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Abstract

There is a recently discovered and intriguing phe-
nomenon called Neural Collapse: at the terminal phase
of training a deep neural network for classification, the
within-class penultimate feature means and the associated
classifier vectors of all flat classes collapse to the vertices
of a simplex Equiangular Tight Frame (ETF). Recent work
has tried to exploit this phenomenon by fixing the related
classifier weights to a pre-computed ETF to induce neural
collapse and maximize the separation of the learned fea-
tures when training with imbalanced data. In this work,
we propose to fix the linear classifier of a deep neural net-
work to a Hierarchy-Aware Frame (HAFrame), instead of
an ETF, and use a cosine similarity-based auxiliary loss
to learn hierarchy-aware penultimate features that collapse
to the HAFrame. We demonstrate that our approach re-
duces the mistake severity of the model’s predictions while
maintaining its top-1 accuracy on several datasets of vary-
ing scales with hierarchies of heights ranging from 3 to 12.
Code: https://github.com/ltong1130ztr/HAFrame.

1. Introduction

A recent study [33] has unveiled a phenomenon termed
neural collapse. It empirically revealed that the penultimate
features of the same class tend to collapse to their within-
class mean. The within-class means of all classes and their
respective classifier weights tend to collapse to the vertices
of a simplex Equiangular Tight Frame (ETF). A simplex
ETF is a geometric structure that maximally separates the
pair-wise angles of the K vectors in Rd, d ≥ K, and the
respective maximal pair-wise cosine similarity of these K
vectors is −1

K−1 . As illustrated in Fig. 1(a), when K = 4, the
simplex ETF reduces to a tetrahedron, and we can visualize
this tetrahedron in 3D space via PCA projection since its
geometry is 3D. One can view such ETF as an embedding
of a hierarchy of four classes sharing the same root node

(a) (b)

(c) (d)
Figure 1. Illustration of a hierarchy-agnostic ETF (a) and a
hierarchy-aware HAFrame (b) of four leaf classes and their hi-
erarchies (c) and (d), respectively. All leaf classes in ETF have the
same hierarchical distance.

as their parent. This hierarchy is visualized in Fig. 1(c),
where the four classes are equally separated regarding their
hierarchical distance from each other.

Intuitively, the neural collapse phenomenon makes sense
considering an ETF separates all classes equally and maxi-
mally from each other. However, such a structure may not
emerge when trained with imbalanced data. Features of mi-
nor classes may collapse to the same vector (minority col-
lapse) [13]. Therefore, some studies encourage the features
to form an ETF structure by fixing the classifier weights
at a pre-computed ETF [43] or employing additional regu-
larizers to induce neural collapse [46, 30]. In the context
of reducing mistake severity, this raises another concern:
when the ETF classifier makes a mistake, it is mainly ran-
dom due to its equiangular nature. Similarly, conventional
neural networks are trained mainly with cross-entropy and
one-hot labels, ignoring any underlying hierarchical label
relationships. The associated performance evaluations also
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focus on the top-1 accuracy of the predictions, treating
all mistakes equally. In real-world application scenarios,
some classification mistakes would have a much worse im-
pact than others, e.g., mistaking a human for a tree in au-
tonomous driving. Hence, it is critical to incorporate mis-
take severity into the performance evaluations and develop
methods to reduce the mistake severity of the model pre-
dictions. One off-the-shelf way to define the severity of
mistakes is by leveraging the hierarchical label relationship
between incorrect predictions and their ground truths.

To impose a preferred error structure, we propose to
fix the classifier vectors to a Hierarchy-Aware Frame
(HAFrame) instead of an ETF to ensure that the classifier
vectors of certain classes are “closer” than others. Con-
sequently, when a mistake occurs, it is more likely to fall
onto a “closer” class in the HAFrame, resulting in less
mistake severity. An example of such a HAFrame is shown
in Fig. 1(b). Compared to the ETF for four classes, the
HAFrame captures the pair-wise hierarchical distances
across the four classes from a hierarchy shown in Fig. 1(d),
with class A closer to B, and A equally distant to C and D.

There are several contributions of our work:
• Our approach is easy to adapt to different hierarchies

as we only require a minimal change of the classifier
and no architectural change of the backbone network.

• Our approach provides an analytical solution to embed
the hierarchical relationship of classes into the respec-
tive classifier.

• Our approach offers a new route to reduce mistake
severity and the average hierarchical distance of pre-
dictions from the perspective of neural collapse.

2. Related Works
In recent years, multiple works have incorporated the se-

mantic relationship of labels derived from text data or given
by an explicit hierarchy to improve the classification of im-
ages or text. In this paper, we mainly discuss works closely
related to incorporating hierarchical label relationships for
image classification and reduction of mistake severity.
Hierarchy-aware label methods. These methods often uti-
lize label embeddings to incorporate hierarchical label re-
lationships into the model. In [4], soft-label embeddings
derived from the hierarchical distances are proposed, and
the KL-divergence from softmax scores to the soft-labels
is minimized. The label embeddings capturing pair-wise
similarities of the classes are fixed on a unit hypersphere in
[3], or learned as hyperbolic embeddings in [44], then the
image features are induced to align with the label embed-
dings. Aside from deriving the label embeddings from an
explicit hierarchy, there are also works [14, 32, 29, 36] that
model hierarchical label relationships implicitly via learn-
ing the associated semantic embeddings of the labels from

