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Abstract

In recent years, prompt tuning has proven effective
in adapting pre-trained vision-language models to down-
stream tasks. These methods aim to adapt the pre-trained
models by introducing learnable prompts while keeping pre-
trained weights frozen. However, learnable prompts can
affect the internal representation within the self-attention
module, which may negatively impact performance vari-
ance and generalization, especially in data-deficient set-
tings. To address these issues, we propose a novel ap-
proach, Read-only Prompt Optimization (RPO). RPO lever-
ages masked attention to prevent the internal representa-
tion shift in the pre-trained model. Further, to facilitate
the optimization of RPO, the read-only prompts are ini-
tialized based on special tokens of the pre-trained model.
Our extensive experiments demonstrate that RPO outper-
forms CLIP and CoCoOp in base-to-new generalization
and domain generalization while displaying better robust-
ness. Also, the proposed method achieves better generaliza-
tion on extremely data-deficient settings, while improving
parameter efficiency and computational overhead. Code is
available at https://github.com/mlvlab/RPO.

1. Introduction

Vision-language models like CLIP [6], ALIGN [24], and
FILIP [50] have achieved excellent performance in vari-
ous vision-language tasks. Since vision-language models
are supervised by natural language based on the contrastive
learning objective, by placing the class name in a textual
template (e.g.,“A photo of a [CLASS]”), vision-language
models can effectively classify images in open-vocabulary
settings [6].

Recent works have explored the adaptation of these
vision-language models on downstream tasks [19]. How-
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Figure 1: Variance of CoCoOp, CoOp, and linear prob-
ing. Linear probing, which does not shift the pre-trained
representation, shows lower variance in performance com-
pared with prompt learning methods such as CoOp and Co-
CoOp.

ever, unlike small pre-trained models, large-scale archi-
tectures (e.g., CLIP) are difficult to fine-tune, since it is
inefficient, resource-intensive, and possibly damaging to
the good representations learned during pre-training. In
CLIP, prompt engineering is conducted to provide domain-
specific context to downstream tasks (e.g., “A photo of a
[CLASS], a type of car”) [6]. However, this means that the
prompt has to be chosen manually, based on trial and error.
To mitigate this issue, Context Optimization (CoOp) [33]
suggests automating prompt engineering on CLIP, replac-
ing the context words in natural language-based prompts
with learnable vectors. Conditional Context Optimization
(CoCoOp) [31] extended CoOp with an image-conditional
prompt, generated by an additional neural network, to im-
prove generalization.

Although these existing methods are proposed to avoid
adversely affecting the learned parameters of the pre-trained
model during prompt learning, they still affect the model’s
hidden representation through the attention mechanism,
which we call the internal representation shift. We visu-
alize this process of representation shift in Figure 2a. As
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(a) Conventional Prompt Tuning (b) Linear Probing (c) Read-only Prompt Optimization

Figure 2: Illustration of methods for model adaptation and RPO. (a) As denoted by ⇔, token features and prompt features
can see each other in conventional prompt tuning methods. Although the weight of the model has been frozen, the internal
representations of pre-trained CLIP are increasingly shifted by the newly introduced learnable prompts through the self-
attention mechanism. (b) In linear probing, internal representations as well as pre-trained parameters are frozen. The linear
layer on top of the model is trained for model adaptation. (c) As denoted by ⇒, only the prompts can read token features and
not the other way around in our method, RPO. This keeps token features frozen and unaffected by introduced prompts while
our read-only prompts only read useful information from token features.

tokens are processed through transformer [55] layers, the
internal representations of the pre-trained model are largely
changed by the learnable prompts. This can be beneficial, as
it allows the model to better adapt to the downstream task.
However, as shown in Figure 1, this shift has the potential
to negatively impact the robustness and generalization of
the model in data-deficient settings. On the other hand, lin-
ear probing has no internal representation shift, as shown in
Figure 2b, but the linear layer introduces parameter ineffi-
ciency.

