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Abstract

Video amodal segmentation is a particularly challeng-
ing task in computer vision, which requires to deduce the
full shape of an object from the visible parts of it. Recently,
some studies have achieved promising performance by us-
ing motion flow to integrate information across frames un-
der a self-supervised setting. However, motion flow has
a clear limitation by the two factors of moving cameras
and object deformation. This paper presents a rethink-
ing to previous works. We particularly leverage the su-
pervised signals with object-centric representation in real-
world scenarios. The underlying idea is the supervision
signal of the specific object and the features from different
views can mutually benefit the deduction of the full mask
in any specific frame. We thus propose an Efficient object-
centric Representation amodal Segmentation (EoRaS). Spe-
cially, beyond solely relying on supervision signals, we de-
sign a translation module to project image features into
the Bird’s-Eye View (BEV), which introduces 3D informa-
tion to improve current feature quality. Furthermore, we
propose a multi-view fusion layer based temporal module
which is equipped with a set of object slots and interacts
with features from different views by attention mechanism
to fulfill sufficient object representation completion. As a
result, the full mask of the object can be decoded from
image features updated by object slots. Extensive experi-
ments on both real-world and synthetic benchmarks demon-
strate the superiority of our proposed method, achieving
state-of-the-art performance. Our code will be released at
https://github.com/kfan21/EoRas.

1. Introduction

Deep learning has demonstrated remarkable success in
various computer vision tasks. Nevertheless, neural net-
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Figure 1: Illustrations of the difference between view prior,
shape prior, and our model. While SaVos [35] draws sup-
port from the optical flow to realize the view prior, image-
level amodal segmentation algorithms typically just utilize
the shape prior brought in by the supervision signals. Con-
sequently, they are limited by camera motion and compli-
cated object types, respectively. Unlike the previous meth-
ods, beyond the mergence of those two priors, EoRaS uti-
lizes view prior by object-centric learning and further intro-
duces the BEV space where obstruction doesn’t exist, which
enables our EoRaS to easily handle complex scenarios.

works are limited to learning visible patterns in the data, and
are typically challenged in reasoning about the broader and
unseen components. Currently, most researches in object
detection and segmentation tasks concentrate on enhancing
the visible part’s performance, leaving few studies on in-
ferring occluded information. Conversely, humans possess
an innate ability to imagine and extrapolate, enabling us to
easily complete an occluded part of an image based on prior
knowledge. This critical capacity is instrumental in ad-
vanced deep learning models for real-world scenarios, such
as medical diagnosis and autonomous driving. Thereby, the
central issue addressed in this paper is the video amodal
segmentation task, which aims to deduce an object’s com-
plete mask, whether it is partially obscured or not.

Prior studies on image amodal segmentation [22, 30, 32]
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are over-reliance on prior knowledge, which actually ham-
pers the model’s generalization abilities, resulting in lim-
ited improvements under complex circumstances. For video
amodal, Yao et al. [35] proposed that the occluded part of
the current frame may appear in other frames, and therefore,
information from all frames should be collected to fill in the
occluded regions of any specific frame. While this method
achieves promising results under the self-supervised setting,
it fails when camera motion exists, as 2D warping is used
to make connections within different frames, leading to dis-
torted signals.

This paper aims to propose a better approach for video
amodal segmentation by rethinking the importance of using
supervised signals with object-centric representation. Such
object-centric representations reflect the compositional na-
ture of our world, and potentially facilitate supporting more
complex tasks like reasoning about relations between ob-
jects. While signals such as motion flow and shape priors
have shown promising results, they are limited by moving
cameras and complicated object types respectively. In con-
trast, recent advances [6, 13, 21] in video object segmen-
tation produce highly accurate object masks that are less
sensitive to moving cameras, making them better suited as
supervision signals. Surprisingly, such video object masks
have not been fully exploited before.

To this end, we propose a novel approach that learns
video amodal segmentation not only from observed ob-
ject supervision signals in the current frame (shape prior)
but also from integrated information of object features
under different views (view prior). Our motivation is
clearly shown in Fig. 1. By using visual patterns of other
views to explain away occluded object parts in the current
frame [31], our approach gets rid of optical flow and elim-
inates the shortcomings of mere reliance on shape priors.
Our model is highly effective, even in complex scenarios.