text data. These methods maximize the similarity between
the visual embeddings learned from images and the corre-
sponding semantic embeddings learned from text data.
Hierarchy-aware loss methods. A Hierarchy and Exclu-
sion (HXE) graph is proposed in [10] to model label re-
lationships with a probabilistic classification model on the
HXE graph capturing the semantic relationships (mutual ex-
clusion, overlap, and subsumption) between any two labels.
In [4], a hierarchical cross-entropy loss is proposed for the
label tree. To integrate the knowledge of label relationships
in a directed acyclic graph into the deep neural network,
the probability of each label occurring is modeled indepen-
dently to allow multi-label scenarios in [5]. In [18], the
authors cast hierarchical classification as a discrete optimal
transportation problem with an associated optimal transport
loss.
Hierarchy-aware cost methods. This line of research de-
rives a cost measurement for misclassifications from a given
label hierarchy. The cost is then applied to amend flat pre-
dictions at inference time. In both [25] and [9], the cost is
defined as the height of the lowest common ancestor be-
tween the ground truth and incorrect prediction, i.e., the
semantic level at which the misclassification occurs. The
associated classification problem is then formulated as a
conditional risk minimization (CRM) problem. Similarly,
the cost is also formulated as the loss of label specificity in
[12], which optimizes the accuracy-specificity trade-offs in
hierarchical classification for a given lower bound accuracy
requirement.
Hierarchy-aware architecture methods. These methods
require architectural changes to the network. A dynamic-
structured network with a unifying hierarchy for classes of
different datasets is proposed in [28]. During training, the
sub-graph of the related classes is dynamically activated,
incorporating data from different datasets. In [42], the au-
thors proposed sharing the parameters of the non-leaf tree
node classifiers and calibrating the posterior probability dis-
tribution of labels with a stochastic tree sampling method
during training. The classifiers corresponding to nodes in a
label hierarchy are constrained on hierarchically connected
sphere manifolds in [38] to regularize the model perfor-
mance. In [27], the classifier for each non-leaf node in the
hierarchy is equipped with a virtual novel class to perform
top-down classification with novelty detection.

In [41], the authors use independent classification heads
for classes at different levels of the label hierarchy. All lev-
els of classifiers share the same penultimate features, and
the cross-entropy losses of all levels are optimized jointly.
Similarly, a multi-classification head network is proposed
in [1] to incorporate hierarchical label relationships, but
each classification head is staged at a different depth of the
backbone network. In [7] (Flamingo), the authors proposed
to use multiple classification heads for different levels of



(a) FGVC-Aircraft [31] (b) CIFAR-100 [26] (c) iNaturalist2019 [23] (d) tiered-ImageNet-H [37]
Figure 2. Visualization of the exponential mapping functions given in Eqn. 2. The x-axis is hierarchical distance, and the y-axis is mapped
cosine similarity. The linear mapping used in [3] is also plotted. The associated hierarchies used for each dataset are introduced in Sect. 4.

classes in the hierarchy, where the penultimate features are
decoupled into different segments for the respective coarse
and fine-grained classifiers. The multi-classification head
setting is also adopted in [17] (HAFeature). The classifiers
of all levels share the same penultimate features from the
backbone network. Additional geometric constraints are
placed on the parent and child classifiers in the hierarchy.
The hierarchical relationships of labels in adjacent levels
are also enforced by minimizing the Jensen-Shannon Di-
vergence [15] between predictions of the coarse-level clas-
sifier and the soft-labels reconstructed from predictions of
the next fine-level classifier.

3. Method

Inspired by prior works which fix the classifier to poly-
tope [35, 34], Hadamard matrix [22], and simplex ETF [43],
we propose to fix the linear classifier to a HAFrame with the
hierarchical relationship between the leaf classes embedded
into their pair-wise cosine similarities. During training, we
employ a weighted loss consisting of the cross-entropy loss
and the proposed cosine similarity-based auxiliary loss to
induce penultimate features collapsing onto the associated
classifier vectors (HAFrame) to achieve the desired reduc-
tion of mistake severity. The hierarchies required in our
work are constrained to label trees, same as recent works
[4, 25, 17].

3.1. Pair-wise Cosine Similarity

We use the height of the lowest common ancestor (LCA)
of two leaf classes yi and yj in the given hierarchy as the
measurement of their hierarchical distance, as used in pre-
vious works [3, 4, 25]:

dij = height(LCA(yi, yj)) (1)

where i, j ∈ {1, 2, ...,K} and K is the number of leaf
classes in the hierarchy. We propose to map the pairwise
hierarchical distance dij to pairwise cosine similarity Sij

between leaf classes yi and yj by an exponential mapping

function:

Sij = (1− smin) · e−γ·
dij

dmax + smin (2)

where dmax is the height of the hierarchy, γ > 0 is a hyper-
parameter controlling the “spacing” between hierarchically
adjacent classes, and smin is a lower bound for the mapped
cosine similarity: Smin < Sij ≤ 1.

We can construct a real-valued symmetric cosine simi-
larity matrix S, where Si,j = Sj,i = Sij . For a given γ
and a set of hierarchical distances dij ,∀i, j ∈ {1, ...,K},
we search the minimum smin between -1.0 and 1.0 with a
step size of 0.02 such that the resulting S from our map-
ping (Eqn. 2) is positive definite. Other mapping functions
can also be used here as long as the associated similarity
matrix S is guaranteed to be positive definite.

We plotted the linear mapping function Sij = 1 −
dij/dmax used in [3] and our mapping function with γ =
1, 2, ..., 5 in Fig. 2 over four datasets with increasing heights
of the associated hierarchies for comparison. Our exponen-
tial mapping function is more flexible than the linear map-
ping function. The γ parameter allows for a trade-off be-
tween separating hierarchically close and distant classes. In
terms of the resulting cosine similarities, a larger γ stretches
hierarchically close classes further away while compressing
hierarchically distant classes closer to each other.