To inspect how representation shift influences model
variance in data-deficient settings, we conduct a prelimi-
nary experiment with linear probing CLIP, which does not
change the internal representation of pre-trained CLIP. We
train the model with 10 random few-shot training data split
on the FGVCAircraft dataset with the 16-shot learning set-
ting and visualize the variance of performance. Interest-
ingly, as shown in Figure 1, we observed that linear prob-
ing significantly lowers variance compared to CoOp and
CoCoOp, even though it requires more training parameters
(262K) compared to CoOp (2K) and CoCoOp (35K). This
result shows that internal representation shifts induced by
training with deficient data may result in high variance. At
the same time, as CoOp empirically showed, linear probing
sometimes shows a lack of generalizability in domain-shift
tasks, and the amount of its additional parameters is unde-

sirable.
Motivated by this observation, we propose Read-only

Prompt Optimization (RPO) that learns read-only prompts
as shown in Figure 2c. RPO prevents representation shift
during adaptation while being parameter-efficient, leading
to a more robust and generalizable adaptation.

Our contributions can be summarized as follows:

• We propose Read-only Prompt Optimization (RPO),
which allows prompts only to read information from
the attention-based interactions of a pre-trained vision-
language model, thereby preventing the internal repre-
sentation shift.

• We develop a simple yet effective initialization method
for our read-only prompts, leveraging the special token
embeddings of the pre-trained CLIP vision-language
model.

• Our extensive experiments and analyses demonstrate
the generalization of RPO on domain and label shift
in few-shot adaptation settings, achieving the best per-
formance in 9 benchmarks on base to new generaliza-
tion and in 4 benchmarks on domain generalization,
at the same time reducing variance depending on the
few-shot sample.



2. Related Works
Vision-Language Models The vast amount of web-crawled
image-text pairs [6, 24, 15, 5, 45, 44] facilitate vision-
language models to be pre-trained contrastively, which en-
ables the acquisition of powerful and generalizable image
representations. For instance, CLIP [6] and ALIGN [24]
rely on transformer-based [55] encoders to map the com-
plex relationship between images and text. These vision-
language models have achieved exceptional performance
in diverse downstream tasks, especially in zero-shot im-
age classification. Following these works, numerous other
works [12, 18, 48, 47] have emerged to harness the power
of vision-language models for image-related tasks such as
image recognition [33, 31, 29, 38, 9].

However, despite the strong generalization performance
of these models, adapting them to specific tasks can be
challenging, as assembling large datasets for diverse down-
stream tasks is a formidable challenge [39]. To mitigate this
issue, recent works focus on enabling the rapid adaptation
of pre-trained vision-language models to specific tasks
based on the transferability of CLIP.

Prompt Learning Prompt learning [27, 22, 32, 13] is ini-
tially proposed in natural language processing models like
GPT [7, 10], and BERT [21]. This technique involves in-
corporating additional tokens, such as handcrafted instruc-
tions or learnable prompts, to facilitate the fine-tuning of
a pre-trained language model for downstream tasks. The
additional tokens provide contextual information of down-
stream tasks to the model while keeping the original lan-
guage model unchanged, thereby avoiding catastrophic for-
getting [40]. Based on the effectiveness of this approach,
recent studies have tried to utilize the concept of prompt
learning in vision-language models.

Recent studies in vision-language models used prompt
learning, with continuous vector prompts which are con-
catenated and processed with text tokens [33, 49]. Another
line of works introduced prompts that depend on visual
features [29, 31, 38, 26, 52]. The continuous prompt learn-
ing method [23, 53, 28] reduces the number of parameters
to train and automatically identifies a well-functioning
prompt. Visual Prompt Tuning (VPT) [29] inserts prompts
to the visual encoder rather than the text encoder. Likewise,
prompts effectively contain and communicate knowledge
about the task at hand.