In this paper, we propose a novel supervised method for
the video amodal segmentation task that leverages a multi-
view fusion layer based temporal module and a Bird’s-Eye
View (BEV) feature translation network. Rather than rely-
ing on warping the amodal prediction into the next frame us-
ing optical flow or using shape priors alone, we enhance the
current frame features by incorporating feature information
from different viewpoints and leveraging the supervision
signals simultaneously. Specifically, we first extract front-
view features from the videos using FPN50 [18]. Then, we
employ a translation network to transform these front-view
features into bird’s-eye view features, which bring in 3D in-
formation through the usage of the intrinsic matrix. In con-
trast to some related work [28] extracting object-centric 3D
representation by object reconstruction, the acquisition of
BEV feature is simpler, faster, and easier to train. As each
frame is equivalent to a unique view, features from both dif-
ferent frames and the BEV space, which carry shape infor-

mation about the occluded part, are further utilized. We
repurpose the vanilla object-centric representations [19] —
object slots to integrate those information, which is accom-
plished by our novel multi-view fusion layer. Finally, we
refine the front-view features using the updated object slots
containing object information from multiple views and de-
code the full mask. Compared to previous methods [35], our
model can handle scenarios with 3D viewing angle changes
or complex object shapes better by leveraging shape knowl-
edge and integrating information across multiple views si-
multaneously.

To evaluate our method, we conduct extensive exper-
iments on real-world and synthetic amodal benchmarks.
The results demonstrate that our model achieves outstand-
ing performance compared to comparable models and ef-
fectively demonstrates the efficacy of our architecture.

In summary, our main contributions are listed below. (1)
Our contribution lies in formulating the video amodal seg-
mentation task using supervised signals for the first time.
Our model efficiently learns the shape and view priors, en-
abling it to handle complex scenarios with ease. (2) We
propose a novel approach to learning object-centric repre-
sentations through a multi-view fusion layer based temporal
module equipped with a set of object slots, which achieves
significant improvement in the correlation of information
from different views. (3) We introduce the novel concept of
bird’s-eye view features in our amodal task, which provides
front-view features with 3D information, resulting in con-
sistent benefits. (4) By utilizing the bird’s-eye view genera-
tor and multi-view fusion layer based temporal module, our
algorithm achieves remarkable improvement on both real-
world and synthetic amodal benchmarks, highlighting the
novelty of our approach.

2. Related Work

Amodal segmentation is a more challenging task than in-
stance segmentation because it requires predicting the full
shape of occluded objects through the visible parts. While
previous literature has focused on using shape priors ef-
fectively through multi-level coding [22], variational au-
toencoder [14], shape prior memory codebook construc-
tion [32], mixing feature decoupling [!6] or Bayesian
model [29], relying solely on shape priors can lead to poor
empirical performance due to distribution shifts between
training data and real scenarios. To address this issue, [35]
leverages spatiotemporal consistency and dense object mo-
tion to explain away occlusion. Although their work has
made progress in video amodal segmentation, optical flow
can cause object deformation in the presence of camera mo-
tion. In contrast, our proposed architecture introduces a
novel approach that does not require optical flow and uti-
lizes bird’s-eye view features to bring in 3D information
that enhances the learning of front-view features.
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Figure 2: A schematic illustration of our method. The novelty of this architecture mainly lies in the BEV translation network
and the multi-view fusion layer. The SP and SR represent the shape provider and receiver (see Section 3.1 for detail),

respectively.

Object-centric learning aims at identifying all the objects
from raw input for better understanding the complex scenes.
Existing object-centric learning methods can be categorized
into unsupervised and supervised methods. While unsu-
pervised methods use image/scene reconstruction to extract
object representations from images/scenes [2, 19, 25], su-
pervised methods represent each object as a query embed-
ding and pay much attention to obtaining a great initializa-
tion [3, 4, 7, 9, 13, 34]. Our EoRaS is more related to the
supervised method in terms of constructing a set of learn-
able queries as an information container.