3.2. Hierarchy-Aware Frame

In this section, we introduce the proposed HAFrame and
how to solve it from the positive definite pair-wise cosine
similarity matrix S derived from a given hierarchy.

Definition 1 (Hierarchy-Aware Frame). Let a set of vectors
{wi}Ki=1 in RK with ||wi||2 = 1, i = 1, 2, ...,K, and their
pair-wise cosine similarities satisfy the following equation:

cos∠(wi,wj) = wT
i wj = Sij ,∀1 ≤ i ≤ j ≤ K (3)

where Sij is the cosine similarity between classes i and j
given in Eqn. 2. Next, let W = [w1 w2 ...wK ] be the pro-
posed hierarchy-aware frame, W is in RK×K and satisfies



Figure 3. Illustration of the customized network architectures. (a) Top: overall network architecture of our approach, the 1x1 convolutional
layer is only used in our type-II models. (b) Bottom: the proposed transformation layer, where BN is 1D batch norm layer.

S = W TW (4)

Since S is guaranteed to be positive definite by our search
for the proper smin in the mapping function (Eqn. 2), we
can find W by the following matrix factorization:

S = QDQT = (QD
1
2UT )(UD

1
2QT ) = W TW (5)

where Q ∈ RK×K and D ∈ RK×K are acquired from
eigenvalue decomposition of S, and U ∈ RK×K is an
orthonormal matrix obtained from QR-decomposition of a
randomly sampled matrix in RK×K that allows an arbitrary
rotation and satisfies UTU = UUT = IK . Therefore, the
proposed hierarchy-aware frame is given by:

W = UD
1
2QT (6)

We prove that W (i.e., our HAFrame) satisfies the frame
condition [6] as long as the similarity matrix S is positive
definite in the supplementary material.

3.3. Additional Transformation Layer

Since we are encouraging the penultimate features h, in-
stead of the centered features h̃ (h̃ = h−hG, where hG is
the average of all penultimate features) described in [33], to
collapse onto their respective classifier vectors, we propose
to use an additional transformation layer before the final
classification layer to facilitate such collapse. The overall
architecture of our model is shown in Fig. 3(a).

Our transformation layer needs to learn a mapping of the
features to classifiers potentially residing in different quad-
rants (including the negative quadrant) of the Euclidean
space RK . The entries of penultimate feature from most
common convolutional neural networks [19, 40, 39] in re-
cent years have an inductive bias towards non-negative val-
ues due to the use of nonlinear activation functions (e.g.,
ReLU [16], GELU [21], etc.). Our proposed transformation
layer uses parametric ReLU (PReLU) [20], which learns
the slope of the rectified linear function for negative inputs
to mitigate the aforementioned bias, therefore enabling the
transformed features to have negative entries approximating

the respective fixed classifier vectors of W . We also em-
ploy residual connections to improve information flow dur-
ing training. The architecture of the transformation module
is shown in Fig. 3(b). All four linear layers in the transfor-
mation module have K (number of classes) hidden units as
the classifier vectors {wi}Ki=1 of HAFrame are in RK . To
accommodate this requirement, we add a 1x1 convolutional
layer between the backbone and the pooling layer to reduce
the number of channels in the backbone features to K.

3.4. Cosine Similarity Based Auxiliary Loss

Once we solve the hierarchy-aware frame W for a given
pair-wise similarity matrix S, the associated column vectors
in W are used as weight vectors in the linear classification
layer of the network. The corresponding bias term for the
linear layer is removed. The prediction ŷ is given by:

ŷ = argmax
i

W Th = argmax
i

cos∠(wi,h) (7)

where h ∈ RK is the penultimate feature vector of an input
example produced by the transformation layer. The logits
of an example are given by W Th, consistent with a reg-
ular linear classifier omitting the bias term. In addition to
cross-entropy loss, we propose to use a cosine similarity-
based auxiliary loss to facilitate the collapse of penultimate
features onto the respective classifier weights:

LCOS =

K∑
i=1

(cos∠(wi,h)− cos∠(wi,wy))
2 (8)

where y is the ground truth of h and wy is the fixed clas-
sifier vector corresponding to class y. This auxiliary loss
reduces to zero when cos∠(h,wy) = 1, i.e., the penulti-
mate feature vector h is aligned to the same direction of its
classifier wy .

The overall training loss is a mixture of cross-entropy
loss (LCE) and the proposed auxiliary loss with a hyperpa-
rameter α ∈ [0, 1] controlling the mixing ratio:

L = (1− α)LCE + αLCOS (9)

This loss is averaged across all training examples in a mini-
batch.



4. Experiments

We compare our approach with a baseline model trained
with cross-entropy and recent competitive methods of CRM
[25], Flamingo [7], and HAFeature [17] introduced in
Sect. 2, we omit comparison with earlier approaches [14,
3, 4] as more recent works [25, 17] have demonstrated that
the results of earlier methods are suboptimal. Since CRM
is an inference-time approach to modifying flat predictions,
we apply CRM to the predictions of the baseline model.
Datasets. Following the previous works [4, 25], we conduct
comparative experiments on the tieredImageNet-H [37, 4]
and iNaturalist2019 [23] datasets. We also include compar-
ison results on CIFAR-100 [26] and FGVC-Aircraft [31].
The four datasets used in our experiments scale from 100
classes to 1010 classes, and their respective hierarchy’s
height ranges from 3 to 12. For FGVC-Aircraft, we adopt
the original hierarchy provided by the dataset. For CIFAR-
100, we use the hierarchy provided by the Flamingo ap-
proach [7]. As for iNaturalist2019 and tieredImageNet-H,
we adopt their respective hierarchies from [4]. The statistics
of these datasets are summarized in Table 1.