Zero-Shot Learning & Domain Generalization Zero-shot
learning involves learning general knowledge from “base”
object classes, which is available during training, and using
this knowledge to recognize novel classes. To achieve this,
some approaches include using visual attributes like color
or shape to generalize across classes [17], or using vision-
language models to map visual samples and corresponding

text [33, 31, 34].
Domain generalization requires the visual encoder to

generate domain-invariant representations, meaning they
are not affected by the particular domain or setting in which
the images were taken. For example, a photo of an apple
and a sketch of an apple [30] should result in similar repre-
sentations. Various methods have been proposed to achieve
domain generalization, such as using pre-trained models for
generalized representations [2, 41] and cross-modality su-
pervision [20].

While prompt learning in vision-language models has
shown improved performance, learnable prompts have a
high chance of altering well-functioning parts of the orig-
inal model through the mechanism of attention [55]. The
attention mechanism causes all input embeddings to interact
with each other, thereby affecting the hidden representation
of the pre-trained model. This may lead to unexpected be-
havior in the frozen model if the training data is insufficient.

3. Method
In this section, we propose Read-only Prompt Opti-

mization (RPO) for a robust and generalizable adaptation
of vision-language models to various downstream tasks in
few-shot data deficient settings. We introduce a set of
Read-only Prompts, concatenated to the input of the visual
and text encoders then processed with masked attention to
avoid the impact on the internal representation of CLIP. All
pre-trained parameters are frozen during prompt optimiza-
tion, and only concatenated read-only prompts are updated.

3.1. Read-only Prompts

For both the text encoder and visual encoder, RPO works
with the same mechanism. We first concatenate a set of
continuous learnable prompts, which requires minimal ad-
ditional parameters to train, to image patch embeddings or
word embeddings. The formulation is as below.

x(0) =
[
x(0);E(0)

x ; {pvi }Ki=1

]
, (1)

y(0) =
[
y(0);E(0)

y ; {pti}Ki=1

]
, (2)

where x(0) ∈ Rdv , y(0) ∈ Rdt denote special token
embeddings, [CLS] for the visual encoder and [EOS]
for the text encoder, which act as feature aggregators in
each encoder. E(0)

x ∈ RNx×dv , E
(0)
y ∈ RNy×dt denote the

visual and text embeddings, and dv, dt are the dimensions
of image patch and word embeddings, while Nx, Ny denote
the length of feature tokens, not counting the special tokens.
pvi , p

t
i denotes the ith learnable prompt of the visual and

text encoder, and K is the number of prompts. The number
of prompts is equal for both encoders. Note that, unlike



Figure 3: Overall architecture of RPO. We use the default prompt “A photo of a [CLASS]” for all datasets. Then in both
encoders, our read-only prompts are concatenated to the original features and fed into a frozen encoder. Attention within
these encoders are masked so that our prompts can be learned, but not shift the original feature interactions. We compute
similarity scores between the outputs of each encoder corresponding to each of K prompts and average them to produce final
classification scores s̄1 to s̄C , where C denotes the number of classes.

previous textual prompt learning methods where learnable
prompts replace the token embeddings corresponding to ‘A
photo of a’, we encode ‘A photo of a [CLASS]’ prompt
to produce E

(0)
y and then concatenate read-only learnable

prompts {pti}Ki=1.

3.2. Special token-based initialization

In RPO, each learnable prompt is initialized by slightly
perturbed special tokens, i.e., [CLS] on the visual encoder
and [EOS] on the text encoder, of the pre-trained CLIP,
named ST-Initialization. In CLIP, special tokens play the
role of a feature aggregator which acts as a representative of
the input at the last layer of the transformer encoder. Since
read-only prompts carry out feature aggregation as well, we
discovered that it is beneficial to initialize prompts based on
special tokens as a good starting point. The ablation study
of ST-Initialization is described in Table 3. We initialize
prompts as follows:

pvi ∼ N (x(0), σ2I), pti ∼ N (y(0), σ2I), (3)

where {pvi }Ki=1 ∈ RK×dv and {pti}Ki=1 ∈ RK×dt denote
the set of read-only visual prompts and text prompts, and
σ2 is the variance for initialization. In this paper, we set
σ as 0.1. This initializes K prompts slightly differently so
that the learnable prompts avoid constant initialization.

