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Abstract

For safety-related applications, it is crucial to pro-
duce trustworthy deep neural networks whose prediction
is associated with confidence that can represent the like-
lihood of correctness for subsequent decision-making. Ex-
isting dense binary classification models are prone to be-
ing over-confident. To improve model calibration, we pro-
pose Adaptive Stochastic Label Perturbation (ASLP) which
learns a unique label perturbation level for each training
image. ASLP employs our proposed Self-Calibrating Bi-
nary Cross Entropy (SC-BCE) loss, which unifies label per-
turbation processes including stochastic approaches (like
DisturbLabel), and label smoothing, to correct calibra-
tion while maintaining classification rates. ASLP follows
Maximum Entropy Inference of classic statistical mechan-
ics to maximise prediction entropy with respect to missing
information. It performs this while: (1) preserving clas-
sification accuracy on known data as a conservative so-
lution, or (2) specifically improves model calibration de-
gree by minimising the gap between the prediction accu-
racy and expected confidence of the target training label.
Extensive results demonstrate that ASLP can significantly
improve calibration degrees of dense binary classifica-
tion models on both in-distribution and out-of-distribution
data. The code is available on https://github.com/
Carlisle-Liu/ASLP.

1. Introduction

Binary segmentation aims to differentiate foreground ar-
eas from the background in images. Its tasks include Salient
Object Detection [86], Camouflaged Object Detection [13],
Smoke Detection [79], etc. Performance in these tasks has
been significantly advanced using the strong representation
powers of Deep Neural Networks (DNNs). However, with
complex structures and a tremendous number of parame-
ters, DNNs are prone to over-fitting to training data and
producing over-confident predictions in the real world [18].
Such issues can render the model predictions unreliable in
decision making or utilisation in downstream tasks.

Recently, a growing body of literature has been pro-
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Figure 1: Applying Adaptive Label Perturbation during
training can effectively moderate predictions at incorrect
areas, highlighting them with high entropy values (red).
Zt(x, y) is a sample-wise Bernoulli variable, parameterized
by α, at the tth iteration. After k iterations, update α using
Eq. (5) to adjust the likelihood (or level) of label pertur-
bation to increase entropy for incorrect predictions and so
correct model calibration. The Perturbed Label (shown in-
verted) replaces the Groundtruth Label with probability α.

posed to address model mis-calibration problems in DNNs.
They can be roughly categorised as: (1) post-hoc opera-
tions, such as temperature scaling [18], Platt scaling [54],
etc., (2) training objective approaches [27], like MMCE
[30], soft calibration objective [27], focal loss [45, 17], and
(3) data/label augmentation techniques, e.g. label smooth-
ing [46] and mixup [85]. We propose an Adaptive Label
Perturbation which learns a unique label perturbation level
for each training image. As illustrated in Fig. 1, train-
ing with Adaptive Stochastic Label Perturbation, a form
of ALP, can effectively moderate incorrect predictions and
highlight them with high entropy values.

Adaptive Label Perturbation employs our proposed Self-
Calibrating Binary Cross Entropy (SC-BCE) loss, which
unifies label perturbation processes including stochastic ap-
proaches (like DisturbLabel [75]), and label smoothing [60]
to correct calibration while maintaining classification accu-
racy. SC-BCE loss is equivalent to a factored combination
of (i) a BCE loss w.r.t. groundtruth label, and (ii) a BCE
loss w.r.t. a uniform binary categorical distribution. The
former enhances dense binary classification performance
and the latter improves the model calibration degree. Our
method can be connected to Maximum Entropy Inference
[23] of classic statistical mechanics, to maximise prediction
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entropy with respect to missing information while preserv-
ing the classification accuracy on known data.

The proposed Adaptive Label Perturbation (ALP) can
approximate Maximum Entropy Inference [23] to maximise
prediction entropy while preserving the ideal dense classifi-
cation performance on known data. This represents a con-
servative solution that adopts classification accuracy as a
proxy for known data and assumes maximum disorder on
unknown data. We also present an alternative ALP solution
that, instead, takes model calibration degree as a proxy for
known data, using a calibration regulariser which constrains
the expected confidence of individual supervision signal to
not drop below the ideal accuracy on the validation set. This
effectively minimises the gap between the distributions of
prediction confidence and prediction accuracy, which is the
source of model mis-calibration.

Our contributions can be summarised as: (i) We pro-
pose Adaptive Stochastic Label Perturbation that learns a
sample-wise label perturbation level to improve model cali-
bration; (ii) We present a Self-Calibrating Binary Cross En-
tropy loss that unifies label perturbation processes including
stochastic approaches and label smoothing; (iii) Following
Maximum Entropy Inference [23] we show that Adaptive
Stochastic Label Perturbation (ASLPMEI), can maximise the
prediction entropy while preserving the ideal dense classifi-
cation accuracy, and (iv) We present an alternative Adaptive
Stochastic Label Perturbation (ASLPMC) solution to max-
imise model calibration degree, which achieves state-of-
the-art performance in terms of model calibration degree on
both in-distribution and out-of-distribution data. We thor-
oughly evaluate our method on Salient Object Detection
and demonstrate its effectiveness for Camouflaged Object
Detection, Smoke Detection and Semantic Segmentation.

2. Related Works
Model Calibration: Model calibration methods can be
roughly divided into three categories of approach: (1) post
hoc processing (2) training object, and (3) input/label aug-
mentation. The first category utilises a validation set to
align the prediction confidence distribution with prediction
accuracy distribution. It includes histogram binning [82],
isotropic regression [83], Platt scaling [54, 49], Bayesian
binning into quantiles [47], Dirichlet scaling [28], mix-n-
match [87] and temperature scaling [18, 81].

The second category focuses on designing training ob-
jectives that (in)directly improve model calibration degree.
Some methods address the in-continuity of expected cali-
bration error, a widely adopted model calibration measure,
and propose trainable calibration objectives like maximum
mean calibration error [30], soft calibration objective [27].
Other works discover that certain existing training objects
are beneficial to model calibration, e.g. Brier loss [4, 10],
confidence penalty [52] and focal loss [45, 17].

The third category employs data or label augmentation
techniques to regularise the prediction confidence distribu-
tion. Mixup [85, 62] explores the neighbourhood of training
data through random interpolation of input images and as-
sociated labels to improve model calibration degree. Label
smoothing [46] augments the one-hot training labels with
softer versions to prevent the model being over-confident.
Salient Object Detection: Inspired by pioneering work
[22], traditional Saliency Object Detection (SOD) methods
rely on various heuristic priors with handcraft features to
explore low-level cures [1, 25, 26, 38, 66]. However, these
methods cannot cope with complex scenes because of the
limited representation ability of handcrafted features [3].
Recently, deep learning based SOD methods broke the bot-
tleneck of traditional methods due to the powerful capabil-
ity of neural networks, achieving improvemed performance
[6, 24, 55, 76, 37, 64, 68]. Early deep SOD methods use
multi-layer perception to predict a map with a pixel-wise
score for each image [71, 8]. These approaches rely on fixed
fully connected layers and thus severely limit the ability of
spatial information extraction. Later methods address this
issue via using fully convolutional networks (FCNs) [40].

Most contemporary SOD methods are designed based on
FCNs with various schemes to improve performance. One
of the most popular strategies is to fuse multi-scale infor-
mation extracted from different layers and aggregate them
in the network [91, 74, 16, 51, 96, 90]. Attention modules
are also applied to capture powerful multi-scale features via
exploring relationship between local and global information
[37, 53, 95, 21]. Training SOD networks using auxiliary su-
pervision is also a popular strategy [70, 70, 61]. For exam-
ple, the body map and detail map are utilized by [70] to help
the network focus on center areas and edges, respectively.
Skeleton [35] and uncertainty [61] are applied to the train-
ing processing due to their important roles in taking photos.
Noisy Label: Noisy labels refer to incorrect ground truth
classes/values in classification/regression tasks. They arise
from data collection or annotation processes, and exist com-
monly in real-world datasets [2]. Efforts are put to identify
the noisy labels and exclude them from network training
in various computer vision tasks, deeming their incorpora-
tion as harmful. [88] proposes a framework that learns from
noisy labels, being a collection of predictions from classic
SOD methods. The framework approximates the noise dis-
tribution in order to recover clean labels for model training.

Differently from data augmentation techniques that are
applied simultaneously to training samples and correspond-
ing labels to generate more training data, one may arti-
ficially corrupt the label. We refer to this category of
approaches as label perturbation, which includes label
smoothing approaches [60], and DisturbLabel, Xie et al.
[75]. In image classification, Xie et al. [75] shows that
randomly replacing training labels with a prior distribution



leads to a regularising effect, preventing overfitting. Our
work is different from [75] by employing labels corrupted
to different scales to enhance the model calibration degrees
for both in-distribution and out-of-distribution data. Fur-
ther, in performing this, we assume noise that varies with
different samples, making our method more adaptable.

3. Proposed Method
We first lay out the task setting in Sec. 3.1. Then we

introduce our proposed Self-Calibrating Binary Cross En-
tropy loss in Sec. 3.2 and prove its connection to Maximum
Entropy Inference [23] in Sec. 3.3. Lastly, we detail our ma-
jor contribution - Adaptive Label Perturbation in Sec. 3.4.

3.1. Task Setting

Binary segmentation problems aim to differentiate be-
tween foreground object(s) and background. They can
be formulated as a pixel-wise binary classification prob-
lem. Given an independent and identically distributed (i.i.d)
training dataset DTR = {xi, yi}Ni=1 drawn from an unknown
joint distribution of training images and groundtruth labels
P (X ,Y), a neural network model parameterised by θ is
employed to predict labels for an input image x ∈ X :
fθ(x) ∈ (0, 1)1×H×W . We use ŷ and Pŷ to denote the
winning class and its associated probability respectively.
The groundtruth label y ∈ {0, 1}1×H×W represents the
foreground pixels with “1” and background with “0”. In
the following equations, we omit the spatial indexes H
and W for simplicity. A perfectly calibrated model has
P(ŷ = y|Pŷ) = Pŷ, ∀Pŷ ∈ (0, 1). That is, in the en-
tire range of prediction probabilities, prediction with prob-
ability Pŷ has exactly Pŷ chance to be correct. The cal-
ibration degree of a model fθ(·) over a distribution D is
quantified with Expected Calibration Error (ECE), defined
as Efθ(x)[|P(ŷ = y|fθ(x))− fθ(x)|].

3.2. Self-Calibrating Binary Cross Entropy Loss

We propose a Self-Calibrating Binary Cross Entropy
(SC-BCE) loss that unifies Label Smoothing [60], Distur-
bLabel [75] and Stochastic Label Perturbation as:

LSC-BCE(θ,X, Y, α, β)

=Ex,y∈X,Y

[
(1− Zt(x, y)) · LBCE(θ, x, y)

+ Zt(x, y) · LBCE(θ, x, p(y, β))
]

β ∈ [0, 2], α ∈ [0,
1

β
),

(1)

where Zt(x, y) ∼ B(1, α) follows a Bernoulli distribution
with α probability to be 1 and 1−α chance to be 0, t denotes
the training epoch, α ∈ [0, 1

β ) and β ∈ [0, 2] are Label Per-
turbation Probability (LPP) and Label Perturbation Strength

(LPS) respectively, p(y, β) = (1 − β) · y + β
2 , β ∈ [0, 2]

is a perturbed label and LBCE(θ, x, y)
1 is a Binary Cross

Entropy (BCE) loss computed for training pair (x, y). For
α = 1, the label perturbation equation follows the label
smoothing equation for a binary label [60]. In the proposed
SC-BCE loss, different label perturbations can be applied
by setting (i) Label Smoothing [60]: α = 1 and β ∈ [0, 1),
(2) DisturbLabel: β = 1 and α ∈ (0, 1), and (3) Stochastic
Label Perturbation (SLP): β ∈ (0, 2] and α ∈ (0, 1

β ). For
example, Hard Inversion (HI) that inverts the label category
as shown in Fig. 2, can be stochastically applied by setting
β = 2 and α ∈ (0, 1

2 ).

