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Abstract

Recently, semantic segmentation models trained with
image-level text supervision have shown promising results
in challenging open-world scenarios. However, these mod-
els still face difficulties in learning fine-grained semantic
alignment at the pixel level and predicting accurate ob-
ject masks. To address this issue, we propose MixReorg,
a novel and straightforward pre-training paradigm for se-
mantic segmentation that enhances a model’s ability to re-
organize patches mixed across images, exploring both lo-
cal visual relevance and global semantic coherence. Our
approach involves generating fine-grained patch-text pairs
data by mixing image patches while preserving the corre-
spondence between patches and text. The model is then
trained to minimize the segmentation loss of the mixed im-
ages and the two contrastive losses of the original and re-
stored features. With MixReorg as a mask learner, conven-
tional text-supervised semantic segmentation models can
achieve highly generalizable pixel-semantic alignment abil-
ity, which is crucial for open-world segmentation. After
training with large-scale image-text data, MixReorg mod-
els can be applied directly to segment visual objects of ar-
bitrary categories, without the need for further fine-tuning.
Our proposed framework demonstrates strong performance
on popular zero-shot semantic segmentation benchmarks,
outperforming GroupViT by significant margins of 5.0%,
6.2%, 2.5%, and 3.4% mIoU on PASCAL VOC2012, PAS-
CAL Context, MS COCO, and ADE20K, respectively.

1. Introduction
Image segmentation has important applications in sce-

narios such as virtual presence, virtual try-on, movie post-

*Equal contribution.
†Corresponding author.

Figure 1: Comparison between GroupViT [38] and MixReorg. (a)
GroupViT obtains image segmentation implicitly from image-text
pairs to achieve cross-modal semantic alignment. (b) MixReorg
explicitly constructs the fine-grained patch-text pairs data from the
image-text pairs for free by mixing the patches from different im-
ages and preserving the correspondence between patches and text.

production, and autonomous driving. Currently, state-of-
the-art semantic segmentation methods [35, 30, 6] bene-
fit from a large number of densely annotated data. How-
ever, the assumption of this closed-world setting requires
that all categories of objects that appear in the test set are
included in the training set. This heavy dependence on an-
notations limits that they can only work well in closed-set
settings. However, considering ubiquitous new concepts in
real-world scenarios, learning an open-world segmentation
model is more practical, but it is also more challenging. The
open-world segmentation model is required to segment all
entities and objects class-agnostically and exhaustively dur-
ing training and be highly generalizable for aligning pixels
with new semantics during testing.

Early methods achieve open-world semantic segmenta-
tion through few-shot learning [3] or unsupervised cluster-
ing [26]. The former actually still assumes that the train-
ing and testing classes are in the same latent feature space,
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Figure 2: Visual comparison between MixReorg and GroupViT
[38] on images from the network. Our method can better handle
open-world classes for segmentation task.

while the latter cannot guarantee the consistency of seg-
mentation semantics. Recently, GroupViT [38] achieves
state-of-the-art open-world segmentation performance us-
ing only text supervision. It realizes the automatic group-
ing of image patches by vision-language contrastive learn-
ing (Figure 1 (a)). ViL-Seg [22] implements image seg-
mentation by introducing additional online clustering of
visual embeddings for vision-language contrast. Massive
image-text pairs provide rich visual and textual semantics
for open-world scenarios. Similar to other CLIP-based [28]
vision-language pre-training models (VLM) [32, 41, 19], al-
though these methods achieve local information alignment
of different modalities to a certain extent, they are still
a computationally-based implicit matching strategy (fine-
grained matching is learned by computing patch-text [32]
or token-wise [41] similarity matrices). Therefore, how to
learn more fine-grained semantic alignment from image-
text pair data becomes a key challenge for text-based su-
pervised open-world segmentation tasks.