(a) Visual Attention Mask (b) Textual Attention Mask

Figure 4: The visualization of attention masks for each en-
coder.

3.3. Masked attention

In our framework, RPO, masked attention is important
for preserving internal interactions within the pre-trained
CLIP. As shown in Figure 4a and Figure 4b, we propose
an attention mask to prevent the original features from be-
ing corrupted by learnable prompt embeddings. The visual
attention mask Mv ∈ RNv×Nv and textual attention mask
Mt ∈ RNt×Nt restricts the attention flow from learnable
prompts to existing features, where Nv = 1+K +Nx and
Nt = 1 +K +Ny .

The mask can be defined as follows, where M i,j denotes



the ith row, jth column element of the mask:

M i,j
v =

{
−∞, if j > 1 +Nx

0, otherwise
(4)

M i,j
t =

{
−∞, if j > 1 +Ny or i > j

0, otherwise
(5)

Masked attention operations in the transformer encoder can
be formulated as below.

x(l+1) = Vl+1(x
(l),Mv )

= softmax

(
QKT

√
dv

+Mv

)
· V,

y(l+1) = Tl+1(y
(l),Mt)

= softmax

(
QKT

√
dt

+Mt

)
· V,

(6)

where Vl+1 and Tl+1 are the (l + 1)-th masked multi-head
self-attention layer of the visual encoder and text encoder,
respectively. x(l) ∈ RNv×dv denotes the input tensor of the
(l + 1)-th visual encoder layer and y(l) ∈ RNt×dt denotes
the input tensor of the (l + 1)-th text encoder layer. Final
outputs of the visual and text encoders, x(L) and y(L), are
denoted as follows:

x(L) =
[
e0;E

(L)
x ; {ei}Ki=1

]
,

y(L) =
[
s0;E

(L)
y ; {si}Ki=1

]
,

(7)

vi = Pv · ei,
ti = Pt · si, (8)

where L is the number of layers, ei, si are the i-th visual
and text prompt feature, produced by their respective en-
coders. Pv and Pt are the pre-trained projection matrix
that projects ei, si to vi, ti.

3.4. Pairwise scoring function

As shown in Figure 3, for K pairs of prompts, we com-
pute K logits based on cosine similarity given a single im-
age x and class label y. Given x and y, we define the
similarity between them as Equation (9). By averaging the
logits, we yield the same effect as an ensemble of K inde-
pendent models that have separate perspectives about image
and text.

sim(x, y) =
1

K

K∑
i=1

vi · ti
|vi||ti|

(9)

p(yk|x) =
exp(sim(x, yk)/τ)∑C
j=1 exp(sim(x, yj)/τ)

(10)

Using ensembled logits, we define probability dis-
tribution following Equation (10), where τ denotes the
temperature hyperparameter of pre-trained CLIP.

4. Experiments
Following CoCoOp [31], we evaluate our model, RPO,

in two experimental settings, 1) Base-to-new general-
ization, which aims to demonstrate generalization to the
label-shift, where labels are divided into base and novel
classes, and 2) domain generalization, which aims to
show generalization to the domain shift, especially for
out-of-distribution data. We also conduct extensive analy-
ses to explore RPO’s capability to reduce model variance
and improve generalization while maintaining parameter
efficiency and computational efficiency.

Datasets We evaluate RPO in label-shift on 11 image
recognition datasets used in CoOp [33] and CoCoOp [31].
Specifically, we use ImageNet [25], Caltech101 [11],
OxfordPets [54], StanfordCars [3], Flowers102 [36],
Food101 [14], FGVCAircraft [1], SUN397 [37], DTD [35],
EuroSAT [4], and UCF101 [51]. We also conduct ex-
periments to evaluate the domain generalization ability
of RPO with ImageNet [25] as the source dataset and its
distinct-domain variants ImageNetV2 [42], ImageNet-
Sketch [30], ImageNet-A [46], and ImageNet-R [8] as the
target datasets.