BEY maps generation requires to generate semantic maps
in bird’s-eye view space. Due to a lack of high-quality anno-
tated data, most of the early work adopts weak supervision
by utilizing stereo information [20, 2 1] or obtaining pseudo
label [27]. Others directly translate semantic segmentation
maps from image space into bird’s-eye view space [0, 20].
With the advent of large-scale annotated datasets, research
on supervised methods has also made some progress. [23]
and [24] respectively take advantage of dense transformer
layer and 1D sequence-to-sequence translations to learn a
map representation. [1] and [|7] instead blend features from
multi-camera images to construct BEV map. In our EoRaS,
the bird’s-eye view feature is utilized to integrate 3D infor-
mation into the front-view feature. To the best of our knowl-
edge, it’s the first attempt to incorporate the BEV translation
module in the amodal segmentation task.

3. Methodology

This paper focuses on the video amodal segmentation
task. Specifically, given a video sequence {I;}7_, with K

objects, EoRa$ aims to predict the full mask {M}} of each
object in all frames, where £ is the index of objects. In our
EoRaS$, visible masks {V/*} also serves as supervision but
will not be utilized at the test phase.

3.1. Architecture

The overall architecture of EoRaS is shown in Figure 2.

Our EoRaS is mainly comprised of four modules: (i) the
feature encoding module which extracts the front-view fea-
ture ftk from the input frames; (ii) the BEV translation net-
work which converts the front-view features into bird’s-eye
view angle b¥ using the camera intrinsic matrix K and neu-
ral network; (iii) the multi-view fusion layer based temporal
module which utilizes the object slots updated through the
forward and backward streams to integrate the feature in-
formation from different views and fulfill the completion of
each front-view feature; and (iv) the deconvolution network
that estimates the full masks and visible masks of the cur-
rent frame simultaneously.
Feature Encoding Module In this module, FPN50 [18]
pretrained on ImageNet [5] is used to extract features from
the input frames. These features are obtained from a frontal
perspective and capture a lot of information but will fail to
make inferences about the missing parts of the objects.

ff = FPN(If) (1)

BEV Translation Network The features from the bird’s-
eye view (BEV) are widely used and work well in au-
tonomous driving research. Recall that features from dif-
ferent perspectives are likely to contain the missing part in-
formation and contribute to the full mask deduction of the
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Figure 3: (a) A three-dimensional cuboid is built and rasterized in the camera coordinate. For each voxel, we use the intrinsic
matrix to obtain its coordinates in the plane system, and use bilinear interpolation on the front-view features to obtain its
feature. Then, a convolutional network is used to obtain the bev map. (b) Our object attention layer in the multi-view fusion
layer is stacked by self-attention, cross-attention, and feedforward network. This layer is designed for shape information
fusion and takes two variables as input. We nominate the variable to be updated as shape receiver (SR) and another one as

shape provider (SP).

current frame. As obstruct doesn’t exist in BEV space un-
less objects are stacked on top of each other, it is reasonable
to introduce BEV as a special perspective to promote the
completion of the front-view feature. Consider a horizon-
tally placed camera, for each frame, a 3D volume feature
V5p is constructed in the camera coordinate system. As the
BEV feature generation just involves the current frame, we
omit the subscript of time ¢ and the object index k for sim-
plicity.

Denote the camera intrinsic matrices as K, we first focus
on a single point (z,y, z) in the camera coordinate space.
By utilizing intrinsic matrices, this point can be easily pro-
jected into the image/feature plane and we denote its coor-
dinate as (u,v):