Inspired by the related work of mixed image modeling
[27, 21], we propose a simple and novel cross-modal mixed
image reconstruction mask learner. Specifically, as shown
in Figure 1 (b), MixReorg mixes patches from different im-
ages to generate mixed images. Unlike previous methods
for jigsaw puzzle [27] or mixed image reconstruction [21] in
the single visual modality, MixReorg’s mixed patch reorga-
nization is a cross-modal mask learner designed for seman-
tic segmentation. MixReorg preserves the correspondence
between each patch and text when mixing image patches
(the legend of Figure 1 (b)). In this way, we can obtain fine-
grained patch-text pairs from the image-text data for free.

However, there are still two challenges: (i) the mixed
image segmentation is easily disturbed by low-level fea-
tures, which makes the model unable to realize patch re-
organization of mixed images by high-level semantics; (ii)
each patch in mixed images are easily interfered by irrele-
vant patches from different images in the transformer lay-
ers, which may cause the image semantics to be difficult to
match with the corresponding text.

For the first challenge, we propose two strategies of con-
textual mixing and progressive mixing to solve this prob-

lem. The contextual mixing strategy allows each patch in
the mixed image to obtain the global semantics of its origi-
nal image in advance by adding a transformer layer before
the mixing operation, thereby forcing the model to learn
the mixed image reorganization from high-level semantics.
Furthermore, to further enhance the global information in
the mixed image features, we propose to use the original
image features to enhance the global semantics in the mixed
image features. For the second challenge, we present a mix-
ing restoration strategy. It guarantees the semantic associ-
ation of each patch token in the mixed image with the text
through contrastive learning between the image recovered
from mixed image and the text. In this way, the mutual
interference between patches from different images in the
mixed image can be effectively suppressed.

In general, MixReorg constructs a set of fine-grained
patch-text pairs for free from image-text pair data, and
successfully builds a cross-modal mixed image patch re-
organization mask learner for open-world segmentation
tasks. The proposed MixReorg as a good mask learner also
shows strong performance compared with the popular zero-
shot semantic segmentation baselines, achieving the perfor-
mance of 50.5%, 25.4%, 23.6% and 10.1% mIoU on multi-
scale evaluations on PASCAL VOC2012, PASCAL Con-
text, MS COCO and ADE20K, respectively. The visual-
ization in Figure 2 shows that MixReorg significantly out-
performs GroupViT [38] on open-world segmentation. Our
contributions can be summarized as follows:

• We propose a novel and simple method that can eas-
ily construct patch-text data with fine-grained match-
ing relationships from image-text data, thereby pro-
viding densely supervised information for open-world
segmentation.

• For the constructed patch-text data, we propose a
cross-modal mixed patch reorganization method. It
successfully addresses the challenge of model failure
due to mixed image segmentation susceptible to low-
level features and irrelevant patches.

• The proposed MixReorg exhibits strong open-world
segmentation performance and significantly outper-
forms current state-of-the-art zero-shot segmentation
baselines.

2. Related Work
VLM and Segmentation. Recently, vision-language pre-
training models [28, 17] have achieved great success. The
models [8, 28, 38, 40] trained with VLM are flexible and
versatile, and can adapt to visual [38, 25, 28, 32] and multi-
modal [37, 16, 42] upstream and downstream tasks only by
using the matching relationship of image-text data. This
success has also been found in segmentation and has at-
tracted the attention of lots of researchers [38, 32, 39, 44].



Because traditional semantic segmentation is limited by
expensive manual dense annotation, VLMs are expected
to break this limitation. Although the above methods
achieve promising performance, using image-text sample-
level matching relations to learn segmentation masks still
faces the challenge of lacking local dense supervision in-
formation. In addition, there are some works [41, 32, 19]
that explore the alignment of multi-modal local informa-
tion, but they are still computationally-dominated pseudo-
local information correspondence without hard fine-grained
supervision from the data level. Therefore, how to obtain
finer-grained local supervision information from image-text
data through data-level improvement is in great demand for
semantic segmentation.