In the implementation of SLP, the supervision for an in-
dividual training image in each epoch is sampled by draw-
ing from a Bernoulli distribution. That is, the individual
supervision can take the form of the groundtruth label or
perturbed label in each training iteration. The overall func-
tion of SLP can be connected to that of a smoothed label
by taking expectation of the Bernoulli variable: EZt

[(1 −
Zt(y)) · Y + Zt(y) · p(y, β)], ∀y ∈ Y . Taking the expec-
tation over the Bernoulli variation in each iteration is too
expensive to implement in model training. Instead, follow-
ing [75], the expectation of stochastically perturbed label is
approximated by taking expectation across training epochs:
Et∈T [(1−Zt(y)) ·Y +Zt(y) ·p(y, β)], ∀y ∈ Y , where T is
the total number of training epochs and Zt(y) is a variable
drawn from a Bernoulli distribution for the tth epoch.

3.3. Maximum Entropy Inference

Maximum Entropy Inference (MEI), assuming mini-
mum distribution commitment in respect to missing infor-
mation, was initially proposed by Jaynes [23]. That is, the
probability distribution should have maximum Shannon en-
tropy subject to the partially available information. Thus, in
the complete absence of information, Shannon entropy for
a binary prediction defined in Eq. (2) should be maximised:

H(fθ(X)) = Ex∈X

[
− fθ(x) · log fθ(x)−(
1− fθ(x)

)
· log

(
1− fθ(x)

)] (2)

For salient object detection and other binary segmentation
problems, maximising Eq. (2) can be achieved with a binary
uniform categorical distribution.

The proposed SC-BCE loss can be transformed into a
factored combination of a BCE loss w.r.t. groundtruth la-
bel (the constraints of the data) and a BCE loss w.r.t. a bi-
nary uniform categorical distribution (See Appendix A.2 for

1LBCE(θ, x, y) = −y · log(fθ(x))− (1− y) · log(1− fθ(x))
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Figure 2: The method overview is comprised of model implementation (top) and Adaptive Stochastic Label Perturbation
(ASLP) learning rule (bottom). In each iteration, the model uses a Bernoulli variable to sample a supervision, which can be
a groundtruth label yi or a perturbed label pi and computes a sample-specific ∇αi based on the prediction. Regularisation is
computed with Eq. 5 (ASLPMEI) or Eq. 6 (ASLPMC) on a validation set after each training epoch. The ASLP learning rule
combines Grad-αi and a factored regularisation to update label perturbation probability αi for each individual sample.

derivation) as:

LSC-BCE(θ,X, Y, α, β)

=Ex,y∈X,Y

[
(1− βZt(x, y)) · LBCE(θ, x, y)

+ βZt(x, y) · LBCE(θ, x, u)
]
,

(3)

where Zt(x, y) ∼ B(1, α), u is a binary uniform categori-
cal distribution, and minimising the second term pushes the
prediction distribution towards a uniform binary categorical
distribution, equivalently maximising the inference entropy.
Therefore, our proposed SC-BCE loss, a combination of a
regular BCE loss and a BCE loss with a perturbed label, ef-
fectively performs a type of MEI. That is, the regular BCE
loss component improves the model’s binary classification
accuracy in the presence of information while the perturbed
label maximizes prediction entropy with respect to missing
information in order to close the gap between the available
training data and the entire data distribution.

3.4. Adaptive Label Perturbation

Stochastic Label Perturbation (SLP) uses a single label
perturbation probability and perturbation strength for the
entire training dataset. However, this approach cannot adapt
to predictive error that varies for different input images. To
address this, we propose an Adaptive Stochastic Label Aug-
mentation (ASLP) method to adjust the label augmentation
probability for individual training samples. That is we al-
low the variable in Eq. (1) to be drawn from a per training
image Bernoulli distribution with sample-specific label per-
turbation probability as:

Zt(x, y) ∼ B(1, αx,y), ∀x, y ∈ X,Y (4)

where αx,y is the label perturbation probability for sample
(image-label) pair (x, y). Initially, we set all label pertur-
bation probabilities to {αi = 0}Ni=1 and train a model with
a regular BCE loss without label augmentation techniques,
which is equivalent to LSC-BCE(θ,X, Y, α = 0, β = 0). The
trained model has weight θlm and its accuracy on the vali-
dation set, A(θlm,DVAL), is held as an ideal performance.
Subsequently, we select a label perturbation technique and
continue to train the model with SC-BCE loss with a learn-
ing rule to update the label perturbation probability for in-
dividual training samples.

We propose the learning rule for α, (ASLPMEI)
to approximate maximum entropy inference. The
rule has two components: (1) ∇αi

= (2/β) ·
∂EZt

(xi, yi)
[
LSC-BCE(X,Y, θ, {αi}Ni=1, β)

]
/∂αi is the

derivative of the expectation of SC-BCE over the Bernoulli
variable w.r.t. αi. We divide this by β/2 to ensure that dif-
ferent perturbation techniques (varying β values) have the
same convergence speed (See derivation in Appendix A.3),
and (2) Accuracy Regularization to encourage maintenance
of prediction accuracy. The rule is:

αn+1
i = αn

i + η · (∇αi
+ λ · RegA), for i = 1, . . . , N,

∇αi
=

2 ·
(
LBCE(θ, xi, p(yi, β))− LBCE(θ, xi, yi)

)
β

,

RegA = min
(A(θ,DVAL)− A(θlm,DVAL)

A(θlm,DVAL)
, 0
)
,

(5)
where η and λ are hyperparameters controlling the updating
pace of label perturbation probability and the regularisation
strength respectively, A(θ,DVAL) and A(θlm, andDVAL)
denote the current and ideal accuracy on the validation set
separately. ∇αi

aims to increase label perturbation proba-



bility to confident and correct samples and otherwise for in-
correctly classified samples. For example, it returns a large
positive value for correct predictions with small BCE loss
value w.r.t. to groundtruth label yi and large BCE loss value
w.r.t. to perturbed label p(yi, β). The “Accuracy Regular-
isation” (RegA) is designed to reduce the overall perturba-
tion probability if the accuracy on the validation set reduces
to be below the local minima. It returns 0 if there is no
accuracy drop on the validation set and a large decrease
will overwhelm the ∇αi

value and reduce the sample la-
bel perturbation probability. Intuitively, ASLPMEI aims to
construct a model that preserves the ideal classification ac-
curacy while otherwise maximising the entropy [23]. Note
that which particular examples are classified correctly are
able to change, but the accuracy is constrained to remain the
same. Intuitively, having a model that better captures igno-
rance may lead to changes in the treatment of test examples
that are distant from training distribution. Note, however
that adopting classification accuracy as proxy for known
data and otherwise maximizing entropy is a conservative
strategy and we find that it results in the model being sig-
nificantly under-confident.

The model mis-calibration arises from the distribution
mismatch between prediction confidence and prediction ac-
curacy [45]. We offer an alternative model that uses the
model calibration as proxy for known data and maximises
the prediction entropy in respect to unknown data ASLPMC.
The learning rule replaces the “Accuracy Regularisation” in
Eq. (5) with a “Calibration Regularisation” (RegC) as:

RegC = min
((

1− β · αn
i

2

)
− A(θlm,DVAL), 0

)
, (6)

where 1−(β ·αn
i /2) denotes the expected confidence of the

perturbed label (Derivation in Appendix A.4). For example,
a foreground label “1” with 5% chance of being inverted to
“0” has an expected confidence of 0.95. “Calibration Regu-
larisation” constrains the expected confidence of perturbed
label of each sample to not drop below the ideal classifica-
tion accuracy on validation set, preventing the model from
becoming under-confident. Note that we can also have an
updating rule ALSMC to learn per-image label perturbation
strength (adaptive β and fixed α = 1) (See Appendix A.5).

4. Experiments and Results
We verify the proposed method primarily on Salient Ob-

ject Detection and also implement it for Camouflaged Ob-
ject Detection, Smoke Detection and Semantic Segmenta-
tion tasks and report their results in the Appendices.

4.1. Implementation Details

Evaluation Metrics: We use Equal-Width Expected
Calibration Error (ECEEW) [18] and Equal-Width Over-
confidence Error (OEEW) [62] with 10 bins (B = 10) to

evaluate the model calibration degrees. Additionally, we
adopt ECEEM [48], ECEDEBIAS [29] and ECESWEEP [56] to
corroborate with the results of ECEEW (See Appendix C).
Datasets: The proposed methods are trained with the
DUTS-TR [63] training dataset. It is divided into a train-
ing set |DTR| = 9, 553 and validation set |DVAL| = 1, 000.
We use six testing datasets, including DUTS-TE [63], DUT-
OMRON [80], SOD [44], PASCAL-S [34], ECSSD [78],
HKU-IS [33], to evaluate the model calibration degree.
Compared Methods: We compare with both SOD mod-
els and model calibration methods in terms of model cali-
bration degrees. The SOD models include: MSRNet [32],
SRM [65], Amulet [92], BMPM [91], DGRL [67], PAGR
[93], PiCANet [37], CPD [73], BASNet [55], EGNet [94],
AFNet [15], PoolNet [36], GCPANet [7], MINet [51],
F3Met [69], EBMGSOD [89], ICON [97], EDN [72]. We
evaluate ECE on their published prediction results, or re-
sults produced with their released model weights. We also
compare with model calibration methods include: Temper-
ature Scaling (TS) [18], Brier Loss [4], MMCE [30], Label
Smoothing [46], Mixup [62], Focal Loss [45] and AdaFocal
[17] implemented on our baseline model.
Baseline Model Structure: We implement our method in
the Pytorch framework. Our model has a simple U-Net
structure, comprising of a ResNet50 encoder [20] and a
decoder, where the former is initialised with ImageNet-
pretrained weights and the later by default. We also experi-
ment with VGG16 [58] and Swin transformer [39] encoders
and report their results in Appendix I.
Label Perturbation Techniques: We experiment with four
different label perturbation strategies: (1) Hard Inversion
T (Y, α, β = 1.0), (2) Soft Inversion (SI) T (Y, α, β =
0.75), (3) Moderation (M) T (Y, α, β = 0.5) and Dynamic
Moderation (DM) T (Y, α, β = 0.5) with additional Gaus-
sian noise. See Appendix H.1 for implementation details.
Training Details: Each model is trained with an Adam op-
timiser for 30 epochs. The learning rate is initialised to
2.5×10−5, and decays by a factor of 0.9 for each epoch after
the 10th epoch. All training images are scaled to 384× 384.
Basic data augmentation techniques, including random flip-
ping, random translation and random cropping, are applied.
Hyperparameters: The reported model calibration results
associated with ASLP are obtained by setting η = 0.002
and λ = 2, 000. We set the number of bins to B = 10 for
ECE and OE evaluation metrics.