Baselines We set our baseline as CoCoOp [31] for two
experiments: base-to-new generalization and domain
generalization. We compare RPO with zero-shot CLIP [6]
based on manually chosen prompt templates for each
dataset and CoOp [33] which optimizes learnable context
vectors. We also take into account the Linear-probing (LP
CLIP) in our analysis. This approach involves incorpo-
rating an extra trainable linear layer on the existing CLIP
image encoder. In contrast to the typical Linear-probing
method, which solely relies on the CLIP image encoder and
a trainable linear classifier, we additionaly utilize CLIP text
embeddings which encode the classnames as a classifier
weights to evaluate LP CLIP on base-to-new generalization
setting. RPO shows better generalization and robustness
compared to CoCoOp with fewer parameters and computa-
tional expenses, as shown in Table 1 and Table 2.

Training details In all the experiments, we use ViT-B/16
CLIP, a CLIP with vision transformer backbone, as our base
model. We set the number of prompt pairs K as 24 for fair
comparison with CoCoOp regarding the number of parame-
ters. The SGD optimizer is used with batch size 4. For base-
to-new generalization, RPO is trained for 15 epochs with a
learning rate of 0.01. For domain generalization, we trained



Table 1: Comparison of CLIP, CoOp, CoCoOp, and Ours (RPO) in the base-to-new generalization setting. We train
our model with a subset of the classes (base classes) in a 16-shot setting and evaluate on the test set including base classes
and new classes. H denotes the harmonic mean of base and novel performance.

(a) Average over 11 datasets

Methods Base Novel H

CLIP 69.34 74.22 71.70

+LP 81.80 69.17 74.65
+CoOp 82.69 63.22 71.66
+CoCoOp 80.47 71.69 75.83
+RPO 81.13 75.00 77.78

(b) ImageNet.

Methods Base Novel H

CLIP 72.43 68.14 70.22

+LP 73.13 57.10 64.13
+CoOp 76.47 67.88 71.92
+CoCoOp 75.98 70.43 73.10
+RPO 76.60 71.57 74.00

(c) Caltech101.

Methods Base Novel H

CLIP 96.84 94.00 95.40

+LP 98.03 93.50 95.71
+CoOp 98.00 89.81 93.73
+CoCoOp 97.96 93.81 95.84
+RPO 97.97 94.37 96.03

(d) OxfordPets.

Methods Base Novel H

CLIP 91.17 97.26 94.12

+LP 94.87 92.50 93.67
+CoOp 93.67 95.29 94.47
+CoCoOp 95.20 97.69 96.43
+RPO 94.63 97.50 96.05

(e) StanfordCars.

Methods Base Novel H

CLIP 63.37 74.89 68.65

+LP 78.60 65.50 71.45
+CoOp 78.12 60.40 68.13
+CoCoOp 70.49 73.59 72.01
+RPO 73.87 75.53 74.69

(f) Flowers102.

Methods Base Novel H

CLIP 72.08 77.08 74.83

+LP 97.87 65.87 78.74
+CoOp 97.60 59.67 74.06
+CoCoOp 94.87 71.75 81.71
+RPO 94.13 76.67 84.50

(g) Food101.

Methods Base Novel H

CLIP 90.10 91.22 90.66

+LP 88.30 88.03 88.17
+CoOp 88.33 82.26 85.19
+CoCoOp 90.70 91.29 90.99
+RPO 90.33 90.83 90.58

(h) FGVCAircraft.

Methods Base Novel H

CLIP 27.19 36.29 31.09

+LP 41.37 31.13 35.53
+CoOp 40.44 22.30 28.75
+CoCoOp 33.41 23.71 27.74
+RPO 37.33 34.20 35.70

(i) SUN397.