Self-Supervision Strategies. Self-supervision is an effec-
tive way to avoid the limitation of expensive manual annota-
tions. It builds a self-supervised pipeline by fully mining the
properties of the data itself. For example, self-supervision
strategies such as masked image reconstruction [12, 21, 18],
jigsaw puzzles [27], multi-view contrast [2, 45, 5] and angle
recognition [11] are widely adopted in the vision domain.
Similar self-supervision strategies have been widely and
successfully applied in natural language processing [7, 34].
But the above methods are all designed for the single modal-
ity. In contrast, semantic segmentation not only needs to
consider the representation and segmentation of image fea-
tures but also needs to consider cross-modal semantic align-
ment. Therefore, how to draw more supervised information
from image-text data by borrowing self-supervision strate-
gies from the vision domain is very beneficial for semantic
segmentation. Especially for the extraction of cross-modal
fine-grained supervision information.

Open-World Segmentation. The open-world problem has
been studied in the context of recognition [1, 23], namely
how to get a model trained only on a given closed-world
dataset to also recognize new classes of objects. Similar set-
tings are also used in object detection [36, 15] and segmen-
tation [3, 26, 38]. For example, [26] proposes an unsuper-
vised open-world semantic segmentation; however, it ob-
tains the mask of the image by a clustering method without
any network parameter update. On the other hand, VLMs
[28, 19, 8] exhibit strong performance and generalization
ability with the help of massive image-text pair data. In-
spired by this, TSEG [32] and ICILP [19] attempt to ob-
tain fine-grained semantic alignment from image-text pairs
to achieve image segmentation. Similarly, GroupViT [38]
introduces a set of learnable group tokens for ViT to group
patches and uses the generated segment tokens to align with
text embeddings. The massively available image-text pair
data provides rich visual and textual semantics for open-
world scenarios [40]. Therefore, open-world semantic seg-
mentation based on text supervision can achieve more re-
fined segmentation results at a lower cost of annotation.

Based on the above observations, this paper follows the
open-world semantic segmentation setting based on text su-
pervision to further improve the performance of semantic
segmentation.

3. Methodology

The overall framework of the MixReorg mask learner
is shown in Figure 3. MixReorg is CLIP-based [28] and
mainly consists of an image encoder and a text encoder. We
use the text encoder from CLIP [28]. MixReorg’s image
encoder mainly has three stages: contextual mixing, pro-
gressive mixing, and mixing restoration (Sec. 3.1). Then,
the loss composition of MixReorg is described in detail in
Sec. 3.2. Finally, the total loss is introduced in Sec. 3.3.

3.1. MixReorg
Contextual Mixing. As shown in Figure 3(a), in the con-
textual image patch mixing stage, patches from different
images are randomly mixed to construct a set of mixed im-
ages with known segmentation masks. According to the
original image-text pairs, the patch-text correspondence of
the mixed images is preserved, and the mixed image masks
are used as the semantic segmentation labels of the mixed
images. Similar to [21], the mixed images only have ran-
domly mixed patch tokens from different images at their
same locations. Specially, unlike [21], MixReorg adopts
a contextual information image patch mixing strategy. We
add a transformer layer before the image patch mixing oper-
ation to provide each patch the global image semantic which
is closer to the text to create the coherence between patch
and text. Meanwhile, it can preliminarily force the model
to learn the mixed image patch reorganization from high-
level features, thus effectively avoiding the interference of
low-level features with the semantic learning of the model.

Specifically, given a batch of image-text pairs
{(xI

i , x
T
i )}Bi=1. Following the design in ViT [9], we

first split each input image into N non-overlapping patches
and linearly project each patch into a latent space. These
projected patches are denoted as {pi}Ni=1. For M image-
text pairs {(xI

i , x
T
i )}Mi=1, MixReorg randomly mixes the

patches from M different images to construct M mixed
images, and the corresponding patch composition of M
mixed images can be denoted as

mix({{pi}Ni=1}Mm=1) = {{pjm,i}
N
i=1}Mm=1, 1 ≤ j ≤ M,

(1)
where pjm,i denotes that the i-th patch of the m-th mixed im-
age comes from the j-th image. Correspondingly, we keep
the correspondence between each image patch and the text
corresponding to the original image, resulting in a semantic
segmentation dataset with patch-text correspondence. The
patch-text correspondence of the m-th mixed image can be
expressed as {pjm,i, x

