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Abstract

Data-free knowledge distillation (DFKD) is a promis-
ing approach for addressing issues related to model com-
pression, security privacy, and transmission restrictions.
Although the existing methods exploiting DFKD have
achieved inspiring achievements in coarse-grained clas-
sification, in practical applications involving fine-grained
classification tasks that require more detailed distinctions
between similar categories, sub-optimal results are ob-
tained. To address this issue, we propose an approach
called DFKD-FGVC that extends DFKD to fine-grained vi-
sual categorization (FGVC) tasks. Our approach utilizes
an adversarial distillation framework with attention gen-
erator, mixed high-order attention distillation, and seman-
tic feature contrast learning. Specifically, we introduce a
spatial-wise attention mechanism to the generator to syn-
thesize fine-grained images with more details of discrimi-
native parts. We also utilize the mixed high-order attention
mechanism to capture complex interactions among parts
and the subtle differences among discriminative features
of the fine-grained categories, paying attention to both lo-
cal features and semantic context relationships. Moreover,
we leverage the teacher and student models of the distilla-
tion framework to contrast high-level semantic feature maps
in the hyperspace, comparing variances of different cat-
egories. We evaluate our approach on three widely-used
FGVC benchmarks (Aircraft, Cars196, and CUB200) and
demonstrate its superior performance. Code is available at
https://github.com/RoryShao/DFKD-FGVC.git

1. Introduction
Fine-grained visual categorization (FGVC) aims at dis-

tinguishing subcategories from father categories, e.g., sub-
categories of birds [43], aircraft [29], and cars [23]. It has
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long been considered a more challenging issue than tradi-
tional image classification due to the subtle inter-class and
large intra-class variations [42]. To distinguish subtle diver-
sities, the current approaches commonly exploit deeper neu-
ral networks with elaborate designs [50, 26, 53] to excavate
the discriminative features effectively. Inevitably, the net-
work becomes more and more complex, which leads to an-
other problem, i.e., complicated networks are not easily de-
ployed on embedded or mobile devices. Besides, the train-
ing data of released pre-trained models are often unavailable
due to transmission, privacy, or legal issues. For example,
pre-trained models commonly need a large amount of data
such as ImageNet [24]. If the data is transmitted directly, a
large amount of bandwidth is consumed. Moreover, some
sensitive data such as e-commerce items or medical data
are usually not directly accessible to the public due to in-
tellectual property rights or privacy protection considera-
tions. To obtain a lightweight model, recent research has
made significant progress, including pruning [25], quanti-
zation [49, 27], and knowledge distillation [16]. Among
them, knowledge distillation (KD) is a popular and effec-
tive paradigm for model compression and knowledge trans-
fer [16]. It works by transferring knowledge from a cum-
bersome teacher network to a lightweight student network.
Thanks to this separable architecture, it can also be used
to solve privacy protection in data-free scenarios, which is
called data-free knowledge distillation (DFKD) [5] or zero-
shot knowledge distillation (ZSKD) [33].

Fortunately, a series of DFKD methods have been pro-
posed [5, 33, 30, 11, 47, 12]. The existing approaches can
be divided into two paradigms. The first paradigm is based
on the category distribution, which exploits the out distribu-
tion of teacher and student to optimize the student and gen-
erator, e.g., DFAL [5], ZSKT [30], DFAD [11], ZSKD [33].
Such a paradigm commonly fails to generate realistic sam-
ples due to the lack of semantic-related information, es-
pecially when it comes to complex samples. The second
paradigm is based on prior distribution, which exploits the
prior information (i.e., BatchNorm) to optimize synthetic
images for distillation, e.g., MAD [10], CMI [12], DFQ [8],
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ADI [47]. This paradigm can produce realistic features and,
therefore, gives the student a noticeable improvement.

Although the existing methods have achieved inspiring
achievements in coarse-grained classification, in practical
applications, sub-optimal results are achieved due to the
subtle variations widely found in different scenarios. The
main reasons for this situation are as follows: Firstly, for
FGVC tasks, the variances of the same category are more
prominent than that of coarse-grained classification due to
different factors, such as viewing angles, lighting, back-
grounds, occlusion, etc. Secondly, compared to coarse-
grained categories, the feature discrepancies of different
categories in FGVC are not obvious. Besides, in the data-
free scenario, the model can not access the raw data directly.
For synthesized images, it is difficult for the teacher model
to capture the subtle variances of discriminative features. To
our best knowledge, there are still no specialized data-free
studies on fine-grained DFKD. Therefore, this inspires us to
explore this issue and tackle this task in a data-free scenario.

