9 55.1

Table 5. Ablation study of the module manipulations of the
Spatio-temporal Enhancement module on YouTube-VIS 2021.

tures for the online video instance segmentation model.
Incorporating the assignment strategy and the enhance-

ment module, our proposed method gained remarkable per-
formance improvements of 1.6 AP on YouTube-VIS 2019
and 2.1 AP on YouTube-VIS 2021 over the LocPro baseline.
In a nutshell, the experimental results indicate that the tem-
porally consistent features learned by our proposed TCO-
VIS significantly boost the performances on online video
instance segmentation.
Different manipulations of spatio-temporal enhance-
ment. In Table 5, we compared our proposed spatio-
temporal enhancement module with other optional manip-
ulations. Cross-Attn. denotes our proposed manipulation
following the standard multi-head cross-attention layer to
decode the spatial features with shared positional embed-
ding described in Section 3.3. Concat. indicates that we

concatenated the corresponding spatial feature and proto-
type of an instance followed by an MLP to get the updated
query. Self-Cross stands for adding an extra self-attention
layer ahead of the cross-attention layer. Dec. Mod. is de-
coder modulation, reviewing the spatial feature for every
Transformer decoder layer. Resp .Pos. denotes respective
positional embeddings were used for the spatial feature and
prototype when we performed cross-attention. Ins. Attn. in-
dicates the instance-wise decoding in cross-attention layer.

As shown, compared to all its counterparts, our proposed
manipulation achieved the best performance. The first three
variants are related to the feature aggregation, where Con-
cat. is too naive to model the spatial and semantic features,
while Self-Cross obscures the spatial feature. We inferred
the performance decrease of Dec. Mod. comes from the
information redundancy when aggregating them in every
layer. The last two experiments studied the instance-wise
correspondence. In the Resp. Pos. setting, explicit corre-
spondence for spatial and semantic features of the same in-
stance between frames is absent. Ins. Attn. only focuses on
the instance itself across time and can slightly enhance the
temporal consistency, however, neglecting the spatial fea-
tures of other instances, the module fails to capture the spa-
tial relationship among instances. The results confirm that
the proposed manipulation effectively exploits the spatial
information along the temporal dimension to enhance the
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Figure 3. Qualitative results of TCOVIS, compared with VITA [14] and GenVIS [13]. On the left are the predictions on YouTube-VIS
2019 [37] and on the right are on OVIS [24]. Objects displayed in the same color denote the same instance. Our TCOVIS shows more
temporally consistent results in these challenging scenes, where there are occlusions of the instance itself or others (Best viewed in color).
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Figure 4. Qualitative results of TCOVIS in four challenging cases on YouTube-VIS 2019 [37] and OVIS [24]: (a) fast movement, (b) heavy
occlusion, (c) low resolution, and (d) crowded scene. Objects displayed in the same color denote the same instance. The qualitative results
demonstrate the effectiveness and robustness of TCOVIS (Best viewed in color).

temporal consistency of features.

4.5. Qualitative results

In Figure 3, we show the qualitative comparisons of the
proposed TCOVIS with VITA [14] and GenVIS [13] on
YouTube-VIS 2019 and OVIS datasets. In the left scene
where there is a zebra with self-occlusion, GenVIS fails to
segment its head resulting in fragmented predictions, how-
ever, TCOVIS performs temporally consistent segmentation
with impressive accuracy. On the right is a difficult case
where there are two dogs with similar appearances grap-
pling with each other. VITA incorrectly detects more than
two dogs and fails to track the left one, while GenVIS fails
to handle the margin of two instances, e.g. the nose and
the paw of the left dog. TCOVIS successfully tracks and
segments the instances, demonstrating its effectiveness.

In Figure 4, we provide more qualitative results of the
proposed method in variously challenging cases, which are
all chosen from the mentioned benchmarks [37, 24]. As
shown in Figure 4 (a), our method successfully tracks the
surfer and the surfboard with fast movement. In the second
row, we present a difficult case with severe occlusion, in
which our method performs admirably by accurately seg-
menting the claw (at the bottom) of a parrot despite the
presence of a wooden stick that partially obstructs its lower
body. Figure 4 (c) illustrates a low-resolution case and our
method still achieves good performance. In Figure 4 (d),

we depict a crowded scene where TCOVIS is capable of
handling multiple instances that share similar appearances
and exhibit complex interactions. All the qualitative results
in the challenging situations demonstrate the effectiveness
and robustness of the proposed method.