T
j }Ni=1. Therefore, we obtain a set of



Figure 3: The training pipeline and framework of MixReorg (take two images as an example). MixReorg’s image encoder can be divided
into three stages: (a) contextual mixing stage: a set of additional patch-text pairs with known segmentation mask is obtained by randomly
mixing contextual patches from different images; (b) progressive mixing stage: the original image features are used to enhance the global
information of the mixed image features after mixing; (c) mixing restoration stage: the original features, mixed features, and restored
features are segmented through a two-stage grouping block [38], and the corresponding segment tokens are obtained. Note that we omit
group tokens in the forward process for simplicity. During testing, MixReorg only needs to execute the original image branch.

sample-level image-text pairs {(xI
i , x

T
i )}Bi=1 and a set of

patch-level patch-text pairs {{pjm,i, x
T
j }Ni=1}Mm=1.

Progressive Mixing. Mixed patches’ features cannot im-
prove after Contextual Mixing because of the semantic mix-
ing in mixed images. Since more layers in Contextual Mix-
ing will lead to more parameters, we propose Progressive
Mixing to enhance mixed features without additional pa-
rameters. As shown in Figure 3(b), in the progressive mix-
ing phase, the patch tokens of normal and mixed images
are concatenated with s1 learnable group tokens {gi}s1i=1

respectively and fed to the multi-layer transformers inde-
pendently. At the same time, the original features are used
to enhance the contextual information of the mixed features.
The above process of an original image going through the
l-th transformer layer can be represented as

{{ĝi}s1i=1, {p̂i}
N
i=1} = Transl([{gi}s1i=1; {pi}

N
i=1]), (2)

where [ ; ] denotes the concatenation operator. Similarly,
the output of the m-th mixed image through the l-th trans-
former layer can be expressed as

{{ĝi}s1i=1, {p̂
j
m,i}

N
i=1} =Transl([{gi}s1i=1; {p

j
m,i}

N
i=1+

mix({{{pi}Ni=1}Mm=1}l−1)m]).

(3)

Mixing Restoration. Although we can achieve patch-text
alignment by mixed images, there are a lot of different se-
mantics in one mixed image which will interfere with each
other. Therefore, this requires the patches from different
images in a mixed image still need to maintain a semantic
match with the corresponding text.

To this end, as shown in Figure 3(c), in the mixing
restoration phase, MixReorg also restores the mixed image

according to the patch position of the image before mixing.
The original features {pi}Ni=1, mixed features {pjm,i}Ni=1,
and restored features re({pjm,i}Ni=1) are segmented through
a two-stage grouping block [38], and the corresponding seg-
ment tokens {segi}

s2
i=1 are obtained. These segment to-

kens are fed into multiple transformer layers and then pro-
jected to the same dimensionality D as text embeddings
ZT ∈ RB×D through an MLP.

3.2. Cross-Modal Mixed Patch Reorganization Loss
Mixed Segmentation Loss. Cross-modal mixed patch re-
organization is a core module designed in MixReorg for
semantic segmentation. It provides the model with more
refined local alignment information by using a constructed
mixed image dataset with patch-text correspondence. We
expect the model to learn more fine-grained semantic align-
ment with the help of the constructed patch-text pairs. And
the calculation process of the mixed image segmentation
mask is shown in Figure 4, where every BI (e.g., BI = M )
images are mixed. The mixed image segment tokens and
the text embeddings of the whole batch are used to com-
pute the similarity S ∈ RBI×s2×B for the text, where
⊗ denotes matrix multiplication. Since we adopt a two-
stage grouping block [38], we have the attention map A ∈
RBI×HW×s2 (HW = N), which contains the grouping
relationship between HW patches and s2 segment tokens.
Further, by A ⊗ S, we can predict the segmentation mask
Mp ∈ RBI×HW×B of the mixed image. Finally, we com-
pute the cross-entropy loss between the mixed image masks
Mmix and the prediction masks Mp, formulated as

Lseg = LCE(Mp,Mmix), (4)