Methods Base Novel H

CLIP 69.36 75.35 72.23

+LP 79.47 69.73 74.28
+CoOp 80.60 65.89 72.51
+CoCoOp 79.74 76.86 78.27
+RPO 80.60 77.80 79.18

(j) DTD.

Methods Base Novel H

CLIP 53.24 59.90 56.37

+LP 80.63 55.97 66.07
+CoOp 79.44 41.18 54.24
+CoCoOp 77.01 56.00 64.85
+RPO 76.70 62.13 68.61

(k) EuroSAT.

Methods Base Novel H

CLIP 56.48 64.05 60.03

+LP 82.30 68.00 74.47
+CoOp 92.19 54.74 68.69
+CoCoOp 87.49 60.04 71.21
+RPO 86.63 68.97 76.79

(l) UCF101.

Methods Base Novel H

CLIP 70.53 77.50 73.85

+LP 85.27 73.53 78.97
+CoOp 84.69 56.05 67.46
+CoCoOp 82.33 73.45 77.64
+RPO 83.67 75.43 79.34

our model for 15 epochs with a learning rate of 0.005.

4.1. Base-to-new generalization

For each dataset, we split classes into two groups, base
and novel, by the alphabetical order of labels. The training
dataset consists of 16 images per class of the base classes
at random. Models are trained by this few-shot sampled
data depending on 3 random seeds (1, 2, and 3) as [31], and
we report the averaged results in the Table 1. We evaluate
accuracy on test data corresponding to both the base and

novel classes and use their harmonic mean as the final
evaluation metric.

Comparison with CoCoOp RPO outperforms CoCoOp on
9 out of 11 image recognition benchmarks, while simulta-
neously addressing the computational cost associated with
CoCoOp’s instance-conditional design. See Section 4.3
for more discussions about the computational efficiency.
Table 1 shows that our method shows better generalization
to label shift in most benchmarks. Out of 11 datasets,



Table 2: Comparison of RPO, CoCoOp, CoOp and manual prompt in domain generalization. RPO learns from Ima-
geNet (16 images per class) and is evaluated by 4 datasets with distribution shift and ImageNet itself. RPO performs better
on 4 out of 5 datasets compared to CoCoOp.

Source Target

Learnable? ImageNet ImageNetV2 ImageNet-Sketch ImageNet-A ImageNet-R

CLIP 66.73 60.83 46.15 47.77 73.96
+CoOp ✓ 71.51 64.20 47.99 49.71 75.21
+CoCoOp ✓ 71.02 64.07 48.75 50.63 76.18

+RPO ✓ 71.67 65.13 49.27 50.13 76.57

RPO achieved better accuracy in 8 of base and 9 of novel,
compared with CoCoOp. In average over 11 datasets, the
gap between the accuracy on base classes and novel classes
decreased, indicating better base-to-new generalization. It
is worth mentioning that the averaged novel accuracy of
RPO surpasses the zero-shot CLIP and also outperforms
zero-shot CLIP on 7 out of 11 benchmarks. It supports
that RPO is a generalizable adaptation method for label
shift. Although RPO brings slightly lower performance in
OxfordPets and Food101 compared to CoCoOp, the result
shows an overall improvement in both base classes and
novel classes.

Comparison with CoOp RPO and CoOp share similar
architectures in that both of them introduce learnable
prompts only into the input space. Despite the architectural
similarity, RPO results in higher novel accuracy on all
datasets compared to CoOp. As shown in Table 1, RPO
improves the novel accuracy of CoOp by 11.8% on average,
which far outweighs the 1.5% drop in base accuracy. It
demonstrates the fact that read-only prompts implemented
by masked attention result in a better base to new general-
ization in the context of vision-language model adaptation.