Dataset Height Classes Train Val Test
FGVC-Aircraft 3 100 3,334 3,333 3,333

CIFAR-100 5 100 45,000 5,000 10,000
iNaturalist2019 7 1010 187,385 40,121 40,737

tieredImageNet-H 12 608 425,600 15,200 15,200
Table 1. Statistics of the four datasets used in our experiments.

Training Configurations. We use ResNet-50 [19]
as the backbone network to evaluate all methods on
FGVC-Aircraft, iNaturalist2019, and tieredImageNet-H.
For CIFAR-100, we adopt a WideResNet-28 [45] backbone
for all methods, following experimental settings in HAFea-
ture [17]. We initialize all models on FGVC-Aircraft and
iNaturalist2019 with ImageNet-1K [11] pretrained weights.
The WideResNet models are trained on CIFAR-100 with-
out pretrained weights. The previous works [4, 25, 17] all
used pretrained weights from ImageNet-1K, a superset of
tieredImageNet-H, to initialize models on tieredImageNet-
H. We instead use pretrained weights from the PASS dataset
[2] (i.e., an ImageNet replacement for self-supervised pre-
training without humans) for all models on tieredImageNet-
H to avoid refitting the model to the same data already seen
by its pretrained weights.

We evaluate all methods with two penultimate feature
extraction models for fair and sufficient comparison. The
first model (type-I) follows the Flamingo/HAFeature [7, 17]
settings by adding an extra transformation layer before
the classification layer, similar to our approach shown in
Fig. 3(a) but without the 1x1 convolutional layer before the
pooling layer. This extra transformation layer consists of
a linear layer with 600 hidden units and two batch norm

layers before and after the linear layer. The output is rec-
tified with ELU [8] activation. The second model (type-
II, our architecture) adds a 1x1 convolutional layer before
the pooling layer and replaces the type-I model’s transfor-
mation layer with the proposed transformation layer intro-
duced in Sect. 3.3.

The models across all datasets are trained for 100
epochs. The type-I models follow the training strategy of
the Flamingo approach [7], i.e., using SGD optimizer with
0.01 as the initial learning rate (LR) for the backbone net-
work and 0.1 as the initial LR for both transformation and
the classification layers. The type-II models (using the
proposed transformation layer) use 0.01 as the initial LR
for both the backbone and transformation layer and 0.1 as
the initial LR for the classification layers. We make such
changes to type-II models as this yields better results. Both
type-I and type-II models are trained with a cosine anneal-
ing learning rate scheduler used by the Flamingo approach
[7]. The batch size of all models trained on iNaturalist2019
and tieredImageNet-H is 256. We find that a smaller batch
size of 64 yields overall better results for models on CIFAR-
100 and FGVC-Aircraft. During training, we select the
model with the highest validation accuracy for subsequent
evaluation.
Evaluation Metrics. We adopt the evaluation metrics used
in previous works [4, 25, 17]: (1) top-1 accuracy; (2) aver-
age mistake severity, i.e., the sum of the heights of LCA be-
tween incorrect predictions and the respective ground truth
labels averaged across all incorrect predictions; (3) average
hierarchical distance at k, for k = 1, 5, 20, i.e., HierDist@1,
HierDist@5, HierDist@20, respectively. For each test ex-
ample, the average height of LCA between the ground truth
label and k most likely predictions are evaluated, and the
resulting average height for each test example is further av-
eraged across the entire test set. We train five models for
each method and report every evaluation metric’s mean and
95% confidence interval derived from the t-distribution with
four degrees of freedom.
Hyperparameter Search. We conducted a search for the
proper γ in the mapping function (Eqn. 2) and the mix-
ing ratio α between cross-entropy and our cosine similar-
ity auxiliary loss in Eqn. 9 using the validation examples of
each dataset. For FGVC-Aircraft and CIFAR-100, we con-
ducted a grid search of γ and α on {1.0, 2.0, 3.0, 4.0, 5.0}×
{0.3, 0.4, 0.5, 0.6}. For iNaturalist2019 and tieredIma-
geNet, we searched on a smaller grid {3.0, 4.0, 5.0} ×
{0.3, 0.4, 0.5}. Each configuration of γ and α is evaluated
on the validation set with three runs. We select the con-
figuration that yields the best average hierarchical distance
at 1 (HierDist@1) averaged across three runs. The result-
ing configurations (α, γ) for FGVC-Aircraft, CIFAR-100,
iNaturalist2019, and tieredImageNet-H are (0.5, 1.0), (0.4,
2.0), (0.4, 5.0), and (0.5, 3.0), respectively.