5. Conclusion

In this paper, we propose a new online video instance
segmentation method, TCOVIS, to fully exploit the tempo-
ral information within a video and produce temporally con-
sistent predictions. Based on the query propagation frame-
work, we propose a global instance assignment strategy to
perform global optimal matching with the consideration of
the entire video and supervise the model with the global
optimal objective. We further devise a spatio-temporal en-
hancement module to capture the spatial feature and aggre-
gate it with the semantic feature between frames. The ef-
fectiveness of our method is evaluated with experimental
results on YouTube-VIS 2019/2021/2022 and OVIS.
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Taixé, and Bastian Leibe. Stem-seg: Spatio-temporal em-
beddings for instance segmentation in videos. In ECCV,
pages 158–177, 2020. 2

[2] Gedas Bertasius and Lorenzo Torresani. Classifying, seg-
menting, and tracking object instances in video with mask
propagation. In CVPR, pages 9739–9748, 2020. 1, 2

[3] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas
Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-
to-end object detection with transformers. In ECCV, pages
213–229, 2020. 1, 3, 4

[4] Bowen Cheng, Anwesa Choudhuri, Ishan Misra, Alexan-
der Kirillov, Rohit Girdhar, and Alexander G Schwing.
Mask2former for video instance segmentation. arXiv
preprint arXiv:2112.10764, 2021. 3, 7

[5] Bowen Cheng, Ishan Misra, Alexander G Schwing, Alexan-
der Kirillov, and Rohit Girdhar. Masked-attention mask
transformer for universal image segmentation. In CVPR,
pages 1290–1299, 2022. 1, 3

[6] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is
worth 16x16 words: Transformers for image recognition at
scale. In ICLR, 2021. 2

[7] Yuxin Fang, Shusheng Yang, Xinggang Wang, Yu Li, Chen
Fang, Ying Shan, Bin Feng, and Wenyu Liu. Instances as
queries. In ICCV, pages 6910–6919, 2021. 5

[8] Yang Fu, Linjie Yang, Ding Liu, Thomas S Huang, and
Humphrey Shi. Compfeat: Comprehensive feature aggrega-
tion for video instance segmentation. In AAAI, pages 1361–
1369, 2021. 1, 4

[9] Su Ho Han, Sukjun Hwang, Seoung Wug Oh, Yeonchool
Park, Hyunwoo Kim, Min-Jung Kim, and Seon Joo Kim. Vi-
solo: Grid-based space-time aggregation for efficient online
video instance segmentation. In CVPR, pages 2896–2905,
2022. 3, 7

[10] Fei He, Haoyang Zhang, Naiyu Gao, Jian Jia, Yanhu Shan,
Xin Zhao, and Kaiqi Huang. Inspro: Propagating instance
query and proposal for online video instance segmentation.
In NeurIPS, 2022. 1, 2, 3, 4

[11] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-
shick. Mask r-cnn. In ICCV, pages 2961–2969, 2017. 1,
3

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
pages 770–778, 2016. 6

[13] Miran Heo, Sukjun Hwang, Jeongseok Hyun, Hanjung Kim,
Seoung Wug Oh, Joon-Young Lee, and Seon Joo Kim. A
generalized framework for video instance segmentation. In
CVPR, pages 14623–14632, 2023. 1, 2, 3, 4, 5, 6, 7, 8, 9

[14] Miran Heo, Sukjun Hwang, Seoung Wug Oh, Joon-Young
Lee, and Seon Joo Kim. VITA: Video instance segmentation
via object token association. In NeurIPS, 2022. 1, 2, 3, 6, 7,
8, 9

[15] De-An Huang, Zhiding Yu, and Anima Anandkumar. Min-
VIS: A minimal video instance segmentation framework
without video-based training. In NeurIPS, 2022. 1, 2, 3,
5, 7

[16] Sukjun Hwang, Miran Heo, Seoung Wug Oh, and Seon Joo
Kim. Video instance segmentation using inter-frame com-
munication transformers. NeurIPS, 34, 2021. 1, 2, 6, 7

[17] Lei Ke, Xia Li, Martin Danelljan, Yu-Wing Tai, Chi-Keung
Tang, and Fisher Yu. Prototypical cross-attention networks
for multiple object tracking and segmentation. NeurIPS, 34,
2021. 1

[18] Harold W Kuhn. The hungarian method for the assignment
problem. NRL, 1955. 4, 5

[19] Huaijia Lin, Ruizheng Wu, Shu Liu, Jiangbo Lu, and Ji-
aya Jia. Video instance segmentation with a propose-reduce
paradigm. In ICCV, pages 1739–1748, 2021. 1, 2

[20] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
ECCV, pages 740–755, 2014. 6

[21] Dongfang Liu, Yiming Cui, Wenbo Tan, and Yingjie Chen.
Sg-net: Spatial granularity network for one-stage video in-
stance segmentation. In CVPR, pages 9816–9825, 2021. 3

[22] Tim Meinhardt, Alexander Kirillov, Laura Leal-Taixe, and
Christoph Feichtenhofer. Trackformer: Multi-object track-
ing with transformers. In CVPR, pages 8844–8854, 2022.
3