Au T
M | =K | y 2)
A z

We use bilinear interpolate to obtain the feature at (u,v)
from the corresponding front-view feature f. The obtained
value at (u, v) will act as the volume feature at (z,y, 2).
As shown in Figure 3a, the 3D volume in the camera
coordinate will be rasterized into a group of points p;;;, =
(@i yj,26), where 1 < ¢ <m,1 < j<nl1<k<h
and x;, y;, 21, are three predefined 1D grid. x, y, z represent
the direction of width, depth, and height, respectively. The
value of V3p will be gotten by simply repeating the above
process for each point. Further, by stacking the feature of
the volume obtained from different channels together, we
will get V3p € ReX™xnxh  Since our goal is to acquire
BEV features, V3p is rearranged to R *™>™ and sent to a
lightweight CNN for compression along height dimension:

bl = CNN(Vzp.reshape(ch,m,n)) 3)

Multi-view Fusion Layer based Temporal Encoder As
the occluded part of a specific view may potentially appear

in other frames, we can make full use of the information
in each frame (equivalent to different perspectives) to refine
the completion of the object shape. Specially, inspired by
DETR [3] and Slot Attention [19], we would like to gen-
erate an object-centric feature utilizing both front-view and
BEV representations.

A direct method is to follow [19], which uses ConvGRU
to aggregate temporal information. However, the cost of
nested recurrent slot computation to gather the object in-
formation from each frame is expensive when processing
videos. Here, we propose a more efficient attention-based
encoder architecture named Multi-view Fusion Layer. Gen-
erally, in such a layer, three N-layer object attentions which
is a non-recurrent variant of slot attention are carefully de-
signed and closely connected. And features from different
views and object slots serve as the inputs.

In particular, as shown in Figure 3b, each object at-
tention layer (ObjAttention(SP, SR)) is stacked by self-
attention, cross-attention, and feed-forward networks and
serves as information fusion network. The variable absorb-
ing the missing shape information during the fusion process
is named shape receiver (SR), and another one is dubbed
shape provider (SP) as it offers extra shape patches. The
total forward process in ObjAttention is formulated as,

SR = SR+ Attention(SR, SR, SR) (4)
SR = SR + Attention(SP, SR, SP) (5)
output = MLP(SR) (6)

where Attention(K, @, V), MLP(:) denotes multi-head
attention module and two-layer feedforward network,
respectively.  And we omit all normalization layers.
ObjAttention first enhances the SR representation by re-
newing information contained in itself, then extracts fresh
properties from the SP.



On the other hand, similar to [3], a set of object slots
Sy € R™ >4 ig initialized before the videos enter. ns de-
notes the number of slots and d is the feature dimension. In
our model, Sy is set to be learnable and serves as a container
that gathers shape information from various views.

With the above preparations, we now go to the detail of
our multi-view fusion layer. For each frame, we take ad-
vantage of the S;_1 from the last frame which includes ob-
ject shape information from previous frames, and provide it
with the fresh characters from the front-view f¥ and BEV
feature b¥ under current perspective at first:

S = ObjAttention(SR = S;_1, SP =bf)  (7)
S, = ObjAttention(SR = S}, SP = fF) (®)

Then, the updated slots will provide clues about the oc-
cluded part and help complete the front-view features of the
current frame by setting the front-view features as SR in
the object attention layer. Thus, we inversely enhance the
front-view feature using the object slots by:

ff = ObjAttention(SR = fF,SP =5,) (9

Deconvolution Network The deconvolution network (De-
Conv) is served as the mask predictor and takes the updated
front-view features as input since it shares the same per-
spective with the full mask to be predicted. In our experi-
ments, we just construct several de-convolutional layers for
this module.

M}, VF = DeConv(fF) (10)

where M} and V}* are the full and visible mask predictions
of the current frame, respectively.

Bi-directional Prediction Cold start problem exists under
the above framework since the first few frames may not be
informative enough. Thus, backward prediction is added to
solve this problem. We simply concatenate the forward and
backward features, and send them to the final deconvolution
network.

3.2. Loss Function for EoRaS

Our EoRaS is designed as an end-to-end framework and
trained with the focal loss (Focal()) using both full mask
and visible mask as supervision signals. Note that the dis-
card of the visible mask loss will not heavily damage the
model performance, as shown in Tab. 4. The overall loss
function is

T K
Lyar =Y > Focal(Mf,M}) (11)
t=1 k=1
T K
Lyis =Y Y Focal(VF, V) (12)
t=1 k=1

£:£full+)\'£vis' (13)

Figure 4: Visualization of datasets. The first and second
rows show images from the Movi-B and Movi-D, respec-
tively. The remaining four images belong to the KITTI.