Model Method Top-1 Accuracy ↑ Mistake Severity ↓ HierDist@1 ↓ HierDist@5 ↓ Hierdist@20 ↓

Type-I

cross-entropy 79.18 +/- 0.5511 2.12 +/- 0.0240 0.44 +/- 0.0097 2.10 +/- 0.0033 2.67 +/- 0.0040
CRM [25] 79.30 +/- 0.5250 2.08 +/- 0.0201 0.43 +/- 0.0091 1.74 +/- 0.0040 2.44 +/- 0.0015

Flamingo [7] 81.00 +/- 0.5873 2.04 +/- 0.0343 0.39 +/- 0.0072 2.06 +/- 0.0041 2.65 +/- 0.0018
HAFeature [17] 73.23 +/- 0.6085 2.48 +/- 0.0937 0.66 +/- 0.0152 2.10 +/- 0.0126 2.61 +/- 0.0078

Type-II

cross-entropy 79.58 +/- 0.2727 2.15 +/- 0.0159 0.44 +/- 0.0067 2.11 +/- 0.0055 2.67 +/- 0.0034
CRM [25] 79.62 +/- 0.2953 2.13 +/- 0.0109 0.43 +/- 0.0058 1.75 +/- 0.0043 2.45 +/- 0.0022

Flamingo [7] 80.02 +/- 0.7886 2.10 +/- 0.0373 0.42 +/- 0.0168 2.08 +/- 0.0058 2.66 +/- 0.0031
HAFeature [17] 74.39 +/- 0.7813 2.53 +/- 0.0334 0.65 +/- 0.0226 2.10 +/- 0.0064 2.61 +/- 0.0041
HAFrame (ours) 80.49 +/- 0.4692 2.02 +/- 0.0381 0.39 +/- 0.0039 1.74 +/- 0.0027 2.45 +/- 0.0024

Table 2. Experiment results on FGVC-Aircraft dataset. The details of type-I and type-II models are included in the training config.

Model Method Top-1 Accuracy ↑ Mistake Severity ↓ HierDist@1 ↓ HierDist@5 ↓ Hierdist@20 ↓

Type-I

cross-entropy 77.65 +/- 0.2635 2.34 +/- 0.0271 0.52 +/- 0.0102 2.25 +/- 0.0084 3.19 +/- 0.0045
CRM [25] 77.63 +/- 0.2800 2.30 +/- 0.0255 0.51 +/- 0.0093 1.11 +/- 0.0077 2.18 +/- 0.0028

Flamingo [7] 77.91 +/- 0.5733 2.31 +/- 0.0179 0.51 +/- 0.0137 2.07 +/- 0.0198 3.08 +/- 0.0094
HAFeature [17] 77.49 +/- 0.3391 2.24 +/- 0.0158 0.51 +/- 0.0084 1.43 +/- 0.0108 2.64 +/- 0.0105

Type-II

cross-entropy 76.45 +/- 0.2207 2.43 +/- 0.0235 0.57 +/- 0.0106 2.35 +/- 0.0049 3.30 +/- 0.0030
CRM [25] 76.48 +/- 0.2278 2.38 +/- 0.0175 0.56 +/- 0.0095 1.15 +/- 0.0074 2.20 +/- 0.0029

Flamingo [7] 75.19 +/- 0.3188 2.31 +/- 0.0270 0.57 +/- 0.0043 2.42 +/- 0.0161 3.29 +/- 0.0105
HAFeature [17] 76.44 +/- 0.1560 2.26 +/- 0.0290 0.53 +/- 0.0055 1.71 +/- 0.0130 2.84 +/- 0.0143
HAFrame (ours) 77.71 +/- 0.2319 2.21 +/- 0.0108 0.49 +/- 0.0066 1.11 +/- 0.0018 2.18 +/- 0.0013

Table 3. Experiment results on CIFAR-100 dataset. The details of type-I and type-II models are included in the training config.

4.1. Results

The experiment results on FGVC-Aircraft, CIFAR-100,
iNaturalist2019, and tieredImageNet-H are shown in Ta-
bles 2, 3, 4, and 5, respectively. The rows in the tables high-
lighted with light purple are competitive methods. The
method with the smallest (best) average mistake severity is
selected first. Other methods with an average mistake sever-
ity not greater than the smallest mistake severity of 0.05 are
also deemed competitive. Among these competitive meth-
ods, we highlight the best-performing entry for each metric
with purple .

Our approach (HAFrame) has reached the best aver-
age mistake severity across all four datasets and the best
top-1 accuracy on three datasets with a ∼0.51% (80.49%)
drop of top-1 accuracy compared to the Flamingo ap-
proach (81.00%) on FGVC-Aircraft (Table 2). Our ap-
proach also performs best on the average hierarchical dis-
tance among the competitive methods on three datasets.
On tieredImageNet-H (Table 5), our HierDist@5 and Hi-
erDist@20 are worse than, yet close to, CRM but still out-
perform Flamingo and HAFeature by a large margin. It is
worth noting that CRM only reaches competitive average
mistake severity on tieredImageNet-H (Table 5), but its as-
sociated average hierarchical distances at k = 5 and k = 20
remain competitive or best on all datasets. The HAFea-
ture approach improves average mistake severity better than
CRM on three datasets but does not perform well on FGVC-
Aircraft (Table 2) with a shallow hierarchy of 4 levels (in-
cluding the root) and does not rank predictions of less likely
classes well, i.e., its HierDist@5 and HierDist@20 do not
perform as good as CRM or our approach. The average
mistake severity of the Flamingo approach reaches compet-

itive results on FGVC-Aircraft and tieredImageNet-H, but
its average hierarchical distances exhibit suboptimal perfor-
mance similar to the HAFeature approach.

4.2. Ablation Study

In this section, we examine the effectiveness of the pro-
posed (1) transformation layer T (.); (2) the fixed HAFrame
classifiers (dubbed as HAF ); and (3) the cosine similarity-
based auxiliary loss LCOS in a cumulative fashion with the
type-I model as the baseline. All variants examined in this
section are trained with the same settings introduced in the
previous section, including the configuration of α and γ
for models with fixed HAFrame classifiers. The results are
shown in Table 6. Our study shows that adding the transfor-
mation layer alone does not necessarily improve the model
performance. However, fixing the corresponding classi-
fier weights to a HAFrame improves the average mistake
severity of three datasets. This also improves HierDist@5
and HierDist@20 for all four datasets. On top of these
two changes, adding the auxiliary loss further facilitates
the penultimate features to collapse on the HAFrame and
reaches the best performance on all metrics among the vari-
ants examined except for a top-1 accuracy drop of 0.25% on
iNaturalist2019.