Figure 4: Cross-modal mixed patch reorganization, which com-
bines attention maps and segmentation tokens from the image en-
coder, and text embeddings to reorganize and predict segmentation
masks for mixed images. Where BI = M means that every BI

images are mixed. For simplicity, we take a mixed image gener-
ated by mixing two images as an example.

where LCE(p, q) = −
∑

i qilog(pi) is the cross-entropy
loss of output p and target q.
Restoration Contrastive Loss. Furthermore, we con-
sider cross-modal semantic contrastive learning of mixing
restoration features and text embeddings. Specifically, in
order to take full advantage of the correspondence provided
by the image-text pair and enhance the model’s ability to
align semantically across modalities, MixReorg computes
the contrastive loss and the multi-label image-text con-
trastive loss [38] between the output of the restored features
branch and the text embeddings, respectively. The calcu-
lation of the total image-text contrastive loss is as follows

Lre
I↔T = Lre

I→T + Lre
I←T , (5)

where the image-to-text contrastive loss is defined as

Lre
I→T = − 1

B

B∑
i=1

log
exp

(
zIi · zTi /τ

)∑B
j=1 exp

(
zIi · zTj /τ

) , (6)

and the text-to-image contrastive loss is defined as

Lre
I←T = − 1

B

B∑
i=1

log
exp

(
zTi · zIi /τ

)∑B
j=1 exp

(
zTi · zIj /τ

) , (7)

where τ is a learnable temperature parameter, and zIi and
zTi are image and text embedding for image-text pairs
{(xI

i , x
T
i )}Bi=1. In addition, we calculate the multi-label

contrastive loss of the restored features branch as follows

Lre
I↔{Tk}Kk=1

= Lre
I→{Tk}Kk=1

+ Lre
I←{Tk}Kk=1

, (8)

where {Tk}Kk=1 is an additional K text labels generated
using the “prompting engineering” mechanism in [28],

Lre
I→{Tk}Kk=1

= − 1

B

B∑
i=1

log

∑K
k=1 exp

(
zIi · zTk

i /τ
)

∑K
k=1

∑B
j=1 exp

(
zIi · zTk

j /τ
)

(9)
and

Arch. Method Mask
mIoU (%)

ViT [9]∗
pixel-wise 20.1
K-means 25.0

Mean-shift 20.7
Spectral clustering 19.7

GroupViT [38] - 41.1
ViewCo [31] - 45.7
MixReorg (ours) - 47.9

Table 1: Comparison with zero-shot semantic segmentation base-
lines on PASCAL VOC. GroupViT[38] and MixReorg are trained
on CC12M. The superscript ∗ means the results are from [38].

Lre
I←{Tk}Kk=1

= − 1

KB

K∑
k=1

B∑
i=1

log
exp

(
zTk
i · zIi /τ

)
∑B

j=1 exp
(
zTk
i · zIj /τ

) .
(10)

The total contrastive loss of the restored features and the
text embeddings is as follows

Lre = Lre
I↔T + Lre

I↔{Tk}Kk=1
. (11)

In summary, the total cross-modal mixed image patch reor-
ganization loss is as follows

Lmixed = Lseg + Lre. (12)

3.3. Overall Loss Function
Similar to Eq. (11), the total contrastive loss between

the original image features and the text embeddings is as
follows

Lori = Lori
I↔T + Lori

I↔{Tk}Kk=1
. (13)

Finally, the total loss of MixReorg is

L = Lmixed + Lori. (14)
When testing, MixReorg only needs to execute the original
image branch (the solid black line in Figure 3), so it does
not add any extra testing time.

4. Experiments
4.1. Implementation Details
Architecture. The image encoder of MixReorg is based on
a 2-stage GroupViT [38] with 12 transformer layers, while
adding one transformer layer before the mix operation. The
size of the input image is 224×224, the patch size is 16×16
and the hidden dimensionality is 384. The model outputs 32
segment tokens (i.e., s2 = 32 and s1 = 64). Following [28,
38], the text encoder of MixReorg consists of 12 layers of
transformer with the hidden feature dimensionality of 256.
Training and Inference. During the training phase, we
use CC12M [4] as the training dataset, which contains 12M
image-text pairs. We apply the mix operation for every 16
images (i.e., M = 16). Following [38, 28], our batch size
is 4096. We set the weight for each loss function to 1. Dur-
ing the inference phase, only the original image branch is
executed. More details can be seen in Appendix.