4.2. Model Calibration Degree Performance

Tab. 1 presents the calibration degree of existing SOD
models, existing model calibration methods and our pro-
posed technique on the six SOD testing datasets. Our pro-
posed ASLPMC, designed to optimise the model calibration
degree, achieves the best ECE performances on all testing
datasets. In addition, ASLPMC also obtains the second-best



Table 1: Salient object detection model calibration degree benchmark. Results are evaluated in with ECEEW and OEEW with
10 bins (units in %). See Appendix C for evaluations with ECEEM [48], ECEDEBIAS [29] and ECESWEEP [56].

Methods Year
DUTS-TE [63] DUT-OMRON [80] PASCAL-S [34] SOD [44] ECSSD [78] HKU-IS [33]
ECE ↓ OE ↓ ECE ↓ OE ↓ ECE ↓ OE ↓ ECE ↓ OE ↓ ECE ↓ OE ↓ ECE ↓ OE ↓

SOD
Methods

MSRNet [32] 2017 2.57 2.34 3.32 3.16 3.44 3.23 6.42 6.14 0.97 0.94 0.92 0.87
SRM [65] 2017 4.02 3.72 4.19 3.96 4.88 4.59 9.93 9.58 2.53 2.35 1.86 1.72
Amulet [92] 2017 5.67 5.28 5.84 5.49 5.76 5.43 10.03 9.59 2.56 2.42 1.98 1.87
BMPM [91] 2018 3.74 3.52 4.52 4.37 4.88 4.68 8.16 7.93 1.95 1.89 1.58 1.53
DGRL [67] 2018 4.12 3.86 4.41 4.21 5.01 4.77 8.44 8.20 2.13 2.02 1.63 1.53
PAGR [93] 2018 4.04 3.79 5.14 4.96 5.64 5.37 12.17 11.87 2.84 2.70 1.62 1.54
PiCANet [37] 2018 5.12 4.90 4.84 4.70 8.14 7.92 10.50 10.30 3.48 3.39 2.55 2.47
CPD [73] 2019 3.97 3.78 4.20 4.06 5.37 5.17 9.65 9.39 2.29 2.19 1.99 1.90
BASNet [55] 2019 5.00 4.86 4.93 4.83 6.50 6.36 10.40 10.27 2.74 2.70 2.30 2.26
EGNet [94] 2019 3.33 3.14 3.66 3.50 5.42 5.19 8.04 7.79 1.98 1.88 1.47 1.40
AFNet [15] 2019 3.95 3.74 4.25 4.09 5.06 4.84 8.15 8.02 2.38 2.27 1.87 1.78
PoolNet [36] 2019 3.33 3.12 3.86 3.70 5.32 5.07 8.14 7.87 2.00 1.90 1.82 1.75
GCPANet [7] 2020 3.18 2.99 3.99 3.84 4.16 3.97 7.05 6.88 1.61 1.54 1.27 1.21
MINet [51] 2020 3.65 3.48 4.45 4.29 4.94 4.75 8.01 7.89 2.13 2.03 1.74 1.65
F3Met [69] 2020 3.67 3.50 4.25 4.10 4.85 4.67 7.95 7.78 2.26 2.16 1.92 1.83
EBMGSOD [89] 2021 3.45 3.29 4.11 3.95 4.79 4.61 7.48 7.30 2.14 2.05 1.79 1.70
ICON [97] 2021 2.89 2.76 3.84 3.71 4.08 3.95 6.70 6.55 1.56 1.49 1.38 1.32
PFSNet [43] 2021 2.94 2.72 3.95 3.81 4.45 4.27 7.59 7.39 2.41 2.25 2.06 1.96
EDN [72] 2022 3.62 3.47 4.02 3.90 4.89 4.74 8.81 8.66 2.20 2.13 1.65 1.58

Model
Calibration
Methods

Brier Loss [4] 1950 2.77 2.58 3.55 3.38 3.90 3.70 6.40 6.16 1.37 1.30 1.04 0.99
Temperature Scaling [18] 2017 2.53 2.34 3.18 3.03 3.56 3.36 6.32 6.05 0.96 0.93 0.83 0.70
MMCE [30] 2018 2.86 2.67 3.56 3.41 4.00 3.81 6.85 6.63 1.41 1.35 1.18 1.13
Label Smoothing [46] 2019 2.00 1.79 2.89 2.71 3.04 2.83 5.97 5.69 0.83 0.68 0.82 0.47
Mixup [62] 2019 2.45 2.25 3.41 3.23 3.13 2.99 5.82 5.70 1.41 0.18 3.83 0.05
Focal Loss [45] 2020 2.25 2.08 3.10 2.82 3.40 3.13 6.21 5.98 1.41 1.03 1.24 0.77
AdaFocal [17] 2022 1.61 1.41 2.31 1.84 2.53 2.27 5.88 5.47 1.63 0.79 1.35 0.52

Our
Methods

ASLPMC 2023 1.40 1.22 1.99 1.83 2.31 2.10 5.50 5.17 0.48 0.20 0.79 0.17
ASLPMEI 2023 27.9 0.01 26.0 0.00 26.1 0.00 22.4 0.00 29.9 0.00 30.5 0.00
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Figure 3: Joint distribution of prediction confidence (horizontal axis) and prediction accuracy (vertical axis) on the DUTS-TE
dataset. A perfectly calibrated model has an identical confidence distribution and accuracy distribution, denoted as the oracle
(diagonal red dotted line). The joint distribution of a better calibrated model is more aligned with the oracle line, especially
its high density area. See Appendix D for results of other methods and on other testing datasets.

OE performances on all six testing datasets, outperformed
only by our ASLPMEI. On the other hand, ASLPMEI, though
almost eliminates the over-confidence issue completely, is
significantly mis-calibrated on the six testing datasets. This
can be attributed to it being significantly under-confident
rather than over-confident. The observed performances of

ASLPMEI are in accordance with its design - assuming min-
imum distribution commitment with respect to missing in-
formation. That is, in the presence of limited training data,
to maximise the prediction entropy while maintaining the
prediction accuracy for in-distribution data.

Fig. 3 presents the joint distribution of prediction con-



fidence and prediction accuracy of some of the best cali-
brated methods and our proposed technique on DUTS-TE
dataset (See Appendix D for other testing datasets and other
methods). Existing SOD methods produce extremely confi-
dent predictions whose confidence scores are nearly 100%
for the majority of samples. On the contrary, the predic-
tion accuracy is on average lower than prediction confi-
dence, resulting in the model being over-confident. On the
other hand, existing model calibration methods are gener-
ally more calibrated than the SOD methods which in gen-
eral do not strive to improve model calibration degree.

Our proposed ASLPMC produces the most calibrated
model whose joint distribution is closer to the oracle than
those of the compared calibration methods and SOD meth-
ods. AdaFocal [17] produces the second most calibrated
model on DUTS-TE. However, the majority of their joint
distribution (blue high density area) is slightly to the right
bottom of the oracle line, making their model slightly less
calibrated. Whereas the high density area of our joint
distribution is well aligned with the oracle line, showing
ASLPMC is more calibrated. Despite the small difference
on the plot, ASLPMC improves over AdaFocal by more than
10% in terms of ECE scores on DUTS-TE dataset. We can
also observe that ASLPMEI is significantly under-confident
for in-distribution data with its joint distribution being at the
top-left side of the oracle line. Its prediction confidences are
limited to between 70% and 80% while the prediction accu-
racies are generally above 90%.

4.3. Model Calibration Degrees on Out-of-
Distribution Dataset

We compare our proposed method with existing model
calibration methods in terms of model calibration degrees
on Out-of-Distribution data. We consider texture images,
where salient objects are completely absent, as OoD sam-
ples for the SOD task. We use Describable Texture Dataset
[9] to evaluate the model calibration degrees on OoD sam-
ples. Fig. 4 shows the joint distribution of prediction confi-
dence and prediction accuracy of various model calibration
methods and our proposed techniques. It can be seen that
the baseline model produces extremely confident predic-
tions for OoD data. However, its accuracy is only 41.88%,
worse than a uniform prior in a binary classification task.
We also observe that Temperature Scaling does not calibrate
the model under data distribution shift in accordance with
literature [50, 45]. Our ASLPMC, being the most calibrated
for in-distribution data, is also more calibrated on the OoD
samples than the existing model calibration methods by a
large margin as shown in Tab. 2. On the other hand, our
ASLPMEI is more successful in handling OoD data. It is
the most calibrated on OoD data, with a larger proportion
of the distribution aligned with the oracle line. As shown in
Tab. 2, it outperforms existing model calibration methods in

Baseline

Mixup MMCE Focal Loss

AdaFocal ASLPMEI ASLPMC

Temperature Scaling

Join D
istribution D

ensity
H

igh
Low

Label Smoothing

Figure 4: Joint distribution of prediction confidence (hor-
izontal axis) and prediction accuracy (vertical axis) on the
Describable Texture Dataset [9], of compared model cali-
bration methods and our proposed ASLPMC and ASLPMEI.

terms of both ECE and OE by significant margins. This can
be attributed to its minimum distribution assumption in the
presence of limited training data.

Table 2: Model calibration methods and our ASLPMC and
ASLPMEI are evaluated on the Out-of-Distribution dataset,
Describable Texture Dataset [9], in terms of ECEEW and
OEEW with 10 bins, and Accuracy (ACC).

Method
Evaluation (%)

ECE ↓ OE ↓ ACC ↑

Baseline 52.36 51.05 41.88
Brier Loss [4] 38.85 37.18 53.62
Temperature Scaling [18] 51.95 50.46 41.59
Label Smoothing [46] 37.22 35.48 55.41
MMCE [30] 40.64 39.67 54.39
Mixup [62] 31.07 29.10 58.71
Focal Loss [45] 40.01 38.43 49.71
AdaFocal [17] 27.55 25.07 55.39
ASLPMC 18.31 16.37 61.93
ASLPMEI 13.43 8.40 62.47

4.4. Discussion

Adaptive Stochastic Label Perturbation: We study the
effect of ASLP on ECE and OE and present the experimen-
tal results in Tab. 3. It shows that ASLPs significantly out-
performs the baseline model, “B”, which does not adopt any
model calibration measures. In addition, ASLPs also out-
performs their static counterparts (SLPs) which use a single



Table 3: Ablation: Effect of Stochastic Label Perturbation (SLP) and Adaptive Stochastic Label Perturbation (ASLP) with
different label perturbation techniques on the model calibration degrees evaluated on Expected Calibration Error (ECE)
and Over-confidence Error (OE). The proposed ASLP is generalised to an Adaptive Label Smoothing (ALS) technique that
adaptively tunes the label softening scale (βada).