4.3. Neural Collapse on Hierarchy-Aware Frame

In this section, we briefly introduce the metrics em-
ployed to visualize the neural collapse on an ETF employed
in [33] and our extension to these metrics to visualize the
collapse on a HAFrame. We compare our type-II models
of fixed HAFrame classifiers with type-I baseline models of
learnable classifiers from the perspective of HAFrame col-
lapse and ETF collapse, respectively. We checkpoint the



Model Method Top-1 Accuracy ↑ Mistake Severity ↓ HierDist@1 ↓ HierDist@5 ↓ Hierdist@20 ↓

Type-I

cross-entropy 70.68 +/- 0.2097 2.22 +/- 0.0103 0.65 +/- 0.0068 1.95 +/- 0.0043 3.37 +/- 0.0040
CRM [25] 70.67 +/- 0.2095 2.16 +/- 0.0045 0.63 +/- 0.0057 1.17 +/- 0.0042 1.75 +/- 0.0033

Flamingo [7] 70.11 +/- 0.1119 2.13 +/- 0.0063 0.64 +/- 0.0014 1.79 +/- 0.0126 3.28 +/- 0.0114
HAFeature [17] 70.57 +/- 0.1645 2.13 +/- 0.0192 0.63 +/- 0.0045 1.55 +/- 0.2188 2.68 +/- 0.4208

Type-II

cross-entropy 70.44 +/- 0.1576 2.26 +/- 0.0071 0.67 +/- 0.0036 1.97 +/- 0.0060 3.40 +/- 0.0070
CRM [25] 70.47 +/- 0.1363 2.21 +/- 0.0099 0.65 +/- 0.0029 1.18 +/- 0.0020 1.76 +/- 0.0016

Flamingo [7] 70.13 +/- 0.1499 2.15 +/- 0.0061 0.64 +/- 0.0045 1.76 +/- 0.0037 3.31 +/- 0.0071
HAFeature [17] 68.46 +/- 4.6278 2.21 +/- 0.1298 0.70 +/- 0.1501 1.50 +/- 0.1235 2.49 +/- 0.0842
HAFrame (ours) 70.89 +/- 0.1213 2.04 +/- 0.0107 0.59 +/- 0.0033 1.14 +/- 0.0033 1.73 +/- 0.0023

Table 4. Experiment results on iNaturalist2019 dataset. The details of type-I and type-II models are included in the training config.

Model Method Top-1 Accuracy ↑ Mistake Severity ↓ HierDist@1 ↓ HierDist@5 ↓ Hierdist@20 ↓

Type-I

cross-entropy 73.63 +/- 0.1165 6.94 +/- 0.0208 1.83 +/- 0.0117 5.70 +/- 0.0192 7.34 +/- 0.0291
CRM [25] 73.54 +/- 0.1495 6.89 +/- 0.0272 1.82 +/- 0.0155 4.82 +/- 0.0062 6.03 +/- 0.0041

Flamingo [7] 72.34 +/- 0.1488 6.93 +/- 0.0391 1.92 +/- 0.0135 5.75 +/- 0.0130 7.41 +/- 0.0098
HAFeature [17] 73.52 +/- 0.1613 6.89 +/- 0.0281 1.82 +/- 0.0125 5.52 +/- 0.0176 6.95 +/- 0.0120

Type-II

cross-entropy 72.51 +/- 0.4317 6.95 +/- 0.0298 1.91 +/- 0.0338 5.69 +/- 0.0085 7.28 +/- 0.0082
CRM [25] 72.45 +/- 0.4077 6.90 +/- 0.0274 1.90 +/- 0.0308 4.85 +/- 0.0090 6.05 +/- 0.0057

Flamingo [7] 66.46 +/- 1.1572 7.05 +/- 0.0319 2.36 +/- 0.0921 5.77 +/- 0.0220 7.31 +/- 0.0120
HAFeature [17] 68.32 +/- 0.9225 7.04 +/- 0.0356 2.23 +/- 0.0741 5.62 +/- 0.0223 6.97 +/- 0.0105
HAFrame (ours) 74.00 +/- 0.3549 6.89 +/- 0.0251 1.79 +/- 0.0216 4.94 +/- 0.0118 6.15 +/- 0.0065

Table 5. Experiment results on tieredImageNet-H dataset. The details of type-I and type-II models are included in the training config.

baseline and our models every five epochs during training
of 100 epochs with the same settings as our previous exper-
iments.
Angular collapse. The classifiers and class means of train-
ing features should approach the ideal pair-wise angle dur-
ing the neural collapse. Therefore, the respective pair-wise
cosine similarities should approach the ideal cosine similar-
ity Ŝij . We monitor the average of pair-wise cosine similar-
ities during the training process to check if they are reaching
the expected angle:

Avg1≤i<j≤K(|cos∠(xi,xj)− Ŝij |) (10)

where xi, for i = 1, ...,K, are the set of K vectors collaps-
ing to the respective frame. They can either be the classifier
weights or class means of the penultimate features (centered
h̃ for ETF, not centered h for HAFrame). We also track
the standard deviation of pair-wise cosine similarities dur-
ing the training process:

Std1≤i<j≤K(|cos∠(xi,xj)− Ŝij |) (11)

For ETF collapse, the ideal cosine similarity between
any pair of classes is equal to −1

K−1 , i.e., Ŝij = −1
K−1 for

∀i, j ∈ {1, ...,K} and i ̸= j (equiangularity of ETF). The
proposed HAFrame encodes the hierarchical relationship
between classes into the pair-wise cosine similarities of the
classes. Therefore, the ideal cosine similarity in Eqn. 10 and
Eqn. 11 is given by our mapping function in Eqn. 2, and we
have Ŝij = Sij for HAFrame collapse. Both the mean and
standard deviation in Eqn. 10 and Eqn. 11 are approaching
zero if neural collapse on an ETF or HAFrame occurs.