Pre-training Transfer (mIoU (%))

Arch. Model Dataset Supervision Zero-Shot
PASCAL

VOC
PASCAL
Context

ViT

DeiT [33] ImageNet class % 53.0 35.9

DINO [2] ImageNet self % 39.1 20.4

DINO CC12M+YFCC self % 37.6 22.8

MoCo [13] ImageNet self % 34.3 21.3

MoCo CC12M+YFCC self % 36.1 23.0

CLIP

SLIP∗ [25] LAION-20M text & self ! - 12.3

CLIP-MAE∗ [8] LAION-20M text & self ! - 16.8

MaskCLIP [8] LAION-20M text & self ! - 17.7

ViewCo [31] CC12M text & self ! 45.7 20.8
MaskCLIP [44] CLIP-400M text ! - 21.7

CLIP∗ [28] LAION-20M text ! - 13.5

GroupViT[38] CC12M+YFCC text ! 51.2 22.3

GroupViT CC12M text !
41.1
45.5†

18.2
19.2†

MixReorg (ours) CC12M text !
47.9 (6.8 ↑) 23.9 (5.7 ↑)
50.5†(5.0 ↑) 25.4†(6.2 ↑)

Table 2: Performance comparison on PASCAL VOC [10] and PASCAL Context [24]. Zero-shot means that the model is directly transferred
to the semantic segmentation task without any fine-tuning on the target dataset. The superscript ∗ denote the results are from [8]. † indicates
the results of the multi-scale evaluation.

Model Pre-training
Dataset

Transfer
mIoU (%)

ViewCo [31] CC12M 20.6
GroupViT [38] CC12M+YFCC 20.9

GroupViT CC12M
18.4
21.1†

MixReorg (ours) CC12M
21.3 (2.9 ↑)
23.6† (2.5 ↑)

Table 3: Performance comparison on COCO [20]. † indicates the
results of the multi-scale evaluation.
Open-World Semantic Segmentation. We evaluate the
performance of MixReorg on the open-world segmentation
task on four commonly used open semantic segmentation
datasets PASCAL VOC 2012 [10], PASCAL Context [24],
COCO [20], and ADE20K [43]. They contain 20, 59, 80,
and 150 foreground classes, respectively, with validation
images of 1.5K, 5K, 5K, and 2K, respectively. MixReorg
is transferred to the target dataset in a zero-shot manner
without any fine-tuning. Following GroupViT [38], MixRe-
org obtains the corresponding segmentation of the image
through the learned group token.

4.2. Comparisons with Existing Methods
Comparison with Zero-Shot Baselines. In Table 1, we
present a comparison of four ViT-based baselines, which
utilize the image-text contrastive loss defined in CLIP
[28] to train the vision and text encoders. These base-
lines employ pixel-wise, k-means, mean-shift, and spec-
tral clustering strategies, respectively. Additionally, we in-

Model Pre-training
Dataset

Transfer
mIoU (%)

ALIGNa [14] ALIGN-1800M 9.7
ALIGNa HQITP-134M 7.5
CLIPa [28] HQITP-134M 5.1
CLIP CLIP-400M 5.8
CLIPb LAION-20M 7.7
SLIPb [25] LAION-20M 6.8

GroupViT [38] CC12M
5.8
6.7

MixReorg (ours) CC12M
8.7 (2.9 ↑)

10.1† (3.4 ↑)

Table 4: Performance comparison on ADE20K [43]. The super-
script a and b denote the results are from [29] and [8], respectively.

clude GroupViT [38], which employs a bottom-up grouping
method. The results in Table 1 demonstrate that MixReorg
outperforms both the ViT baselines and GroupViT (41.1%
vs. 47.9%), indicating that MixReorg is effective in enhanc-
ing the segmentation ability of the model.