Comparison with LP Additionally, Linear-Probing (LP
CLIP), introduced in Figure 1, can be considered a compa-
rable baseline for base-to-new generalization. Despite not
outperforming on every benchmark, LP CLIP’s competitive
performance and its relatively small performance variation
implies preventing internal representation shift is beneficial
for robust fine-tuning in data-deficient settings. Despite
the commonality that both LP CLIP and RPO do not shift
the internal representation, RPO exhibits superior general-
ization performance across 11 datasets. This observation
aligns with previous works [29, 43, 28] in that the prompt
tuning outperforms the conventional fine-tuning methods
in low-data scenarios.

4.2. Domain generalization

By measuring the generalization ability of the model
on out-of-distribution data, we can verify how robust our
learned prompts are to domain shift. In this section, we
evaluate RPO’s domain generalization performance. We
first train RPO with all classes of ImageNet on the 16-shot
setting and then evaluate accuracy on out-of-distribution
datasets (ImageNetV2 [42], ImageNet-Sketch [30],
ImageNet-A [46], and ImageNet-R [8]). As shown in
Table 2, compared to CoCoOp, RPO achieves better
generalization performance on the four datasets, except
for ImageNet-A. This shows that RPO is more robust to
out-of-distribution.

4.3. Analysis

Table 3: Ablation result averaged over 11 datasets.

Methods Base Novel H

RPO w.o mask/init 78.63 69.56 73.29
RPO w.o mask 78.55 71.34 74.59
RPO w.o init 82.00 72.94 76.82
RPO 81.13 75.00 77.78

Ablation on masked attention and ST-initialization We
conduct an ablation study to measure the effect of the
read-only mechanism and ST-initialization. We evaluate
3 variants of RPO (without an attention mask, without
ST-initialization, and without both) on the base to new
generalization setting using 11 image recognition datasets.
We report averaged accuracy in Table 3 to demonstrate that
the combination of masked attention and ST-initialization
leads to better generalization performance. More detailed
ablation studies with each dataset is presented in the
supplement.

Analysis on model variance and extreme few-shot
setting If the training samples for adaptation are limited



Figure 5: Variance and generalization of RPO compared
with CoCoOp. RPO is more generalizable and robust than
CoCoOp in the perspective of base to new generalization
and lower performance variance.

(e.g., less than 16 samples per class) in real-world sce-
narios, the model variance has a higher chance of getting
large. To show the advantage of RPO in alleviating model
variance as well as improving base-to-new generalization
in extreme few-shot settings (training samples less than 16
per class), we train the model with 10 random seeds for 10
benchmarks [11, 54, 3, 36, 14, 1, 37, 35, 4, 51] on 1, 2, 4,
8, and 16-shot settings. We set the number of prompts K
as 4 in this analysis. Then, we compute the harmonic mean
of base and novel accuracy for each of the 10 random seeds
and visualize their variance in Figure 5. As shown in the
Figure 5, RPO shows remarkably lower variance compared
to CoCoOp on average, which supports the effectiveness of
the read-only mechanism. Especially, in a 16-shot setting,
RPO reduced the variance by 94% on average compared
to CoCoOp, which is demonstrated in the Table 4. This
demonstrates that RPO stabilizes performance variance on
10 benchmarks, including EuroSAT and FGVCAircraft
benchmarks, where CoCoOp exhibits extremely high
variance. Also, RPO shows superior base to new gener-
alization. As demonstrated in Figure 5, RPO results in
more than 1% higher harmonic mean score compared to
CoCoOp on every shot (1, 2, 4, 8, and 16). We conjecture
that the lower variance and the better generalization comes
from the characteristics of RPO that prevents the internal
representation shift of pre-trained model.

RPO with uni-modal prompts For a better understand
of RPO in each modality, we experiment with RPO with
only text prompts (text-RPO) with little modification
to the pairwise scoring function. Text-RPO and CoOp
differ in the point that RPO’s prompts do not affect the
internal representation of the pre-trained model but CoOp’s
prompts do. As shown in Table 5, uni-RPO still achieves
competitive performance compared to CoCoOp with a
0.8% drop compared to RPO, which again demonstrates
the effectiveness of the read-only mechanism.