The visualization results are shown in the top two rows
of Fig. 4. Since we fixed our classifier to the pre-computed

HAFrame, the associated means and standard deviations are
always zeros. The features extracted from our HAFrame
models reach smaller means (top row of Fig. 4) and stan-
dard deviations (middle row of Fig. 4) on all four datasets
compared to the baseline, demonstrating the effectiveness
of our approach.
Self-Duality. During training, the class feature means of
training examples should converge to the respective classi-
fier vectors. Therefore, the means and classifiers become
self-dual. Following [33], we visualize self-duality by mea-
suring the Frobenius Norm of the difference between clas-
sifiers and class feature means:∥∥∥∥ W

||W ||F
− H

||H||F

∥∥∥∥
F

(12)

where W is the classifier weight matrix, and H =
[h1, ...,hK ] is a matrix of class feature means of training
examples. This norm approaches zero as the features col-
lapse to the associated classifiers.

The visualization results are shown in the bottom row of
Fig. 4. Both the baseline and our model reached self-duality
on FGVC-Aircraft and CIFAR-100, and they are still ap-
proaching self-duality on the larger two datasets. We ob-
served that more training epochs (e.g., 200 or 350 epochs)
lead to better self-duality on the larger datasets with minor
or no performance improvements.

5. Conclusion
Our proposed approach maps the pair-wise hierarchical

distances of the flat classes into their associated cosine sim-
ilarities and provides an analytical solution to the proposed
hierarchy-aware frame for a given similarity matrix. The



dataset model LCE T (.) HAF LCOS Top-1 Acc ↑ Mistake Severity ↓ HieDist@1 ↓ HieDist@5 ↓ Hiedist@20 ↓

FGVC-
Aircraft

ResNet50 ✓ ✗ ✗ ✗ 79.18 +/- 0.5511 2.12 +/- 0.0240 0.44 +/- 0.0097 2.10 +/- 0.0033 2.67 +/- 0.0040
ResNet50* ✓ ✓ ✗ ✗ 79.58 +/- 0.2727 2.15 +/- 0.0159 0.44 +/- 0.0067 2.11 +/- 0.0055 2.67 +/- 0.0034
ResNet50* ✓ ✓ ✓ ✗ 79.18 +/- 0.5347 2.08 +/- 0.0299 0.43 +/- 0.0145 1.90 +/- 0.0056 2.55 +/- 0.0101

ours ✓ ✓ ✓ ✓ 80.49 +/- 0.4692 2.02 +/- 0.0381 0.39 +/- 0.0039 1.74 +/- 0.0027 2.45 +/- 0.0024

CIFAR-
100

WideResNet28 ✓ ✗ ✗ ✗ 77.65 +/- 0.2635 2.34 +/- 0.0271 0.52 +/- 0.0102 2.25 +/- 0.0084 3.19 +/- 0.0045
WideResNet28* ✓ ✓ ✗ ✗ 76.45 +/- 0.2207 2.43 +/- 0.0235 0.57 +/- 0.0106 2.35 +/- 0.0049 3.30 +/- 0.0030
WideResNet28* ✓ ✓ ✓ ✗ 77.30 +/- 0.3798 2.37 +/- 0.0131 0.54 +/- 0.0111 1.59 +/- 0.0108 2.71 +/- 0.0147

ours ✓ ✓ ✓ ✓ 77.71 +/- 0.2319 2.21 +/- 0.0108 0.49 +/- 0.0066 1.11 +/- 0.0018 2.18 +/- 0.0013

iNatura-
list2019

ResNet50 ✓ ✗ ✗ ✗ 70.68 +/- 0.2097 2.22 +/- 0.0103 0.65 +/- 0.0068 1.95 +/- 0.0043 3.37 +/- 0.0040
ResNet50* ✓ ✓ ✗ ✗ 70.44 +/- 0.1576 2.26 +/- 0.0071 0.67 +/- 0.0036 1.97 +/- 0.0060 3.40 +/- 0.0070
ResNet50* ✓ ✓ ✓ ✗ 71.14 +/- 0.2245 2.19 +/- 0.0132 0.63 +/- 0.0025 1.39 +/- 0.0021 2.20 +/- 0.0048

ours ✓ ✓ ✓ ✓ 70.89 +/- 0.1213 2.04 +/- 0.0107 0.59 +/- 0.0033 1.14 +/- 0.0033 1.73 +/- 0.0023

tiered-
ImageNet

-H

ResNet50 ✓ ✗ ✗ ✗ 73.63 +/- 0.1165 6.94 +/- 0.0208 1.83 +/- 0.0117 5.70 +/- 0.0192 7.34 +/- 0.0291
ResNet50* ✓ ✓ ✗ ✗ 72.51 +/- 0.4317 6.95 +/- 0.0298 1.91 +/- 0.0338 5.69 +/- 0.0085 7.28 +/- 0.0082
ResNet50* ✓ ✓ ✓ ✗ 73.54 +/- 0.2328 6.93 +/- 0.0274 1.83 +/- 0.0117 5.45 +/- 0.0026 6.82 +/- 0.0048

ours ✓ ✓ ✓ ✓ 74.00 +/- 0.3549 6.89 +/- 0.0251 1.79 +/- 0.0216 4.94 +/- 0.0118 6.15 +/- 0.0065
Table 6. The ablation study results for FGVC-Aircraft (1st row), and CIFAR-100 (2nd row), iNaturalist2019 (3rd row), tieredImageNet-
H (4th row). Each row in the table corresponds to the average results of 5 runs with a 95% confidence interval. Both ResNet50 and
WideResNet28 are customized type-I models. The ResNet50*, WideResNet28*, and ours are customized type-II models.