Comparison with SoTA Methods. We conduct a com-
prehensive evaluation of MixReorg against fully-supervised
methods [33], self-supervised methods [2, 13], vision-
language contrastive learning baselines [44, 28, 38], and
baselines combining vision-language contrastive learning
with self-supervised learning [25, 8, 31]. Table 2 and Ta-
ble 3 summarizes the comparison results on PASCAL VOC,
PASCAL Context, and COCO datasets, both in single-scale
and multi-scale evaluation settings. The results show that



MixReorg outperforms all the methods by a significant mar-
gin, demonstrating its effectiveness in semantic segmenta-
tion. In comparison to GroupViT, MixReorg that pre-trains
on CC12M yields substantial performance improvements
of 6.8% mIoU, 5.7% mIoU, and 2.9% mIoU for single-
scale evaluation, and 5.0% mIoU, 6.2% mIoU, and 2.5%
mIoU for multi-scale evaluation on PASCAL VOC, PAS-
CAL Context, and COCO, respectively. MixReorg also out-
performs GroupViT which pre-trains on CC12M and YFCC
with less data. Additionally, MixReorg has a clear advan-
tage over the methods which rely on additional supervision
information in the vision branch. Furthermore, we evaluate
the performance of MixReorg on the ADE20K dataset, as
shown in Table 4. MixReorg outperforms GroupViT by a
significant margin (8.7% vs. 5.8%), demonstrating its supe-
rior performance in complex segmentation tasks.
Image Classification. We evaluate the zero-shot classifi-
cation performance of MixReorg on ImageNet. As shown
in Table 5, MixReorg significantly outperforms GroupViT,
indicating that MixReorg achieves better image-text align-
ment through fine-grained mask learning.

Arch. Zero-shot
Acc@1 (%) Acc@5 (%)

GroupViT [38] 37.5 65.5
MixReorg(ours) 38.8 66.7

Table 5: Zero-shot classification performance on ImageNet.
4.3. Ablation Study
Contextual Mixing. In Table 6, we perform ablation on
contextual mixing (CM) strategies. Specifically, we first
ablate the parameter variation of the model. As the results
show, by adding a transformer layer to GroupViT’s image
encoder (i.e., GroupViT+), the performance of the model
remains consistent (18.4% vs. 18.2%). This shows that
simply increasing the number of parameters does not im-
prove the performance of the model. Further, we also com-
pared MixReorg with only CM (i.e., row 3) and GroupViT+.
They have the same amount of parameters, but MixReorg
significantly outperforms GroupViT+ with the help of CM
(19.3% vs. 18.2%). This shows that it is beneficial to help
the model obtain more global semantic information in the
early stage of the model. For MixReorg, it can be found
that MixReorg without CM assistance (row 4) will degener-
ate to a similar performance to GroupViT, which indicates
that CM plays a crucial role in MixReorg’s mixed segmen-
tation module (19.3% vs. 18.0% vs. 18.4%). This is mainly
because CM can help MixReorg acquire global semantic
information early in the model, thus forcing the model to
learn mixed image reorganization from high-level semantic,
which frees the model from low-level semantic information
(e.g., texture and color, etc.) to obtain trivial solutions.
Ablation of Losses. In Table 6, we also conduct an abla-
tion study on each loss that MixReorg uses. Specifically,
Lseg improves the performance by 1.2% mIoU (20.5% vs.

Method CM Lseg Lre mIoU (%)
GroupViT - - - 18.4
GroupViT+ - - - 18.2

MixReorg

✓ 19.3
✓ 18.0

✓ ✓ 20.5
✓ ✓ 20.3
✓ ✓ ✓ 21.3

Table 6: On COCO, MixReorg’s ablation study on contextual mix-
ing (CM) and the loss functions. GroupViT+ means adding one
transformer layer at the 1-st stage of GroupViT. For MixReorg,
without CM means images are mixed prior to passing through the
transformer layer that we add.