Methods
Perturbation Params DUTS-TE [63] DUT-OMRON [80] PASCAL-S [34] SOD [44] ECSSD [78] HKU-IS [33]
α β e ECE ↓ OE ↓ ECE ↓ OE ↓ ECE ↓ OE ↓ ECE ↓ OE ↓ ECE ↓ OE ↓ ECE ↓ OE ↓

Baseline (“B”) 0 0 0 3.48 3.29 4.17 4.02 4.60 4.41 7.42 7.17 1.93 1.86 1.64 1.59
SLPα=0.01

HI 0.01 1.0 ✗ 2.21 1.84 2.96 2.78 3.11 2.82 6.09 5.80 1.03 0.68 1.01 0.53
SLPα=0.02

SI 0.02 0.75 ✗ 2.25 2.05 3.00 2.82 3.05 2.83 6.40 6.09 0.93 0.84 0.87 0.60
SLPα=0.03

M 0.03 0.5 ✗ 2.24 2.03 3.17 2.97 3.41 3.20 6.26 5.97 0.83 0.77 0.96 0.81
SLPα=0.03

DM 0.03 0.5 ✓ 2.29 2.09 3.00 2.83 3.47 3.24 6.72 6.43 1.13 1.04 0.96 0.80
LSβ=0.03 1.0 0.03 ✗ 2.20 1.99 3.09 2.91 3.24 3.03 6.27 5.99 1.03 0.78 0.92 0.67
ASLPHI

MC αada 1.0 ✗ 1.40 1.22 1.99 1.83 2.31 2.10 5.50 5.17 0.48 0.20 0.79 0.17
ASLPSI

MC αada 0.75 ✗ 1.51 1.29 2.14 1.95 2.29 2.07 5.12 4.80 0.61 0.34 0.84 0.22
ASLPM

MC αada 0.5 ✗ 1.47 1.27 1.87 1.80 2.37 2.13 5.63 5.29 0.51 0.23 0.80 0.20
ASLPM

MC αada 0.5 ✓ 1.64 1.20 1.94 1.75 2.03 1.81 4.14 3.84 0.80 0.42 0.87 0.42
ALS 1.0 βada ✗ 1.46 1.25 2.07 1.87 2.30 2.10 5.44 5.18 0.61 0.25 0.81 0.32

α for the entire dataset. This can be attributed to the ap-
proach modelling variance of noise with input image.
Generalisation of Adaptive Label Smoothing: We gener-
alise the proposed ASLP to label smoothing, developing an
Adaptive Label Smoothing (ALS) that fixes the label per-
turbation probability to 100%, akin to the label smoothing
technique [46], and tunes a smoothing factor for each train-
ing sample. As shown in Tab. 3, ALS effectively reduces
the ECE and OE scores over its static version LSβ=0.03, and
achieves similar performances with ASLPMC approaches on
the six testing datasets. It manifests that our proposed ASLP
can be generalised onto other label perturbation techniques
as a measure to calibrate the SOD models.
Compatibility with SOTA SOD Models We retrain
EBMGSOD [89], ICON [97] and EDN [72] with the pro-
posed ASLPMC and find significant improvements in terms
of model calibration degrees without compromising their
classification abilities (See Appendix E).
Compatibility with Different Backbones: We demon-
strate that our proposed method is also compatible with
VGG16 [58] and Swin transformer [39] backbones. See
Appendix I for details.
Effectiveness in Other Dense Binary Classification
Tasks: Experiments on Smoke Detection [79] and Camou-
flaged Object Detection [14] demonstrate that our method
can be generalised to dense binary classification tasks to im-
prove model calibration degrees. See Appendix F.
Generalisation to Multi-Class Segmentation task: Ex-
periments on Semantic Segmentation [11] demonstrate that
our method can also be generalised to dense multi-class
classification tasks. See Appendix G.

4.5. Hyperparameters

Static Stochastic Label Perturbation: Tab. 3 shows that,
under a small label perturbation probability, the four la-
bel perturbation techniques can alleviate the model over-
confidence issues of the baseline model, “B”, on the six

testing datasets. They also achieve similar results to La-
bel Smoothing [46], setting β = 0.03 and α = 1. Each SLP
has a wide range of effective label perturbation probabil-
ities that improves model calibrations (See Appendix H.2
Tab. 13), and these improvements do not sacrifice the
model’s classification performance (see Appendix H.3).
Larger values of the label perturbation probability eventu-
ally lead to increasing ECE scores as the model transitions
to being under-confident (see Appendix H.2).
Updating Rate η: ASLPMC models trained with η ∈
[0.0002, 0.005] are generally stable, producing similar cal-
ibration degrees and classification performances. Values
smaller than 0.001 require longer training and high values
lead to sub-optimal results (See Appendix J).
Regularisation Strength λ: λ spanning between 500 and
10,000 are optimal. Very high values for λ can lead to os-
cillation resulting in poor performance (See Appendix J).

5. Conclusion
This work first introduces a Self-Calibrating Binary

Cross Entropy loss that unifies label perturbation processes
including stochastic approaches and label smoothing to im-
prove model calibration while preserving classification ac-
curacy. We further propose an Adaptive Stochastic Label
Perturbation that learns a unique label perturbation level for
individual training image. Following Maximum Entropy In-
ference, ASLP adopts classification / calibration as proxy
for known data and maximises the prediction entropy with
respect to missing data. The proposed ASLPMC improves
model calibration degrees on both in-distribution samples
and out-of-distribution samples, without negatively impact-
ing classification performance. The approach can be eas-
ily applied to different models, which we demonstrate with
several SOTA models. It is also demonstrated to be effective
on a semantic segmentation task and other binary tasks.
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A. Derivation
A.1. Self-Calibration Binary Cross Entropy (SC-BCE) Loss

We show that our SC-BCE loss is close to label smoothing in binary classification. Label smoothing, as defined in Eq. (7), is a typical
data augmentation that softens the training supervision signals [46, 41, 77, 84].

S(Y, σ) = LS(Y, σ) = (1− σ)Y +
σ

K
, ∀y ∈ Y. (7)

where σ is the label smoothing strength hyperparameter and K is the number of classes, thus is set to K = 2 for a binary task. For image
label pairs X,Y ∼ P , the BCE loss with label smoothing takes the form:

LBCE(θ,X, S(Y, σ)) = Ex,y∈X,Y

[
−
(
(1− σ)y +

σ

2

)
log fθ(x)−

(
1−

(
(1− σ)y +

σ

2

))
log(1− fθ(x))

]
. (8)

On the other hand, our proposed SC-BCE loss, taking expectation over the Bernoulli variable Zt(x, y), can be written as:

EZt

[
LSC-BCE(θ,X, Y, α, β)

]
=EZt

[
(1− Zt)LBCE(X,Y ; θ) + ZtLBCE(X,P (Y, β), θ)

]
=(1− α)LBCE(X,Y ; θ) + αLBCE(X,P (Y, β), θ)

=Ex,y∈X,Y

[
−
(
(1− α)y + αp

)
log fθ(x)−

(
1− (1− α)y − αp

)
log(1− fθ(x))

] (9)

Substitute: p(Y, β) = (1− β) · y + β
2

, then we have:

Ex,y∈X,Y

[
−
(
(1− α)y + αp

)
log fθ(x)−

(
1− (1− α)y − αp

)
log(1− fθ(x))

]
=Ex,y∈X,Y

[
−
(
(1− α)y + α

(
(1− β)y +

β

2

))
log fθ(x)−

(
1−

(
(1− α)y + α

(
(1− β)y +

β

2

))
log(1− fθ(x))

]
=Ex,y∈X,Y

[
−
(
(1− αβ)y +

αβ

2

)
log fθ(x)−

(
1−

(
(1− αβ)y +

αβ

2

))
log(1− fθ(x))

]
=Lbce(θ,X, S(Y, αβ)),

(10)

where we let αβ = σ to show that the expectation of SC-BCE loss over with a stochastically perturbed label over a Bernoulli variable is
equivalent to a BCE loss with a smoothed label.

A.2. Connection between SC-BCE and Maximum Entropy Inference
We prove that the SC-BCE loss maximises prediction entropy as well as minimising cross entropy between the prediction distribution

and groundtruth distribution. Given the SC-BCE loss written as:

LSC-BCE(θ,X, Y, α, β) =(1− Zt)LBCE(θ,X, Y ) + ZtLBCE(θ,X, P (Y, β))

=(1− Zt)LBCE(θ,X, Y ) + Zt

[
(1− β

2
)LBCE(θ,X, Y ) +

β

2
LBCE(θ,X, P (Y, 2))

]

=(1− βZt)LBCE(θ,X, Y ) +
βZt

2

[
LBCE(θ,X, P (Y, 2)) + LBCE(θ,X, Y )

] (11)

where the first term includes a regular BCE loss LBCE(θ,X, Y ) with random weight 1 − βZt and P (Y, 2) represents an inverted label.
Aside from the coefficient Zβ/2, the second term can be expanded as a simpler form without label Y by collecting the Y terms:

LBCE(θ,X, P (Y, 2)) + LBCE(θ,X, Y ) =− Ex,y∈X,Y

[
(1− y) log fθ(x) + y log(1− fθ(x))

]
− Ex,y∈X,Y

[
y log fθ(x) + (1− y) log(1− fθ(x))

]
=− Ex∈X

[
log fθ(x) + log(1− fθ(x))

]
=2 · Ex∈X

[
−1

2
log fθ(X)− 1

2
log(1− fθ(X))

]
=2 · LBCE(θ,X,U)

(12)

where U is a uniform binary categorical distribution. Substituting Eq. (12) into Eq. 11 yields:

LSC-BCE(θ,X, Y, α, β) = (1− βZt) · LBCE(θ,X, Y ) + βZt · LBCE(θ,X,U) (13)



A.3. Derivation of Grad-α
We start with the SC-BCE loss with sample-wise Bernoulli variable on a finite training dataset DTR = {xi, yi}Ni=1 as:

LSC-BCE(θ,X, Y, α, β) =

N∑
i=1

(1− Zt(xi, yi)) · LBCE(θ, xi, yi) + Zt(xi, yi) · LBCE(θ, xi, p(yi, β)). (14)

where the variable is drawn from sample-specific Bernoulli distributions: Zt(xi, yi) ∼ B(1, αi), i = 1, . . . , N . Further, we take expec-
tation over the Bernoulli variable for each individual training sample to recover:

N∑
i=1

EZt(xi,yi)

[
(1− Zt(xi, yi)) · LBCE(θ, xi, yi) + Zt(xi, yi) · LBCE(θ, xi, p(yi, β))

]
=

N∑
i=1

(1− αi) · LBCE(θ, xi, yi) + αi · LBCE(θ, xi, p(yi, β)).

(15)

We further differentiate the above equation w.r.t. sample-specific label perturbation probability αi, i = 1, . . . , N to obtain:

∂
∑N

i=1(1− αi) · LBCE(θ, xi, yi) + αi · LBCE(θ, xi, p(yi, β))

∂αi
=− LBCE(θ, xi, yi) + LBCE(θ, xi, p(yi, β)),

for i = 1, . . . , N,

(16)

Performing gradient descent according to this gradient will lead to an optimal value for α with the regularization term. We find Eq. 16
(Unnormalised ∇αi ) favours perturbation methods with higher perturbation strength β, leading them to to converge faster. This is because
label perturbation techniques with higher strengths, β, by definition have lower label perturbation probabilities, α, overall to achieve optimal
model calibration degrees whereas unnormalised Grad-α agnostic to label perturbation strength. As illustrated in Fig. 5, with unnormalised
Grad-α, Hard Inversion (HI) with the largest perturbation strength β = 2 converges with only 5 epochs of ASLP training whereas it takes
Moderation (M) and Dynamic Moderation (DM) with moderate perturbation strength (β = 1) around 11 epochs to converge.
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Figure 5: Convergence speed of unnormalised (dashed line) and normalised (solid line) Grad-α with different perturbation
strengths: (1) HI: β = 2, (2) SI: β = 1.5, (3) M: β = 1, (4) DM: β = 1.

We propose a normalised version that allows ASLP under different perturbation strengths β ∈ (0, 2] to converge equally fast. The
unnormalised version (Eq. 16) is divided by β/2 and the normalised ∇αi is as:

∇αi =
2 ·
(
LBCE(θ, xi, yi) + LBCE(θ, xi, p(yi, β))

)
β

, i = 1, . . . , N (17)



Fig. 5 illustrates that ASLP with different perturbation strengths with normalised ∇αi can converge equally fast.