FGVC-Aircraft CIFAR-100 iNaturalist2019 tieredImageNet-H

Figure 4. Neural collapse visualization: HAFrame (blue) vs. ETF (red) on all four datasets. The x-axis is the epoch number, and the y-axis
is either the mean (top row), the standard deviation (middle row), or the self-duality (bottom row) introduced in Sect. 4.3. The number of
hidden units in the transformation layer of type-I models is increased to 1010 and 608 for the respective models of iNaturalist2019 and
tieredImageNet-H to meet the penultimate feature dimension’s requirement (d ≥ K) for ETF collapse.

proposed approach is easy to implement as it only requires
an extra 1x1 conv layer, a plug-in transformation layer, and
freezing of the respective classifier to a HAFrame. There-
fore, it is also easy to adapt to different hierarchies. Our
approach offers a new route to reduce the mistake severity
of model predictions from the neural collapse point of view.
We examined the proposed approach through extensive ex-

periments and our approach consistently reaches the best
mistake severity while maintaining competitive classifica-
tion accuracy (best on 3/4 datasets) and average hierarchical
distances (best on 3/4 datasets). Future work may seek loss
functions that better facilitate the collapse of penultimate
features on the HAFrame or further optimize the architec-
ture of the transformation layer to improve performance.
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Appendices
A. Prove the proposed hierarchy-aware frame

satisfies the frame condition
First, we repeat the definition of the frame condition [6] in
Euclidean space:

Definition 2 (Frame). A set of vectors {φk}Mk=1 in RN is
called a frame for RN , if there exist constants 0 < A ≤
B < ∞ such that

A||x||2 ≤
M∑
k=1

|⟨x,φk⟩|2 ≤ B||x||2, ∀x ∈ RN (13)

where ⟨., .⟩ and ||.|| denote the dot product on RN and its
corresponding norm.

Next, we prove the following theorem, i.e., our proposed
HAFrame satisfies the above frame condition (Eqn. 13).

Theorem 1. The proposed HAFrame W (Eqn. 6) satisfies
the frame condition (Eqn. 13) if the associated cosine simi-
larity matrix S in Eqn. 4 is positive definite.

Proof. To prove the proposed HAFrame W satisfies the
frame condition [6] given in Eqn. 13, we substitute the set
of vectors {φk}Mk=1 in the Eqn. 13 with the set of vectors
{wi}Ki=1 consisting the HAFrame W . It’s equivalent to
proving the following condition is satisfied where both A
and B are positive constants:

A||x||2 ≤
K∑
i=1

|⟨x,wi⟩|2 ≤ B||x||2, ∀x ∈ RK (14)

Therefore, we need to prove the following:

AxTx ≤
K∑
i=1

(xTwi)(w
T
i x) ≤ BxTx (15)

Since W = [w1 w2 ... wK ], we can further write∑K
i=1(x

Twi)(w
T
i x) as:

K∑
i=1

(xTwi)(w
T
i x) = xT

[
w1 w2 · · · wK

]

wT

1

wT
2
...

wT
K

x

(16)

Therefore, we have:

K∑
i=1

(xTwi)(w
T
i x) = (xTW )(W Tx) = xTWW Tx

(17)

Combining inequalities in Eqn. 15 and Eqn. 17, we have:

AxTx ≤ xTWW Tx ≤ BxTx (18)

If ||x|| = 0, the frame condition in Eqn. 14 is met. Other-
wise, we have:

A ≤ xTWW Tx

xTx
≤ B (19)

where xTWWTx
xTx

is the Rayleigh quotient R(WW T , x)

[24] for a real symmetric matrix WW T , and it is bounded
by the minimum and maximum eigenvalues of WW T .
Therefore, we have:

λmin ≤ xTWW Tx

xTx
≤ λmax (20)

where λmin and λmax are the smallest and largest eigenval-
ues of WW T . Hence, we only need to prove that WW T

is a positive definite matrix, i.e., for any x ̸= 0, we need to
prove:

xTWW Tx = (W Tx)T (W Tx) = ||W Tx||2 > 0 (21)

It is equivalent to prove W T = QD
1
2UT is invertible (i.e.,

W Tx ̸= 0 when x ̸= 0). We can find the inverse of W T :

(W T )−1 = UD− 1
2QT (22)

where U is orthonormal, Q and D are acquired via eigen-
decomposition of real symmetric positive definite similar-
ity matrix S = QDQT , therefore Q is also orthonormal,
and D− 1

2 is a real matrix (eigenvalues of S are all positive
real numbers). Since W T is invertible, W Tx ̸= 0 when
x ̸= 0, this finish proving of Eqn. 21. Therefore, the matrix
WW T is positive definite, and our HAFrame W satisfies
the frame condition in Eqn. 13. The proof is completed.