[23] Fausto Milletari, Nassir Navab, and Seyed-Ahmad Ahmadi.
V-net: Fully convolutional neural networks for volumetric
medical image segmentation. In 3DV, pages 565–571, 2016.
4, 6

[24] Jiyang Qi, Yan Gao, Yao Hu, Xinggang Wang, Xiaoyu Liu,
Xiang Bai, Serge Belongie, Alan Yuille, Philip HS Torr, and
Song Bai. Occluded video instance segmentation: A bench-
mark. IJCV, 130(8):2022–2039, 2022. 2, 6, 8, 9

[25] Peize Sun, Rufeng Zhang, Yi Jiang, Tao Kong, Chenfeng
Xu, Wei Zhan, Masayoshi Tomizuka, Lei Li, Zehuan Yuan,
Changhu Wang, et al. Sparse r-cnn: End-to-end object detec-
tion with learnable proposals. In CVPR, pages 14454–14463,
2021. 1

[26] Zhi Tian, Chunhua Shen, and Hao Chen. Conditional convo-
lutions for instance segmentation. In ECCV, pages 282–298,
2020. 1, 3

[27] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. NeurIPS, 30, 2017. 2,
5

[28] Huiyu Wang, Yukun Zhu, Hartwig Adam, Alan Yuille, and
Liang-Chieh Chen. Max-deeplab: End-to-end panoptic seg-
mentation with mask transformers. In CVPR, pages 5463–
5474, 2021. 5

[29] Tao Wang, Ning Xu, Kean Chen, and Weiyao Lin. End-to-
end video instance segmentation via spatial-temporal graph
neural networks. In ICCV, pages 10797–10806, 2021. 3

[30] Xinlong Wang, Tao Kong, Chunhua Shen, Yuning Jiang, and
Lei Li. Solo: Segmenting objects by locations. In ECCV,
pages 649–665, 2020. 3



[31] Yuqing Wang, Zhaoliang Xu, Xinlong Wang, Chunhua Shen,
Baoshan Cheng, Hao Shen, and Huaxia Xia. End-to-end
video instance segmentation with transformers. In CVPR,
pages 8741–8750, 2021. 1, 2

[32] Jialian Wu, Jiale Cao, Liangchen Song, Yu Wang, Ming
Yang, and Junsong Yuan. Track to detect and segment: An
online multi-object tracker. In CVPR, pages 12352–12361,
2021. 1

[33] Junfeng Wu, Yi Jiang, Song Bai, Wenqing Zhang, and Xiang
Bai. Seqformer: Sequential transformer for video instance
segmentation. In ECCV, pages 553–569, 2022. 1, 7

[34] Junfeng Wu, Qihao Liu, Yi Jiang, Song Bai, Alan Yuille, and
Xiang Bai. In defense of online models for video instance
segmentation. In ECCV, pages 588–605, 2022. 1, 2, 3, 4, 5,
7

[35] Jialian Wu, Sudhir Yarram, Hui Liang, Tian Lan, Junsong
Yuan, Jayan Eledath, and Gerard Medioni. Efficient video
instance segmentation via tracklet query and proposal. In
CVPR, pages 959–968, 2022. 1, 2, 3, 7

[36] Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen
Lo, and Ross Girshick. Detectron2. https://github.
com/facebookresearch/detectron2, 2019. 6

[37] Linjie Yang, Yuchen Fan, and Ning Xu. Video instance seg-
mentation. In ICCV, pages 5188–5197, 2019. 1, 2, 3, 6, 8,
9

[38] Shusheng Yang, Yuxin Fang, Xinggang Wang, Yu Li, Chen
Fang, Ying Shan, Bin Feng, and Wenyu Liu. Crossover
learning for fast online video instance segmentation. In
ICCV, pages 8043–8052, 2021. 1, 2, 3, 5, 7

[39] Shusheng Yang, Xinggang Wang, Yu Li, Yuxin Fang, Jiemin
Fang, Wenyu Liu, Xun Zhao, and Ying Shan. Temporally
efficient vision transformer for video instance segmentation.
In CVPR, pages 2885–2895, 2022. 1, 2, 7

[40] Fangao Zeng, Bin Dong, Yuang Zhang, Tiancai Wang, Xi-
angyu Zhang, and Yichen Wei. Motr: End-to-end multiple-
object tracking with transformer. In ECCV, pages 659–675.
Springer, 2022. 3

[41] Zitong Zhan, Daniel McKee, and Svetlana Lazebnik. Robust
online video instance segmentation with track queries. arXiv
preprint arXiv:2211.09108, 2022. 1, 2, 3, 4

[42] Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang,
and Jifeng Dai. Deformable {detr}: Deformable transform-
ers for end-to-end object detection. In ICLR, 2021. 2, 5

https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2