In this paper, we tackle this issue by extending DFKD
to fine-grained visual classification (FGVC) tasks and
propose an approach named DFKD-FGVC, which is
achieved by exploiting the adversarial distillation frame-
work with attention generator, mixed high-order attention
distillation (MHAD) and semantic feature contrast learn-
ing (SFCL). Concretely, as shown in Fig. 1, to promote the
generator to synthesize more fine-grained images, we ex-
ploit the generator with spatial-wise attention, which can
help the generator synthesize the images with more details
of discriminative parts. Then, to fully mine the knowledge
of discriminative features for student, we exploit the mixed
high-order attention mechanism to capture complex inter-
actions among parts and the subtle differences among dis-
criminative features of the fine-grained categories, paying
attention to both local features and semantic context rela-
tionships. Besides, to compare variances of different cate-
gories, we skillfully exploit the teacher and student model
of distillation framework to contrast semantic feature maps
in the hyperspace. To verify our approach, massive ex-
periments are conducted on three fine-grained benchmarks,
such as Aircraft, Cars196, and CUB200 to evaluate the ef-
fectiveness of our approach.

In a nutshell, our contributions are four-fold: 1) We
are the first to propose an approach for FGVC in the data-
free distillation scenario, which aims to optimize the en-
tire generation and distillation stages to focus on discrim-
inative features. 2) To synthesize more fine-grained im-
ages for adversarial distillation, we employ the generator
with spatial-wise attention, which motivates the generator
to synthesize the images with more details of discrimina-
tive features. 3) Particularly, to effectively mine the po-
tential semantic features and contextual relationships of the
fine-grained categories, we provide two strategies, namely,

MHAD and SFCL, both of which can promote the perfor-
mance of DFKD from different dimensions. 4) Extensive
experiments demonstrate the effectiveness of our approach
in the data-free setting, which achieves state-of-the-art per-
formance on the mainstream FGVC benchmark datasets.

2. Related Works
2.1. Fine-Grained Visual Categorization

Fine-grained visual classification (FGVC) [43, 29, 23] is
much more challenging than traditional classification tasks
due to the inherently subtle intra-class object variations [42,
18]. Benefiting from the recent development of neural
networks, recent studies have moved from strongly super-
vised information with extra annotations such as bounding
boxes [2, 48, 18] to weakly-supervised conditions with only
category labels [51, 13, 41]. Current methods on FGVC can
be roughly divided into localization-based methods [13, 41]
and attention-based methods [3, 19, 31]. The core for solv-
ing FGVC is to learn the discriminative features of objects
in images. However, current approaches tackle this prob-
lem in the data-driven setting, few approaches consider this
problem in the data-free setting. Therefore, different from
the above studies, we explore the FGVC tasks in the novel
aspect of the data-free distillation scenario.

2.2. Attention Mechanism

The attention mechanism stems from human vision,
which exploits a sequence of partial glimpses and selec-
tively focuses on salient parts to capture visual structure
better. In the field of computer vision, attention mecha-
nism [40, 17, 44, 34] are mainly exploited to capture es-
sential information in various tasks such as pedestrian re-
identification [46, 20, 45], FGVC [3, 31], etc. For example,
[40] proposes the residual attention network for large-scale
classification tasks. Then Hu et al. [17] exploit a squeeze-
and-excitation (SE) block to compute channel-wise atten-
tion. CBAM [44] infers attention maps along two sepa-
rate dimensions, i.e., channel and spatial. Similar to [44],
BAM [34] also exploits the 3D attention map inference into
channel and spatial. In terms of tasks, spatial attention is
well-suited to dense prediction tasks such as semantic seg-
mentation and object detection [14], while channel attention
is a good choice for image classification. However, only
exploiting spatial attention or channel attention is coarse,
we can not capture the high-order and complex interactions
among parts [4]. Therefore, in our data-free framework, we
empirically exploit the spatial attention for our generator
and the mixed high-order attention for distillation.