A.4. Confidence of the Expectation of Stochastically Perturbed Label
We define the expectation of the stochastically perturbed label as:

EZt

[
(1− Zt) · Y + Zt · P (Y, β)

]
= (1− αβ) · Y +

αβ

2
, (18)

where we require β ∈ [0, 2] and α ∈ [0, 1
β
). The resultant product is αβ ∈ [0, 1). The expected confidence of perturbed label is:

C

(
EZt

[
(1− Zt) · Y + Zt · P (Y, β)

])
=
∣∣∣(1− αβ) · Y +

αβ

2
− 0.5

∣∣∣+ 0.5

=1− αβ

2
, ∀Y = {0, 1}

(19)

A.5. Adaptive Label Smoothing (ALS)
Adaptive Label Smoothing (ASL) applies Label Smoothing with per-image label perturbation strength (α = 1 and {βi}Ni=1). Similar

to the derivation of ∇αi , we differentiate Eq. (15) w.r.t. image-specific label perturbation strength as:

∇βi =
∂
∑N

i=1(1− 1 · βi) · LBCE(θ, xi, yi) + 1 · βi · LBCE(θ, xi, p(yi, βi))

∂βi

=− LBCE(θ, xi, yi) + LBCE(θ, xi, p(yi, βi)), for i = 1, . . . , N,

(20)

The updating rule (ALSMC) that incorporates adaptive label smoothing to maximise model calibration is formulated as:

βn+1
i = βn

i + η ·
(
LBCE(θ, xi, p(yi, βi))− LBCE(θ, xi, yi)︸ ︷︷ ︸

∇βi

+λ ·min
((

1− 1 · βi

2

)
− A(θlm,DVAL), 0

)
︸ ︷︷ ︸

RegC

)

for i = 1, . . . , N,

(21)



B. Implementations
B.1. Model

Our model adopts a simple U-Net [57] structure consisting of an encoder and a decoder. Feature maps {Fi ∈ i ·C × H
i·8 × W

i·8}
4
i=1 are

extracted by the encoder, where C = 256 and i indexes from low level to high level with an increasing value.
The model outputs pixel-wise logits σ(xi) ∈ (−∞,∞)1×H×W , i = 1, . . . , N where N is the total number of samples, which is

further processed with a Sigmoid function to produce the prediction probability as:

fθ(xi) = Sigmoid(σ(xi)) =
1

1 + e−σ(xi)
, i = 1, . . . , N. (22)

The prediction probability after the Sigmoid function is in the range fθ(x) ∈ (0, 1)1×H×W . The predicted label is “foreground” (Labeled
as “1”) if the prediction probability is larger than 0.5 and is “background” (labeled as “0”) otherwise as:

ŷi = 1(fθ(xi) > 0.5), i = 1, . . . , N. (23)

The probability of predicted label ŷ, also known as the winning class, is:

Pŷi = |fθ(xi)− 0.5|+ 0.5, i = 1, . . . , N. (24)

B.2. Evaluation Metrics - Model Calibration Degree

B.2.1 Equal-Width Expected Calibration Error (ECEEW) [18]

ECEEW =

M∑
i=1

|Bi|
|D| |Ci −Ai|, (25)

where M is the total number of bins, Bi and D denote the size of the ith bin and the dataset respectively, Ci = 1
|Bi|

∑
j∈Bi

Pŷj is the
mean prediction confidence of the ith bin, and Ai =

1
|Bi|

∑
j∈Bi

1(ŷi == yi) is the mean accuracy of the ith bin. ECEEW has fixed-width

bins, with the range
[

i
M
, i+1

M

)
, i = 0, . . . ,M − 1 for the ith bin.

B.2.2 Equal-Mass Expected Calibration Error (ECEEM) [48]

ECEEW =

M∑
i=1

|Bi|
|D| · |Ci −Ai|, where |Bj | = |Bk|, ∀j, k ∈ [1,M ]. (26)

Equal-Mass Expected Calibration Error (ECEEM) is different from Equal-Width Expected Calibration Error (ECEEW) by constraining all
bins to have equal size.

B.2.3 SWEEP Expected Calibration Error (ECESWEEP) [56]

ECESWEEP = (

b∗∑
i=1

|Bi|
|D| |Ci −Ai · |p)

1
p , where b∗ = max(b|1 ≤ b ≤ n,∀b′ ≤ b∗, A1 ≤ · · · ≤ Ab′) (27)

p is a hyperparameter that is set to p = 1 and n is the largest bin number to be tested which we set to n = 100. ECESWEEP follows ECEEM

to constrain equal-size bins. ECESWEEP starts with bin number B = 1 and keeps increasing the bin number until monotony in bin accuracy
breaks.

B.2.4 DEBIAS Expected Calibration Error (ECEDEBIAS) [29]

ECEDEBIAS =

M∑
i=1

|Bi|
|D|

[
(Ci −Ai)

2 − Ai · (1−Ai)

|Bi| − 1

]
(28)

DEBIAS Expected Calibration Error (ECEDEBIAS) adopts equal-width bins.

B.2.5 Over-confidence Error (OE)

OE =

M∑
i=1

|Bi|
|D| · 1(Ci > Ai) · |Ci −Ai|, (29)

We adapt OE to different binning schemes of ECEEW, ECEEM, ECESWEEP to produce OEEW, OEEM, OESWEEP respectively.



B.3. Evaluation Metrics - Dense Classification

B.3.1 Prediction Accuracy

The model prediction accuracy is computed as:

A(θ,D) =
1

N ×H ×W

N∑
i=1

H∑
j=1

W∑
k=1

1(ŷj,k
i = yj,k

i ), (30)

where D = {xi, yi}Ni=1 denotes the dataset with N samples, H and W is the height and the width of sample respectively.

B.3.2 F-measure

F-measure is computed as:

Fξ =
(1 + ξ2)× Precision × Recall

ξ2 × Precision + Recall
, (31)

where ξ is a hyperparameter. We follow previous works [72, 37, 92, 36] to set ξ2 = 0.3. We report the maximum F-measure which selects
the best results computed with various binarising threshold.

B.3.3 E-measure

Enhanced-alignment measure (E-measure) [12] is computed as:

QFM =
1

H ×W

H∑
i=1

W∑
j=1

ϕFM (i, j), where

ϕFM = f(ξFM ) =
1

4
(1 + ξFM )2,

ξFM =
2 · φGT ◦ φFM

φGT ◦ φGT + φFM ◦ φFM
,

φI = I − µi ·A,

(32)

where I ∈ (0, 1) is a dense binary prediction map with mean value µI , A is an one matrix whose dimension matches that of I , φGT and
φFM denote groundtruth map and model prediction respectively, H and W is image height and width. Maximum E-measure replaces the
mean value with a range of binarising thresholds and report the highest result.

B.4. Datasets
DUTS-TR [63]: is commonly used training dataset for Salient Object Detection task. It consists of 10,553 pairs of image and pixel-wise
annotations. We take a subset consisting 1,000 training samples as a validation set and uses the remaining 9,553 samples for training.
DUTS-TE [63]: is a testing dataset consisting of 5,019 images. Both DUTS-TE and DUTS-TR belong to the DUTS dataset.
DUT-OMRON [80]: consists of 5,168 testing images, each of which includes at least one structurally complex foreground object(s).
PASCAL-S [34]: contains 850 testing samples that are obtained from PASCAL-VOC dataset, which is designed for semantic segmentation
task.
SOD [44]: includes 300 testing images of a wide variety of natural scenes.
ECSSD [78]: has 1,000 semantically meaningful images for testing.
HKU-IS [33]: is comprised of 4,447 testing images, each having multiple foreground objects.
Describable Texture Dataset (DTD) [9]: contains 5,640 real-world texture images. These images are grouped into 47 categories described
by adjectives such as “grooved”, “woven”, “matted”. Some texture images have a distinct region that could be considered to be salient. We
selectively choose only 500 texture images that have no obvious salient object and show some examples in Fig. 6. We consider the selected
texture images an Out-of-Distribution samples for salient object detection. The complete collection of the 500 selected texture images are
presented in Fig. 11 at the end of the Appendix.



Figure 6: Texture image samples from Describable Texture Dataset [9].



C. Model Calibration Benchmark with ECEEM, ECESWEEP and ECEDEBIAS

We present the model calibration degrees of existing SOD methods, model calibration methods and our proposed methods evaluated in
terms of: (i) Equal-Mass Expected Calibration Error ECEEM and Equal-Mass Over-confidence Error OEEM in Tab. 4, (ii) ECESWEEP and
OEEM in Tab. 5, and (iii) ECEDEBIAS in Tab. 6. Our proposed method, ASLPMC, still outperforms existing salient object detection and model
calibration methods with these model calibration evaluation metrics.

Table 4: Salient object detection model calibration degree benchmark evaluated with ECEEM (%) and OEEM (%). We set
the number of bins to B = 10. (values are shown in % and red and blue indicate the best and the second-best performance
respectively.)

Methods Year
DUTS-TE [63] DUT-OMRON [80] PASCAL-S [34] SOD [44] ECSSD [78] HKU-IS [33]

ECEEM ↓ OEEM ↓ ECEEM ↓ OEEM ↓ ECEEM ↓ OEEM ↓ ECEEM ↓ OEEM ↓ ECEEM ↓ OEEM ↓ ECEEM ↓ OEEM ↓

SOD
Methods

MSRNet [32] 2017 3.35 3.03 3.64 3.40 4.23 3.93 5.52 5.13 1.12 1.08 1.05 0.96
SRM [65] 2017 4.45 4.05 4.10 3.78 4.92 4.53 7.69 7.22 2.81 2.57 2.20 2.00
Amulet [92] 2017 5.63 5.10 5.46 4.98 5.69 5.23 8.24 7.63 2.64 2.45 2.09 1.94
BMPM [91] 2018 3.47 3.21 4.52 4.18 4.77 4.57 8.00 7.88 1.89 1.83 1.55 1.50
DGRL [67] 2018 4.42 4.04 3.87 3.57 4.91 4.57 5.69 5.35 2.23 2.07 1.69 1.53
PAGR [93] 2018 4.00 3.63 3.28 3.00 5.06 4.67 7.60 7.14 2.49 2.29 1.40 1.25
PiCANet [37] 2018 5.37 4.98 5.17 4.82 5.78 5.41 8.75 8.33 2.67 2.44 2.31 2.09
CPD [73] 2019 3.10 2.90 3.62 3.42 4.11 3.86 6.76 6.42 2.07 1.94 1.81 1.70
BASNet [55] 2019 6.07 5.85 6.15 5.96 5.72 5.48 5.07 4.88 2.12 2.04 2.36 2.28
EGNet [94] 2019 3.54 3.29 3.55 3.33 4.92 4.61 6.42 6.07 1.96 1.84 1.64 1.55
AFNet [15] 2019 3.58 3.33 3.02 2.81 4.08 3.79 6.65 6.14 2.19 2.04 1.78 1.66
PoolNet [36] 2019 3.80 3.52 3.53 3.30 5.44 5.09 6.87 6.49 2.18 2.04 1.61 1.52
GCPANet [7] 2020 4.40 4.12 4.84 4.61 4.92 4.64 4.20 3.94 1.87 1.76 1.54 1.47
MINet [51] 2020 5.02 4.76 5.40 5.13 6.17 5.86 8.29 8.01 2.84 2.67 2.31 2.17
F3Met [69] 2020 3.47 3.26 3.88 3.68 4.56 4.32 7.34 6.95 2.45 2.31 1.91 1.80
EBMGSOD [89] 2021 3.64 3.41 3.78 3.55 4.79 4.52 5.83 5.56 2.30 2.15 1.85 1.72
ICON [97] 2021 2.40 2.26 2.95 2.81 3.45 3.29 4.27 4.09 1.34 1.25 1.23 1.16
PFSNet [43] 2021 3.07 2.84 3.44 3.16 4.99 4.64 5.82 5.48 2.43 2.17 2.87 2.70
EDN [72] 2022 3.89 3.68 4.35 4.18 4.62 4.41 4.02 3.85 1.60 1.52 1.34 1.26