4. Experiments

To fully evaluate our model, we conduct extensive exper-
iments on both real-world and synthetic amodal segmenta-
tion benchmarks, including Movi-B, Movi-D, and KITTI
datasets, with the visualization in Fig. 4.

Movi Dataset [1 1] is a synthetic dataset consisting of ran-
dom scenes and objects created by Kubric [ 1]. In our ex-
periments, we consider two datasets (Movi-B and Movi-D)
with different objects and different levels of occlusions. We
extract the amodal information during generation of the two
datasets. The objects in Movi-B and Movi-D are from the
CLEVR [15], which consists of 11 relatively regular object
shapes, and Google Scanned Objects [8], which contains
1030 realistic objects, respectively. Both datasets use the
background from Poly Haven. To create situations with se-
rious occlusion, all objects are set to be static and stacked
closely together. Videos are created by setting the camera to
rotate around the objects. Overall, compared with Movi-B,
Movi-D has a more complex object shape and lower camera
viewing angle with more serious occlusion.

KITTI Dataset [10] is currently the largest real-world au-
tonomous driving evaluation dataset. It has been widely
used in many vision tasks, such as object detection and op-
tical flow prediction. [22] annotated some images in KITTI
with amodal information and [35] matched these images to
its original video frame. Note that since these videos are not
sufficiently annotated, it is a weakly supervised scenario.
For a fair comparison, we follow the same data split in [35].
The visible masks and object tracks are extracted by Point-
Track [33]. It is noteworthy that only the car category is
annotated in this dataset.

4.1. Competitors and Settings

Competitors We compare our method with the follow-
ing related methods: (1) VM (Visible Mask), directly use
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Movi-D, and KITTI, respectively.

METRICS
DATASET | METHODS MIoU a mioUnes
VM 59.19 -
Convex 64.21 18.42
PCNET 65.79 24.02
Movi-B AISFormer 77.34 43.53
SaVos-sup. 70.72 33.61
BiLSTM 77.93 46.21
EoRasS (Ours) 79.22 47.89
VM 56.92 -
Convex 60.18 16.48
PCNET 64.35 27.31
Movi-D AISFormer 67.72 33.65
SaVos-sup. 60.61 22.64
BiLSTM 68.43 36.00
EoRasS (Ours) 69.44 36.96
VM 74.75 -
Convex 78.62 8.29
PCNET 81.58 17.90
KITTI AISFormer 86.42 51.04
SaVos-sup. 83.09 37.33
BiLSTM 86.68 49.95
EoRaS (Ours) 87.07 52.00

Table 1: The performance of EoRaS on real-world and syn-
thetic video amodal benchmarks.

the ground truth visible mask as amodal prediction; (2)
Convex, take the convex hull of the visible mask as the
amodal mask; (3) PCNET[36], a self-supervised image-
level amodal completion method by in turn recovering oc-
clusion ordering and completing amodal masks and content;
(4) AISFormer [30], an image-level amodal segmentation
model equipped with a transformer-based mask head and
achieves the new state-of-the-art recently; (5) Savos [35], a
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recent state-of-the-art method in the field of self-supervised
video amodal segmentation and is modified to supervised
version by removing the 2D warping and bringing the super-
vised signal for fair comparison (We also did additional ex-
periments involving warping operation, but the experiment
results are quite inferior); (6) BILSTM [12], a variant of our
proposed method for which we keep the same FPN50 back-
bone but utilize BILSTM to aggregate temporal information
across frames.

Implementations Results on all datasets are reported in
terms of mIOU metrics for both full mask and occluded
regions. Since most amodal segmentation algorithms use
the visible mask or the bounding boxes of the visible part
as model input, the estimation results of the visible area
may be more confident, and the mIOU of the occluded area
can better reflect the model performance. On all datasets,
the mIOU metric of the occluded part is only computed on
those partially occluded objects. We use AdamW as opti-
mizer with batch size 4 for 50 epochs. The learning rate is
set to le — 5 on Movi datasets and le — 4 on the KITTI
dataset. Exponential learning rate decay is used where the
decay rate is 0.95. The weight decay is 5e — 4. And the v
in focal loss is set to 2. We set A = 1, ng = 8, N = 2 and
train our model on four Tesla T4 GPUs using PyTorch.