Computational efficiency It is worth highlighting that RPO
surpasses CoCoOp in both generalization performance and
computation efficiency. Note that CoCoOp employs im-
age conditional prompts depending on the input image,
resulting in a significant increase in computational over-
head. Considering self-attention, roughly speaking, Co-
CoOp’s computational complexity of O(BCN2

t + BN2
v ),

where B, C, Nt, and Nv represent the batch size, the
number of classes in the dataset, the length of the text to-
kens, and the length of the image patches, respectively. On
the other hand, RPO achieves better generalization perfor-
mance when compared to CoCoOp, while maintaining the
same computational complexity as CoOp, which is roughly
speaking O(CN2

t + BN2
v ) regarding self-attention. As

shown in Figure 6, we measure computational overhead



Table 4: Analysis of RPO on extreme few shot settings. We report RPO’s averaged base accuracy, novel accuracy, and their
harmonic mean on 10 benchmark datasets. RPO consistently outperforms CoCoOp on 1, 2, 4, and 8 shot setting evaluated
by harmonic mean.

1 shot 2 shot 4 shot 8 shot 16 shot

CoCoOp RPO CoCoOP RPO CoCoOp RPO CoCoOp RPO CoCoOp RPO

Base 71.45±1.58 71.69±0.30 73.93±1.26 73.82±0.57 76.50±0.96 77.18±0.71 78.46±1.02 79.66±0.36 80.57±0.60 81.31±0.30
Novel 72.47±2.00 73.82±0.73 71.91±2.25 73.83±0.64 72.50±2.06 73.43±0.67 72.78±2.10 73.66±0.50 72.51±2.19 75.47±0.25

H.M 71.78±1.80 72.69±0.37 72.70±1.80 73.77±0.45 74.08±1.63 75.05±0.45 75.12±1.74 76.27±0.28 75.81±1.77 78.11±0.10

Table 5: Generalizability of uni-modal RPO.

Methods Base Novel H

CoOp 82.69 63.22 71.66
CoCoOp 80.47 71.69 75.83

text-RPO 79.54 74.84 77.01
RPO 81.13 75.00 77.78

(GMac) for inference with respect to the batch size. When
examining the rate of increase in GMac with respect to the
increase in batch size, the rate of increase exhibited by Co-
CoOp is significantly greater than that of RPO.

Figure 6: Computational Cost of CoCoOp an RPO.

5. Conclusion
The emergence of large-scale, pre-trained models like

CLIP [6], ALIGN [24], and FILIP [50] has made it increas-
ingly important to efficiently adapt them to downstream
tasks in parameter-efficient manner. Fine-tuning the entire
model can be resource-intensive and may damage the well-
defined model representations learned during pre-training.
In perspective of the parameter efficiency, prompt learning
is a promising approach to avoid these issues, but existing
methods still end up shifting the representation of data to-
kens through attention mechanism [33, 31, 16], which is an
unstable adaptation strategy especially in data-deficient set-
tings such as few-shot learning.

To address these challenges, we propose a novel ap-
proach that utilizes read-only prompts to prevent internal
representation shift in the backbone model, resulting in bet-
ter generalization and robustness. Our approach also em-
ploys learnable prompts on both the visual and text encoder,
and we initialize them to special tokens like [CLS] and
[EOS] for better convergence. Our extensive experiments
demonstrate that our approach outperforms other methods
in base-to-new generalization and domain generalization
with remarkably lower variance.

However, despite the significant potential of this ap-
proach, it remains an under-explored area. Further research
is needed to fully understand the efficiency and effective-
ness of this method compared to other adaptation strategies.
Nevertheless, our approach offers a promising direction for
a generalizable and robust adaptation of pre-trained models
in resource-limited settings.
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