Model
Calibration
Methods

Brier Loss [4] 1950 2.78 2.61 3.55 3.40 3.90 3.72 6.40 6.18 1.34 1.31 1.04 1.00
TS [18] 2017 2.77 2.60 3.44 3.30 3.85 3.67 6.64 6.40 1.21 1.17 0.95 0.91
MMCE [30] 2018 2.86 2.69 3.56 3.42 4.07 3.89 6.85 6.63 1.41 1.35 1.18 1.13
LS [46] 2019 2.74 2.10 3.51 2.81 3.97 3.35 4.50 4.10 1.50 0.99 1.44 0.84
Mixup [62] 2019 3.00 2.73 3.40 3.13 2.14 0.59 4.94 4.62 1.86 0.45 4.94 0.20
Focal Loss [45] 2020 2.15 2.03 2.69 2.38 2.95 2.70 4.61 4.38 1.57 1.16 1.29 0.87
AdaFocal [17] 2022 1.74 1.50 1.96 1.45 2.45 2.02 3.88 3.09 1.79 0.74 1.45 0.44

Our
Methods

ASLPECE 2023 1.53 1.41 1.72 1.43 1.58 1.55 2.30 1.66 0.71 0.35 0.84 0.19
ASLPMEI 2023 21.00 0.08 20.24 0.00 19.89 0.00 18.14 0.00 22.15 0.00 22.58 0.00



Table 5: Salient object detection model calibration degree benchmark evaluated with ECESWEEP (%) and OESWEEP (%). The
number of bins for each evaluation is selected to ensure a monotonically increasing accuracy in the bins [56] (values are
shown in % and red and blue indicate the best and the second-best performance respectively.)

Methods Year
DUTS-TE [63] DUT-OMRON [80] PASCAL-S [34] SOD [44] ECSSD [78] HKU-IS [33]

ECESW ↓ OESW ↓ ECESW ↓ OESW ↓ ECESW ↓ OESW ↓ ECESW ↓ OESW ↓ ECESW ↓ OESW ↓ ECESW ↓ OESW ↓

SOD
Methods

MSRNet [32] 2017 3.16 2.85 4.10 3.86 4.09 3.85 5.30 5.05 1.04 1.00 1.01 0.94
SRM [65] 2017 4.66 4.32 4.92 4.61 5.77 5.43 8.04 7.56 2.98 2.74 2.12 1.95
Amulet [92] 2017 6.52 6.04 7.31 6.85 6.50 6.08 8.47 7.88 2.17 2.06 2.47 2.32
BMPM [91] 2018 4.77 4.38 4.27 3.98 6.13 5.74 8.74 8.31 2.09 1.72 2.03 1.85
DGRL [67] 2018 4.51 4.30 3.98 3.81 4.61 4.46 5.23 4.89 1.98 1.84 1.88 1.73
PAGR [93] 2018 4.40 4.07 5.20 5.26 5.71 5.44 12.07 11.45 2.80 2.62 1.58 1.50
PiCANet [37] 2018 4.81 4.52 4.17 3.86 5.34 4.91 7.71 -7.27 2.75 2.46 2.08 1.89
CPD [73] 2019 4.00 3.80 4.45 4.33 4.76 4.58 6.98 6.65 2.29 2.16 2.26 2.15
BASNet [55] 2019 7.17 6.94 7.10 6.91 7.70 7.48 7.84 7.74 2.14 2.11 2.59 2.51
EGNet [94] 2019 3.91 3.68 4.29 4.08 4.75 4.55 5.89 5.56 1.84 1.71 1.29 1.23
AFNet [15] 2019 4.31 4.06 4.48 4.27 4.56 4.49 6.79 6.24 2.21 2.06 2.06 1.95
PoolNet [36] 2019 3.58 3.36 4.30 4.10 6.09 5.75 6.72 5.75 1.98 1.85 1.53 1.45
GCPANet [7] 2020 4.45 4.18 5.26 5.04 5.01 4.75 5.74 5.60 1.63 1.52 1.58 1.51
MINet [51] 2020 4.97 4.69 6.03 5.77 6.97 6.67 8.17 7.97 1.99 1.93 1.48 1.45
F3Met [69] 2020 3.29 3.15 4.56 4.36 4.26 4.10 7.74 7.29 2.20 2.08 2.29 2.17
EBMGSOD [89] 2021 4.32 4.10 5.03 4.81 4.40 4.29 5.46 5.18 2.53 2.39 2.30 2.17
ICON [97] 2021 2.64 2.54 4.16 4.02 3.93 3.90 5.13 5.01 1.32 1.24 1.20 1.14
PFSNet [43] 2021 4.89 4.79 5.89 5.61 7.73 7.54 10.74 10.45 2.31 2.28 2.21 2.19
EDN [72] 2022 4.28 4.07 4.78 4.60 5.10 4.92 5.63 5.55 1.48 1.45 1.54 1.45

Model
Calibration
Methods

Brier Loss [4] 1950 3.43 3.17 4.39 4.15 4.44 4.22 5.03 4.22 1.48 1.38 1.21 1.15
TS [18] 2017 3.30 3.03 4.12 3.91 3.48 3.30 5.33 4.97 1.29 1.22 1.13 1.08
MMCE [30] 2018 3.44 3.20 4.38 4.17 3.66 3.48 5.55 5.19 1.40 1.31 1.36 1.29
LS [46] 2019 2.97 2.92 3.88 3.81 4.08 4.99 5.67 5.42 1.46 1.27 1.32 0.99
Mixup [62] 2019 3.01 2.76 4.47 4.21 1.84 1.26 5.26 4.99 1.28 1.11 1.73 1.48
Focal Loss [45] 2020 2.23 2.14 3.73 3.43 3.03 2.93 4.77 4.59 1.30 1.16 1.40 1.08
AdaFocal [17] 2022 1.79 1.60 2.44 2.08 1.88 1.78 4.16 3.46 1.16 0.97 1.03 0.86

Our
Methods

ASLPECE 2023 1.37 1.21 1.67 1.33 1.77 1.51 2.73 2.41 0.97 0.61 0.89 0.41
ASLPMEI 2023 20.78 0.00 19.64 0.00 19.74 0.00 17.35 0.00 22.47 0.00 22.90 0.00



Table 6: Salient object detection model calibration degree benchmark evaluated with ECEDEBIAS [29]. We set he number of
bins to B = 10. (values are shown in % and red and blue indicate the best and the second-best performance respectively.)

Methods Year
ECEDEBIAS(%) ↓

DUTS-TE [63] DUT-OMRON [80] PASCAL-S [34] SOD [44] ECSSD [78] HKU-IS [33]

SOD
Methods

MSRNet [32] 2017 0.167 0.188 0.235 0.524 0.020 0.015
SRM [65] 2017 0.419 0.358 0.436 1.221 0.186 0.110
Amulet [92] 2017 0.553 0.536 0.508 1.165 0.235 0.079
BMPM [91] 2018 0.471 0.378 0.440 1.175 0.191 0.134
DGRL [67] 2018 0.420 0.370 0.430 0.807 0.096 0.072
PAGR [93] 2018 0.340 0.418 0.470 1.568 0.137 0.053
PiCANet [37] 2018 0.456 0.359 0.461 0.985 0.175 0.124
CPD [73] 2019 0.390 0.353 0.567 1.233 0.145 0.109
BASNet [55] 2019 0.544 0.536 0.683 1.190 0.138 0.127
EGNet [94] 2019 0.318 0.304 0.576 0.860 0.109 0.066
AFNet [15] 2019 0.381 0.348 0.471 0.934 0.132 0.091
PoolNet [36] 2019 0.335 0.326 0.612 0.907 0.107 0.055
GCPANet [7] 2020 0.388 0.318 0.372 0.569 0.068 0.043
MINet [51] 2020 0.448 0.505 0.606 1.041 0.172 0.142
F3Met [69] 2020 0.457 0.468 0.556 0.816 0.193 0.167
EBMGSOD [89] 2021 0.374 0.406 0.508 0.733 0.154 0.130
ICON [97] 2021 0.306 0.390 0.382 0.607 0.098 0.101
PFSNet [43] 2021 0.323 0.339 0.539 0.594 0.588 0.435
EDN [72] 2022 0.285 0.281 0.407 0.745 0.068 0.061

Model
Calibration
Methods

Brier Loss [4] 1950 0.241 0.265 0.330 0.572 0.051 0.035
TS [18] 2017 0.230 0.246 0.338 0.631 0.040 0.024
MMCE [30] 2018 0.250 0.269 0.378 0.752 0.054 0.039
LS [46] 2019 0.218 0.241 0.303 0.570 0.047 0.034
Mixup [62] 2019 0.143 0.211 0.110 0.423 0.078 0.482
Focal Loss [45] 2020 0.135 0.193 0.262 0.518 0.070 0.061
AdaFocal [17] 2022 0.069 0.133 0.103 0.383 0.108 0.102

Our
Methods

ASLPECE 2023 0.056 0.103 0.061 0.083 0.024 0.027
ASLPMEI 2023 4.565 4.027 4.079 3.112 5.095 5.301



D. Joint Distribution of Prediction Confidence and Prediction Accuracy on 6 Testing Datasets
Fig. 7 presents the joint distribution of prediction confidence and prediction accuracy of our methods, existing model calibration methods

and some of the salient object detection models on the six SOD testing datasets.

Figure 7: Joint distribution of prediction confidence (horizontal axis) and prediction accuracy (vertical axis) on the six SOD
testing datasets.
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E. Generalisation to Existing SOD Methods
We study the compatibility of the proposed updating rule ASLPMC with some of the existing state-of-the-art SOD models, including

EBMGSOD [89], ICON [97], and EDN [72], and present the model calibration results in Tab. 7. We implement the ASLPMC with the
Hard Inversion (HI) label perturbation technique. The results demonstrate that our proposed method is readily compatible with existing
SOD methods to improve their respective model calibration degrees. Further, we find that incorporation of our proposed ASLPMC into the
training of existing SOD models do not negatively impact their classification performances as demonstrated in Tab. 8.

Table 7: The model calibration degrees of existing Salient Object Detection models with or without the proposed Adaptive
Label Augmentation are evaluated in terms of Equal-Width Expected Calibration Error, ECEEW, and Equal-Width Over-
confidence Error, OEEW, with 10 bins (B = 10).