4.2. Results on Movi Datasets

As shown in Table 1, compared with supervised SaVos,
our EoRaS achieves extremely significant performance im-
provements on both Movi datasets. In particular, by apply-
ing our algorithm, the prediction of the full mask of the ob-
jects in the two datasets is improved by 8.50% and 8.83%,
respectively. The improvements are more remarkable in
the prediction of occluded parts. For the performance on
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"| Temporal Bi-direction BEV [mloU i mIoUpcc
5 X X X 66.70 33.42
6 v v X 69.08 36.39
7 v X v 68.56 35.54
8 v v v 69.44 36.96

Table 2: Ablation study of our temporal and bev modules on Movi-B (left) and Movi-D (right) dataset.

NO \ DESIGNS \ METRICS
"| Temporal Bi-direction BEV [mIoUfy; mloUoec
1 X X X 76.93 44.55
2 v v X 78.66 46.83
3 v X v 78.42 46.51
4 v v v 79.22 47.89
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Figure 6: Visualizations derived from models with/without
proposed temporal or BEV module. Clearly, the complete
model deduces the best full mask, and both the temporal
and BEV module can bring consistent benefits.

the occluded part, our EoRaS achieves 14.28% improve-
ment on the Movi-B over the baseline SaVos, and surpris-
ingly improves by 14.32% on the Movi-D. Moreover, the
performance of EoRaS also exceeds the recent state-of-the-
art image-level algorithm AISFormer by a clear margin on
both datasets. And it’s noteworthy that EoRaS outperforms
the combination of FPN50 and BiLSTM/Transformer by at
least 1% in plenty of experiments, showing the effectiveness
of introducing the BEV module. Additionally, despite the
usage of ground truth visible mask in Convex and PCNET,
EoRaS still exhibits amazing power. We also present the
qualitative results in Figure 5. Obviously, the full masks de-
duced by EoRaS are the closest to the original object shape
among all the competitors. Above all, EoRaS is more suit-
able for solving the video amodal segmentation task, and
leads to the new state-of-the-art.

4.3. Results on KITTI Dataset

The experiment results on the KITTI dataset are shown
in Table 1. For objects in real scenes, our EoRaS can still
exceed all the current state-of-the-art methods. Compared
with the image-level baseline, we achieve 0.65% and 0.96%
improvement for the full and occluded mask prediction, re-
spectively. For the supervised SaVos, EoRaS achieves enor-
mous promotion, ~4% on the full shape and ~15% on the
missing part. Furthermore, other video-level baselines con-

DATASET ‘ # Slots ‘ mloU sy mloUgee
8 79.22 47.89

16 79.22 47.79

. 32 79.29 47.88
Movi-B 64 79.22 47.78
128 79.19 4773

256 79.20 47.75

8 69.44 36.96

16 69.42 36.92

. 32 69.50 37.27
Movi-D 64 69.38 37.01
128 69.47 37.02

256 69.45 37.06

Table 3: Sensitivity Analysis of Slot Number. Despite the
diverse settings of slot number, the performance of EoRaS
just changes slightly, demonstrating the robustness against
hyper-parameter n.

sistently underperform our EoRaS by ~2% on the deduc-
tion of the occluded part. Qualitative comparison in Figure
5 clearly exhibits the great precision of EoRaS. The above
evidence is sufficient enough to prove the effectiveness of
EoRaS under weakly supervised settings.