Figure 5: On COCO, MixReorg’s ablation study on the number of
progressive mixings and the number of images for the contextual
mixing operation. (a) Yellow line: Ablation study on the number
P of the progressive mixing modules. We replace one progressive
mixing module with one transformer layer to maintain the model
size. (b) Red line: Ablation study on the number M of images for
each contextual mixing operation.
19.3%). This means that Lseg plays a significant role. The
model learns to distinguish different semantics in the image
through Lseg . Additionally, Lre improves the performance
of the model (20.3% vs. 19.3%). It helps the patches of the
mixed image to maintain consistency between its original
image semantics and corresponding text. Furthermore, by
combining Lseg and Lre based on CM, the performance of
MixReorg can be further improved (21.3% vs. 20.5% vs.
20.3%), which illustrates that CM and two loss functions
are strongly related. CM is fundamental to achieving patch-
text alignment since it provides global information to each
patch, while Lseg provides fine-grained semantic alignment
ability and Lre assisting Lseg keeping the patches’ original
semantic, free from the interference from different images.
Number of Images for Mixing. In Figure 5 (red line), we
observe the performance impact of the number of images
M used for contextual mixing operation. It can be observed
that M = 16 is optimal. As M increases, mixed images
contain more semantic categories, which is helpful for the
model in learning semantic grouping (20.5% vs. 17.1%).
However, increasing M beyond a certain threshold (e.g.:
M = 32) causes semantic representation in the mixed im-
age to be insufficient due to resolution constraints, thereby
interfering with model learning (20.5% vs. 18.2%).
Progressive Mixing Module. In Figure 5 (yellow line), we
study the number P of the progressive mixing modules. We



Figure 6: Comparison of semantic segmentation results on PASCAL VOC 2012 and PASCAL Context.
add one transformer layer when removing one progressive
mixing module to maintain the model size. It can be seen
that the model is optimal when the number P of the pro-
gressive mixing modules is 6. The progressive mixing im-
proves over P = 0 by about 7% mIoU (P = 3 vs. P = 0).
When P = 0, the original image is not used to enhance the
mixed image after the mixing operation. In this case, the
lack of global information on the original image hinders the
learning of the model. Obviously, with the increase of the
progressive mixing modules, the semantics of the mixed im-
age features become clearer, which is thus more conducive
for model learning to distinguish different semantics, thus
improving the model segmentation ability.

4.4. Visualization
Qualitative Results. In Figure 6, we illustrate zero-shot
semantic segmentation examples predicted by GroupViT
and MixReorg to verify the segmentation capability of our
method. As shown in Figure 6(a), MixReorg can handle
more complex segmentation examples which have differ-
ent classes in one image, showing that our method can bet-
ter perceive fine-grained semantics. In addition, as shown
in Figure 6(b), MixReorg’s segmentation quality of stuff
classes is significantly better than GroupViT. In a word,
MixReorg has a stronger ability of high-level semantic un-
derstanding and segmentation.
Mixed Patch Reorganization. We visualize the reorga-
nized images from mixed images according to the mask
predictions from two mixed images in Figure 7(a). It can
be seen that except for a few patches, MixReorg can cor-
rectly segment most image patches into their corresponding
original semantics. In Figure 7(b), the confusion matrix of
the prediction for one mixed image indicates that MixReorg
can effectively align patches with text.

5. Discussion
Conclusion. We propose a patch-text data construc-
tion method with dense matching for image-text data and
a cross-modal mixed image patch reorganization mask
learner for mixed images to achieve fine-grained semantic

(a) Image Reorganization (b) Confusion Matrix
Figure 7: Mixed image reorganization and the confusion matrix.
(a) We use the segmentation mask predicted by MixReorg on the
mixed image to obtain the reorganized image. (b) Taking M = 16
as an example, the confusion matrix CM of the patch segmen-
tation of the mixed images. CMij represents the proportion of
patches belonging to the i-th image in the mixed image that are
classified into the j-th image category.
alignment in open-world segmentation. MixReorg shows
superior performance in open-world scenarios.
Limitations. There are two issues that we should explore to
improve MixReorg. First, since we use contextual mixing to
create additional dat, the computational budget is increased
during the training phase. Second, although Mixreorg suc-
cessfully constructs patch-text data for semantic segmenta-
tion, there is still a gap between it with pixel-level data.
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