Methods Year ASLPMC
DUTS-TE [63] DUT-OMRON [80] PASCAL-S [34] SOD [44] ECSSD [78] HKU-IS [33]
ECE ↓ OE ↓ ECE ↓ OE ↓ ECE ↓ OE ↓ ECE ↓ OE ↓ ECE ↓ OE ↓ ECE ↓ OE ↓

EBMGSOD [89] 2021 ✗ 3.45 3.29 4.11 3.95 4.79 4.61 7.48 7.30 2.14 2.05 1.79 1.70
ICON [97] 2021 ✗ 2.89 2.76 3.84 3.71 4.08 3.95 6.70 6.55 1.56 1.49 1.38 1.32
EDN [72] 2022 ✗ 3.62 3.47 4.02 3.90 4.89 4.74 8.81 8.66 2.20 2.13 1.65 1.58
EBMGSOD 2021 ✓ 1.60 1.34 1.91 1.74 2.45 2.23 5.48 5.21 0.77 0.47 0.75 0.22
ICON 2021 ✓ 1.28 1.05 1.88 1.67 2.45 2.17 5.17 4.91 1.25 0.07 1.10 0.05
EDN 2022 ✓ 2.02 1.77 2.23 2.03 2.74 2.55 6.77 6.46 0.82 0.52 0.71 0.35

Table 8: The dense classification accuracy of Salient Object Detection models with or without the proposed Adaptive Label
Augmentation is evaluated with maximum F-measure and maximum E-measure [12].

Methods Year ASLPMC
DUTS-TE [63] DUT-OMRON [80] PASCAL-S [34] SOD [44] ECSSD [78] HKU-IS [33]
Fmax ↑ Emax ↑ Fmax ↑ Emax ↑ Fmax ↑ Emax ↑ Fmax ↑ Emax ↑ Fmax ↑ Emax ↑ Fmax ↑ Emax ↑

EBMGSOD [89] 2021 ✗ 0.850 0.927 0.762 0.867 0.830 0.896 0.834 0.800 0.914 0.944 0.906 0.952
ICON [97] 2021 ✗ 0.860 0.924 0.773 0.876 0.850 0.899 0.815 0.854 0.933 0.954 0.919 0.953
EDN [72] 2022 ✗ 0.893 0.949 0.821 0.900 0.879 0.920 0.840 0.860 0.950 0.969 0.940 0.970
EBMGSOD 2021 ✓ 0.853 0.930 0.767 0.871 0.841 0.901 0.839 0.807 0.923 0.946 0.912 0.956
ICON 2021 ✓ 0.864 0.929 0.776 0.877 0.857 0.904 0.819 0.855 0.940 0.959 0.926 0.959
EDN 2022 ✓ 0.898 0.954 0.824 0.901 0.880 0.923 0.848 0.866 0.952 0.971 0.942 0.972



F. Experiments on Additional Dense Classification Tasks
F.1. Camouflaged Object Detection

We train our model on the COD10K training set [14] which consists of 6,000 training samples. We partition it into a training set of
5,400 samples and a validation set of 600 samples. Four testing datasets, including the COD10K testing set [14], NC4K [42], CAMO [31]
and CHAMELEON [59], are used to evaluate the model calibration degree and dense binary classification accuracy. We train the models
for 50 epochs and the rest of settings follow those in Salient Object Detection.

We apply the proposed ASLPMC with Hard Inversion (HI) and Soft Inversion (SI) label perturbation techniques and ALSMC to improve
the model calibration degrees with four label perturbation techniques and report the results in Tab. 9. It can be observed that both ASLP with
various label perturbation techniques and ALS can also significantly improve model calibration degrees in Camouflaged Object Detection
models. Further, we show that the improvements in model calibration degree are achieved without negatively impacting the classification
accuracy as shown in Tab. 10.

Table 9: Application Adaptive Stochastic Label Perturbation (ASLP) with different label perturbation techniques in Cam-
ouflaged Object Detection task. The model calibration degrees are evaluated with Equal-Width Expected Calibration Error
(ECEEW) and Equal-Width Over-confidence Error (OEEW) with 10 bins. Results are presented in (%).

Methods
Perturbation Params COD10K [14] NC4K [42] CHAMELEON [59] CAMO [31]
α β e ECEEW ↓ OEEW ↓ ECEEW ↓ OEEW ↓ ECEEW ↓ OEEW ↓ ECEEW ↓ OEEW ↓

Baseline (“COD-B”) 0 0 ✗ 1.65 1.55 2.75 2.60 0.63 0.57 3.62 3.46
COD-ASLPHI

MC αada 1.0 ✗ 1.06 0.81 1.67 1.51 0.43 0.12 2.00 1.80
COD-ASLPSI

MC αada 0.75 ✗ 1.05 0.80 1.72 1.55 0.44 0.21 2.03 1.85
COD-ALSMC 1.0 βada ✗ 1.03 0.76 1.69 1.53 0.45 0.28 1.98 1.81

Table 10: Application Adaptive Stochastic Label Perturbation (ASLP) with different label perturbation techniques in the
Camouflaged Object Detection task. The dense classification accuracy is evaluated with maximum F-measure and maximum
E-measure [12].

Methods
Perturbation Params COD10K [14] NC4K [42] CHAMELEON [59] CAMO [31]
α β e Fmax ↑ Emax ↑ Fmax ↑ Emax ↑ Fmax ↑ Emax ↑ Fmax ↑ Emax ↑

Baseline (“COD-B”) 0 0 ✗ 0.715 0.886 0.803 0.902 0.843 0.940 0.749 0.855
COD-ASLPHI

MC αada 1.0 ✗ 0.716 0.886 0.803 0.902 0.845 0.942 0.756 0.861
COD-ASLPSI

MC αada 0.75 ✗ 0.716 0.887 0.802 0.904 0.844 0.943 0.759 0.867
COD-ALSMC 1.0 βada ✗ 0.717 0.887 0.804 0.905 0.845 0.941 0.767 0.868

Table 11: Application Adaptive Stochastic Label Perturbation (ASLP) with different label perturbation techniques in the
Smoke Detection (SD) task. Model calibration degree is evaluated with Equal-Width Expected Calibration Error (ECEEW)
and Equal-Width Over-confidence Error (OEEW) with 10 bins. Dense classification accuracy is evaluated with maximum
F-measure and maximum E-measure [12].

Methods
Perturbation Params SMOKE5K [14]
α β e ECEEW(%) ↓ OEEW(%) ↓ Fmax ↑ Emax ↑

Baseline (“SD-B”) 0 0 ✗ 0.164 0.154 0.763 0.930
SD-ASLPHI

MC αada 1.0 ✗ 0.071 0.063 0.763 0.930
SD-ASLPSI

MC αada 0.75 ✗ 0.076 0.072 0.765 0.932
SD-ALSMC 1.0 βada ✗ 0.079 0.072 0.764 0.930

F.2. Smoke Detection
We train our model on the SMOKE5K training set [79] which consists of 4,600 training samples of real smoke. We partition it into a

training set of 4,200 samples and a validation set of 400 samples. SMOKE5K testing set, comprising of 400 real-smoke images, is used to
evaluate model calibration degree and dense binary classification accuracy.

We apply the proposed ASLPMC with Hard Inversion (HI) and Soft Inversion (SI) label perturbation techniques and ALSMC to improve
the model calibration degrees and report the results in Tab. 11. It can be observed that both ASLPMC with different label perturbation



techniques and ALSMC can significantly improve model calibration degrees in Smoke Detection models, despite the baseline model already
achieving higher calibration degrees compared with baseline models in Salient Object Detection and Camouflaged Object Detection.
We can observe that our proposed methods still achieve improvements in model calibration degree without negatively impacting the
classification accuracy.

G. Experiments on Additional Dense Multi-Class Classification Task - Semantic Segmentation
We evaluate our proposed methods on the PASCAL VOC 2012 segmentation dataset [11] which has 20 foreground categories and 1

background category. The official split has 1,464, 1,449, and 1,456 samples in training, validation and testing sets respectively. Following
previous work [5], we use an augmented training set comprising of 10,582 samples, provided by [19], for model training. As we do not
have access to the groundtruth of “official testing set” whose evaluation is server-based, we adopt the “official validation set” as “our testing
set” to evaluate the model calibration degrees and segmentation accuracies. Similar to our implementation in dense binary classification
tasks, we partition the augmented training set into “our training set” of 9,582 images and “our validation set” of 1,000 images.

We adopt DeepLabv3+ [5] with a ResNet50 backbone as our baseline model (“SS-B”) and apply the proposed ASLPMC with with the
Hard Inversion (HI) label perturbation technique and ALSMC to improve the model calibration degrees. We report model calibration results
evaluated in terms of Equal-Width Expected Calibration Error (ECEEW) and Equal-Width Over-confidence Error (OEEW) with 10 bins in
Tab. 12.

Table 12: Application Adaptive Stochastic Label Perturbation (ASLP) with different label perturbation techniques in a Se-
mantic Segmentation (SS) task. Model calibration degree is evaluated with Equal-Width Expected Calibration Error (ECEEW)
and Equal-Width Over-confidence Error (OEEW) with 10 bins. Segmentation accuracy is evaluated with Intersection-over-
Union (IoU) [5].

Methods
Perturbation Params PASCAL VOC 2012 [11]
α β e ECEEW(%) ↓ OEEW(%) ↓ IoU (%) ↑

Baseline (“SS-B”) 0 0 ✗ 6.29 5.37 71.2
SS-ASLPHI

MC αada 1.0 ✗ 4.05 3.13 71.3
SS-ALSMC 1.0 βada ✗ 4.10 3.24 71.5



H. Static Stochastic Label Perturbation
H.1. Implementation

We implement four static stochastic label perturbation techniques each of which have a single label perturbation probability α for the
entire training dataset. Their details are as below:

• Hard Inversion (HI) produces the perturbed label by inverting the groundtruth label with p = LP(y, 2) = 1 − y. Intuitively, it
switches the label category from “salient” to “non-salient” and vice versa. The label perturbation probability is limited to α ∈ [0, 0.5)
to avoid learning a complete opposite task (non-salient background detection).

• Soft Inversion (SI) inverts the label category and softens the target with p = LP(y, 0.75) = −0.5y + 0.75. Similarly, the label
perturbation probability is limited to p ∈ [0, 1

1.5
) to prevent from learning a complete opposite task.

• Moderation (M) transforms groundtruth label into a prior distribution on the two classes (salient foreground object v.s. non-salient
background), as p = LP(y, 0.5) = 0.5. The label perturbation probability is in the range α ∈ [0, 1).

• Dynamic Moderation (DM) introduces additional stochasticity on top of the Moderation method by adding an additional noise
sampled from a truncated normal distribution2: p = LP(y, 0.5) + e = 0.5 + e, e ∼ N−0.5,0.5(0, 1). The label perturbation
probability is in the range α ∈ [0, 1).

H.2. Effect of Static Stochastic Label Perturbation Techniques on Model Calibration Degrees
Fig. 8 presents model calibration degrees, evaluated in terms of Equal-Width Expected Calibration Error (ECEEW) and Equal-Width

Over-confidence Error (OEEW) with 100 bins (B = 100), of various static stochastic label perturbation techniques, in which a unique
label perturbation probability α is set for all samples throughout the training. We can observe that, with an increasing label perturbation
probability, ECE scores tend to reduce to a critical points before climbing. This is caused by the model transitioning from being over-
confident to under-confident. This is evidenced in the OE scores which keep decreasing until 0 when the label perturbation probability
increases. Further, “HI” has the steepest change in terms of both ECE and OE scores. This rate can be related to the product of label
perturbation probability and strength αβ. We also find a dampening effect of additional stochasticity at high label perturbation probability
range (α ∈ [0.4, 0.6]) where “DM” is consistently less under-confident than “M”.

Table 13: Effect label perturbation probability range (%) for different static stochastic label perturbation techniques to reduce
the Equal-Width Expected Calibration Error (ECEEW) scores on the six testing datasets.