S. Further Analysis

Effectiveness of Temporal and BEV Modules As shown
in Table 2, on Movi-B dataset, our temporal module brings
about ~2.3% performance improvement in occluded part
prediction. After plugging in the BEV module, the oc-
cluded mIOU is further improved by 1.06%. Additionally,
Bi-direction prediction also plays an important role in our
model as it brings 1.38% performance improvement for the
missing part deduction. On the Movi-D dataset, the im-
provements brought in by those modules are also signifi-
cant, as presented in the right table. Some visualizations
derived from different architectures are presented in Figure
6. It’s clear that both temporal and BEV modules are ca-
pable of improving the smoothness and shape similarity of
full masks. These experiments fully prove the effectiveness
of the modules proposed in this paper, and also verify the
correctness of our hypothesis that feature information from
different perspectives can benefit the completion of object
shape in any specific frame/view.

Sensitivity Analysis of Slot Number To analyze the sensi-



DATASET | A | mloUpuy  mloUoecc

0.0 78.93 47.55

0.25 79.14 47.80

Movi-B 0.5 79.21 47.90
0.75 79.20 47.85

1.0 79.22 47.89

0.0 68.68 36.39

0.25 69.26 37.06

Movi-D 0.5 69.42 36.99
0.75 69.38 36.96

1.0 69.44 36.96

Table 4: Performance of EoRaS under different \.

METHODS TARGET METRICS
mloU gy mloUoce
Movi-D 62.94 28.65
AISFormer [30] KITTI 71.36 29.84
Movi-D 57.19 25.85
SaVos-Sup. [35] KITTI 65.49 21.82
Movi-D 63.98 31.22
EoRaS (Ours) KITTI 71.73 31.35

Table 5: Open set segmentation on Movi-D and KITTI
datasets. We use EoRaS pretrained on the Movi-B dataset
and conduct transfer learning experiments without finetun-
ing. Our EoRaS achieves the highest performance, indicat-

ing its great generalization ability.

DATASET METHODS METRICS
mIonu” mIoUocc

EoRa$S 79.22 47.89
. +PP* 79.38 47.66
Movi-B +PP 81.20 47.89
+SG 81.76 49.39
EoRaS 69.44 36.96
. +PP* 69.95 36.81
Movi-D +PP 72.76 36.96
+SG 74.10 38.33

Table 6: The performance of EoRaS while using GTVM at
test phase on Movi dataset. PP* and PP means the predicted
and ground truth visible mask are used in post-process, re-
spectively. And SG represents the model trained with the
concatenation of images and visible masks.

tivity to the choice of n4, we conduct experiments by widely
tuning the slot number. The results are presented in Table
3 and indicate that the number of slots has almost no im-
pact on the performance of our model. This phenomenon
demonstrates the robustness of our model against the di-
verse choices of slot numbers.

Different choices of A We conduct experiments to analyze
the effect of A on the performance of our model, and the re-
sults are presented in Table 4. First of all, the utilization of
visible masks in supervision signals will benefit the model

training as also shown in previous amodal segmentation al-
gorithms. But the way that EoRaS differs lies in the insen-
sitivity to the choice of A once the visible mask is added,
which demonstrates the superiority of EoRaS.

Open Set Segmentation To evaluate the capacity of out-of-
distribution generalization, we conduct open set segmen-
tation experiments on Movi-D and KITTI datasets. Mod-
els are pretrained on the relatively simple Movi-B dataset.
As presented in Table 5, EoRaS achieves the best accuracy
among all competitors. Concretely, compared with super-
vised SaVos, EoRaS outperforms by at least 6%, showing
strong dominance. Again, the image-level SOTA algorithm
underperforms EoRaS by ~2% on the occluded part deduc-
tion, indicating that the integration of information from dif-
ferent views indeed benefits the generalization ability.
Test-time Assistance by Ground Truth Visible Mask
(GTVM) The same as SaVos and PCNET, we explore the
utilization of GTVM at the test phase. On the one hand,
the post-processing (PP), including taking the intersection
of the predicted full mask and GTVM, is feasible. On the
other hand, containing partial shape information, GTVM
may be capable of serving as a shape guidance (SG) for
mask completion. To this end, we simply train our model
with the concatenation of images and visible masks. The
experimental results are presented in Table 6. Overall, the
introduction of GTVM brings in huge benefits, which is in-
line with [35, 36]. Despite the usage of GTVM in those
algorithms, our EoRaS still outperforms them by a large
margin (see Table 1), suggesting the powerful function.

6. Conclusion

In this paper, we proposed a brand-new pipeline named
EoRaS to cope with the video amodal segmentation task.
Based on the assumption that both the supervision signals
(shape prior) and the features from different perspectives
(view prior) will benefit the deduction of the full mask un-
der any specific view, the multi-view fusion layer based
temporal encoder and BEV translation network are de-
signed to integrate 3D information and front-view shape
patches from different frames respectively in an object-
centric pattern. Utilizing those modules, our EoRaS elimi-
nates the optical flow usage and the over-reliance on shape
priors, achieving high efficiency even in complex scenarios.
We conduct experiments on both real-world and synthetic
video amodal benchmarks, including Movi-B, Movi-D, and
KITTI datasets. The empirical results demonstrate that our
EoRaS achieves the new state-of-the-art performance.
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School of Data Science, Shanghai Key Lab of Intelligent Informa-
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A. Qualitative comparison between EoRaS and competitors
In the supplementary part, we show some qualitative comparisons of our model and competitors.

A.1. Qualitative comparison in Movi-B and Movi-D

Figure 7 provides a comprehensive qualitative comparison between our EoRaS and competitors across two datasets, Movi-
B and Movi-D. The left column displays images from Movi-B, and the right column displays images from Movi-D, with the
numbers in the upper-left corner indicating the source frame of each image. For example, 17-3 indicates this image is from
the 37 frame of the 17*" video. Notably, we also highlight the objects with the largest predicted mask difference by framing
them for ease of comparison.

When analyzing the images from Movi-B, our model outperforms competitors in many cases. For example, in the first
image (17-3), our prediction for the green cylinder is superior to those of our competitors. Specifically, AISFormer predicts
a full mask that extends beyond the ground truth, while SaVos predicts an incomplete mask. In the last image (26-11), only
our EoRaS model accurately predicts the spout of the teapot.

Examining the Movi-D dataset, we note that AISFormer over-completes the predictions for the objects in the first two
images (4-1 and 4-5), while SaVos delivers incomplete masks. Conversely, EoRaS accurately predicts the full masks of the
books in the third (34-13) and fourth (34-19) images, while AISFormer and SaVos provide incomplete masks.

AISFormer SaVos EoRaS AISFormer = SVos = EoRaS ]

Figure 7: Qualitative comparison between our EoRaS and competitors in the Movi-B and Movi-D datasets. The images in
the left column are from Movi-B, and those in the right column are from Movi-D. The numbers in each upper-left corner
indicate where these images come from. For example, 17-3 indicates this image is from the 3"¢ frame of the 17¢" video. For
convenience, we also put frames on those objects with the largest predicted mask difference.



A.2. Qualitative comparison in KITTI

In addition, we showcase the performance of our EoRaS model in the KITTI dataset (Figure 8). Given the sparsely
annotated nature of the KITTI dataset, only a few frames have annotations, with no full ground truth masks available for the
selected images. Nevertheless, we observe that our model outperforms competitors in certain cases. In the upper-right image
(22-160), AISFormer gives a weirdly shaped mask, while SaVos gives an over-completed mask.

To add that, we also noticed that for the cases when there is no occlusion in front of one object, EoRaS can give a more
accurate mask than our competitors, as shown in the yellow mask of the lower-right image (22-402), which further shows the
robustness of our model.

Overall, the results presented in Figure 7 and Figure 8 suggest that our EoRaS model outperforms competitors in terms of
accuracy, completeness, and robustness across various datasets.

AISFormer

SaVos

EoRaS

Unlabeled GT

Unlabeled GT

Figure 8: Qualitative comparison between our EoRaS and competitors in the KITTI dataset. The numbers in each upper-left
corner indicate where these images come from. For example, 22-142 indicates this image is from the 142"¢ frame of the
2274 video. For convenience, we also put frames on those objects with the largest predicted mask difference. Due to the
sparse labeling of the KITTI dataset, many images do not have ground-truth full masks.