Static SLP Technique DUTS-TE [63] DUT-OMRON [80] PASCAL-S [34] SOD [44] ECSSD [78] HKU-IS [33]

Hard Inversion (HI) 0 - 5% 0 - 3% 0 - 5% 0 - 10% 0 - 1% 0 - 1%
Soft Inversion (SI) 0 - 5% 0 - 5% 0 - 5% 0 - 10% 0 - 2% 0 - 2%
Moderation (M) 0 - 5% 0 - 5% 0 - 5% 0 - 20% 0 - 3% 0 - 3%
Dynamic Moderation (DM) 0 - 5% 0 - 5% 0 - 5% 0 - 20% 0 - 3% 0 - 3%

The effective label perturbation probability range for each static SLP technique on the six testing datasets is summarised in Tab. 13.
In general, the static SLPs have a wide range of effective label perturbation probability leading to reduced ECE scores compared to the
baseline. The widest effective label perturbation probability range is found on the SOD dataset, with 0 - 10% for “HI” and “SI” and 0 -
20% for “M” and “DM”. This can be attributed to the baseline model being the most mis-calibrated on the SOD dataset, thus stronger label
augmentation measures are required to transform the model from being over-confident to being under-confident. On the other hand, the
baseline model is the most calibrated on the ECSSD and the HKU-IS datasets, indicating a small gap between the prediction confidence
and prediction accuracy distributions. That leaves little space for label augmentation techniques to reduce the prediction confidence in
order to match the prediction accuracy.

H.3. Effect of Static Stochastic Label Perturbation Techniques on Dense Binary Classification Performance
We present the dense binary classification performance, evaluated in terms of maximum F measure, of various static stochastic label

perturbation techniques in Fig. 9. It can be observed that in the effective label perturbation probability range for respective static SLP
techniques, the dense binary classification performances are not negatively impacted. The performance drop is observed when the product
αβ is too high, e.g. α ∈ [0.2, 0.3] for “HI”, α = 0.4 for “SI”, and α = 0.6 for “DM”. Overall, incorporation of static SLP techniques,
with an effective label perturbation probability, can achieve improved model calibration degrees without sacrificing the dense bianry
classification performance.

2Truncated normal distribution Na,b(µ, σ), where a and b indicate the bound, µ is the mean and σ is the variance.
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Figure 8: Model calibration degrees, evaluated in terms of Equal-Width Expected Calibration Error (ECEEW) and Equal-
Width Over-confidence Error (OEEW) with 100 bins (B = 100), of various static stochastic label perturbation techniques
under different label perturbation probabilities on the six testing datasets: (a): DUTS-TE, (b) DUT-OMRON, (c) PASCAL-S,
(d) SOD, (e) ECSSD, (f) HKU-IS.
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Figure 8: Model calibration degrees, evaluated in terms of Equal-Width Expected Calibration Error (ECEEW) and Equal-
Width Over-confidence Error (OEEW) with 100 bins (B = 100), of various static stochastic label perturbation techniques
under different label perturbation probabilities on the six testing datasets: (a): DUTS-TE, (b) DUT-OMRON, (c) PASCAL-S,
(d) SOD, (e) ECSSD, (f) HKU-IS.



Label Perturbation Probability

F_
m

ax

0.8

0.825

0.85

0.875

0.9

0.01 0.02 0.03 0.04 0.05 0.1 0.2 0.3 0.4 0.5 0.6

HI SI M DM Baseline

DUTS-TE

(a) DUTS-TE

Label Perturbation Probability

F_
m

ax

0.7

0.725

0.75

0.775

0.8

0.01 0.02 0.03 0.04 0.05 0.1 0.2 0.3 0.4 0.5 0.6

HI SI M DM Baseline

DUT-OMRON

(b) DUT-OMRON

Label Perturbation Probability

F_
m

ax

0.8

0.825

0.85

0.875

0.9

0.01 0.02 0.03 0.04 0.05 0.1 0.2 0.3 0.4 0.5 0.6

HI SI M DM Baseline

PASCAL-S

(c) PASCAL-S

Label Perturbation Probability

F_
m

ax

0.775

0.8

0.825

0.85

0.875

0.01 0.02 0.03 0.04 0.05 0.1 0.2 0.3 0.4 0.5 0.6

HI SI M DM Baseline

SOD

(d) SOD

Label Perturbation Probability

F_
m

ax

0.875

0.9

0.925

0.95

0.975

0.01 0.02 0.03 0.04 0.05 0.1 0.2 0.3 0.4 0.5 0.6

HI SI M DM Baseline

ECSSD

(e) ECSSD

Label Perturbation Probability

F_
m

ax

0.875

0.9

0.925

0.95

0.975

0.01 0.02 0.03 0.04 0.05 0.1 0.2 0.3 0.4 0.5 0.6

HI SI M DM Baseline

HKU-IS

(f) HKU-IS

Figure 9: Dense binary classification performance, evaluated in terms of maximum F measure, of various static stochastic
label perturbation techniques under different label perturbation probabilities on the six testing datasets: (a): DUTS-TE, (b)
DUT-OMRON, (c) PASCAL-S, (d) SOD, (e) ECSSD, (f) HKU-IS.



I. Experiments on Salient Object Detection with Additional Backbones
Experiments with additional backbones, VGG16 and Swin Transformer, are carried out on Salient Object Detection. We replace the

ResNet50 backbone of the baseline model with VGG16 and Swin Transformer in respective experiments. We apply the proposed ASLPMC

with with Hard Inversion (HI) and Soft Inversion (SI) label perturbation techniques and ALSMC to improve the model calibration degrees
with respective backbones.

Table 14: Model calibration degrees with Swin transformer [39] backbone. Results are evaluated with Equal-Width Expected
Calibration Error (ECEEW) and Equal-Width Over-confidence Error (OEEW) with 10 bins (units in (%)).

Methods
Perturbation Params DUTS-TE [63] DUT-OMRON [80] PASCAL-S [34] SOD [44] ECSSD [78] HKU-IS [33]
α β e ECE ↓ OE ↓ ECE ↓ OE ↓ ECE ↓ OE ↓ ECE ↓ OE ↓ ECE ↓ OE ↓ ECE ↓ OE ↓

Baseline (“Swin-B”) 0 0 0 2.41 2.23 3.29 3.15 3.35 3.19 6.23 6.05 1.02 0.97 0.87 0.82
Swin-ASLPHI

MC αada 1.0 ✗ 1.44 1.21 1.73 1.59 1.74 1.57 5.08 4.85 0.57 0.30 0.81 0.23
Swin-ASLPSI

MC αada 0.75 ✗ 1.48 1.14 1.63 1.49 1.80 1.52 5.14 4.93 0.64 0.38 0.80 0.24
Swin-ALS 1.0 βada ✗ 1.44 1.14 1.76 1.57 1.69 1.55 5.17 4.82 0.54 0.36 0.77 0.24

Table 15: Dense classification accuracy with Swin transformer [39] backbone. Results are evaluated with maximum F-
measure and maximum E-measure [12].

Methods
Perturbation Params DUTS-TE [63] DUT-OMRON [80] PASCAL-S [34] SOD [44] ECSSD [78] HKU-IS [33]
α β e Fmax ↑ Emax ↑ Fmax ↑ Emax ↑ Fmax ↑ Emax ↑ Fmax ↑ Emax ↑ Fmax ↑ Emax ↑ Fmax ↑ Emax ↑

Baseline (“Swin-B”) 0 0 0 0.894 0.949 0.804 0.890 0.877 0.920 0.858 0.878 0.948 0.969 0.939 0.969
Swin-ASLPHI

MC αada 1.0 ✗ 0.895 0.953 0.808 0.892 0.881 0.924 0.959 0.879 0.950 0.969 0.938 0.969
Swin-ASLPSI

MC αada 0.75 ✗ 0.895 0.952 0.805 0.893 9,880 0.922 0.857 0.882 0.950 0.969 0.939 0.970
Swin-ALS 1.0 βada ✗ 0.895 0.952 0.804 0.892 0.879 0.920 0.859 0.879 0.948 0.969 0.939 0.970

Table 16: Model calibration degrees with VGG16 [58] backbone. Results are evaluated with Equal-Width Expected Calibra-
tion Error (ECEEW) and Equal-Width Over-confidence Error (OEEW) with 10 bins (units in (%)).

Methods
Perturbation Params DUTS-TE [63] DUT-OMRON [80] PASCAL-S [34] SOD [44] ECSSD [78] HKU-IS [33]
α β e ECE ↓ OE ↓ ECE ↓ OE ↓ ECE ↓ OE ↓ ECE ↓ OE ↓ ECE ↓ OE ↓ ECE ↓ OE ↓

Baseline (“VGG-B”) 0 0 0 3.46 3.23 4.12 3.92 4.40 4.17 7.87 7.60 2.02 1.91 1.51 1.44
VGG-ASLPHI

MC αada 1.0 ✗ 1.44 1.28 1.91 1.82 2.40 2.16 5.44 5.08 0.57 0.21 0.84 0.16
VGG-ASLPSI

MC αada 0.75 ✗ 1.47 1.23 2.05 1.81 2.34 2.15 5.54 5.22 0.51 0.21 0.88 0.19
VGG-ALS 1.0 βada ✗ 1.48 1.31 1.99 1.76 2.33 2.04 5.53 5.14 0.45 0.29 0.82 0.13

Table 17: Dense classification accuracy with VGG16 [58] backbone. Results are evaluated with maximum F-measure and
maximum E-measure [12].

Methods
Perturbation Params DUTS-TE [63] DUT-OMRON [80] PASCAL-S [34] SOD [44] ECSSD [78] HKU-IS [33]
α β e Fmax ↑ Emax ↑ Fmax ↑ Emax ↑ Fmax ↑ Emax ↑ Fmax ↑ Emax ↑ Fmax ↑ Emax ↑ Fmax ↑ Emax ↑

Baseline (“VGG-B”) 0 0 0 0.838 0.912 0.741 0.851 0.844 0.895 0.810 0.851 0.921 0.944 0.913 0.950
VGG-ASLPHI

MC αada 1.0 ✗ 0.844 0.916 0.746 0.857 0.844 0.896 0.812 0.851 0.921 0.944 0.913 0.951
VGG-ASLPSI

MC αada 0.75 ✗ 0.845 0.916 0.747 0.855 0.846 0.895 0.810 0.851 0.921 0.944 0.916 0.953
VGG-ALS 1.0 βada ✗ 0.843 0.914 0.745 0.857 0.848 0.898 0.811 0.852 0.921 0.945 0.913 0.952



J. Hyperparameters

(a) Learning Rate (η) (b) Regularisation Strength (λ)

Figure 10: Ablation study on hyperparameters: (1) learning rate (η) and (2) regularisation strength (λ) evaluated in terms of
ECEEW and OEEW with 100 bins on the DUTS-TE dataset.

K. Training and Inference Time
In SOD, the training of ASLP on DUTS-TR requires 2.5 hours, which is 0.2 hours longer (or ∼ 8.7% more) than training the base

model (2.3 hours). The inference speed of ASLP on the six SOD testing datasets averages: 53.40 samples per second, which is the same as
that of the base model because of the same network architecture. Both training and inference time are evaluated on a single Geforce RTX
3090 GPU.



L. 500 Texture Images from Describable Texture Dataset

Figure 11: Texture images without visually salient objects selected from Describable Texture Dataset [9].
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