2.3. Data-free Distillation

Data-free Distillation has become a hot topic in re-
cent years, mainly due to privacy protection [28]. It ex-
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Figure 1. The whole framework of our approach. The left: The spatial attention module is plugged into each block of generator G,
which aims to focus on fine-grained semantic information from the whole process of noise z to images x̂. The intermediate: At each
block of teacher and student, the feature maps are extracted by the mixed high-order attention module to achieve MHAD. The right: In
the penultimate layer, exploiting the MLP to map the high-level semantic features of teacher and student to a common hyperspace and
compare the variances by SFCL.

ploits synthesized alternative samples to solve the dilemma
that model can not directly access the original data and
makes gratifying achievements in the task of classifica-
tion [47, 5, 11, 12]. For example, ADI [47] utilizes batch
normalization statistics (BNS) of the pre-trained teacher to
optimize the noise to synthesize high-fidelity images for
KD. CMI [12] exploits the local and global contrast of
samples to optimize the generator diversity. This kind of
method ordinarily can synthesize more realistic images and
achieve relatively better performance. DFAL [5] adopts a
generator to synthesize images, and then the student learns
the knowledge from the teacher by distillation. ZSKT [30]
exploits the adversarial distillation to transfer the knowl-
edge from teacher to student by KL and spatial attention,
while DFAD [11] only utilizes the MAE loss to fit the out-
put distribution of the teacher. All kinds of the above meth-
ods can achieve relatively inspiring achievements in coarse-
grained classification, and there is no specific research on
FGVC. Motivated by this, we conduct the study for data-
free fine-grained distillation.

3. Preliminary
Our approach follows the basic thinking of DFKD, as de-

picted in Fig. 1. First, a generator G is employed to synthe-
size a batch of images from noise z ∼ N (0, 1), G(z) → x̂,
B = {x̂1, x̂2, ..., x̂n} , n ∈ {1, ...,N}, where N is the batch
size. Then the synthesized image x̂ is input to the pre-
trained teacher T and student S to support their distillation.

Finally, the generator G is optimized by adversarial distilla-
tion.
Data-free Adversarial Distillation. Essentially, Data-free
adversarial distillation is a robust minimax optimization
problem [1], which encourages the generator to minimize
the possible loss for a worst-case scenario (maximum loss)
through adversarial training under data uncertainty. In the
data-free scenario, it can be denoted as

min
S

max
G

{
Ep(z) [D(T (G(z)),S(G(z)))]− δLG

}
, (1)

where D represents the discrepancy measure, which nor-
mally exploits the Kullback-Leibler (KL) divergence as an
optimization term. δ ≥ 0 is the balance factor, and LG is
the optimization term of generator G.
Knowledge Distillation. According to the principle of clas-
sic knowledge distillation [16], the soft output of the net-
work (a.k.a. probability distribution) implies the similarity
between the current sample and other categories. Therefore,
traditional methods [8, 10, 33] usually adopt the KL Diver-
gence to measure the difference between the two distribu-
tions of teacher and student. The probability distribution
distillation can be formulated as

LKD = Ex̂ [DKL (σ(S(x̂))∥σ(T (x̂)))] , (2)

where DKL represents the Kullback-Leibler (KL) diver-
gence, and σ is the softmax operation.
Prior Information Regularization. Prior information reg-
ularization aims to regularize the feature distribution of syn-
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Figure 2. The spatial attention module of the generator, in which
⊗ denotes the element-wise multiplication and ⊕ denotes the
element-wise addition.

thesized images by prior distribution information, i.e., mean
µ and variance σ2 of BatchNorm [47], which motivates the
synthetic samples to approach the distribution of the origi-
nal samples.

LBN = min
G

∑
l

∥µl − µl(G(z))∥2 +
∥∥σ2

l − σ2
l (G(z))

∥∥
2
, (3)

where l donates the lth BatchNorm layer of the teacher
model, µ and σ2 are the batch-wise mean and variance, re-
spectively.

4. Proposed Approach
4.1. Discriminative Feature Synthesis

In the DFKD framework, it is common to exploit a gen-
erator to assist in generating alternative samples for coarse-
grained classification. However, directly applying it to syn-
thesize fine-grained samples often does not yield desirable
discriminative features. This is because the conventional
generator cannot focus on subtle discriminative features,
which decreases the ability of teacher to extract representa-
tion from various semantic parts and thus hampers the effec-
tiveness of the distillation. Differing from the traditional ap-
proaches, in our framework, we employ a DCGAN [35, 38]
generator with the attention module to increase the repre-
sentation ability of features and tell the generator where
to focus. Inspired by preceding attention works such as
CBAM [44] and CBM [34], which stacks channel atten-
tion and spatial attention in series, we exploit the atten-
tion mechanism in our approach. However, unlike the prior
approaches, we implement the attention by the encoder-
decoder manner, thinking that the non-linear convolution
can pay attention to context knowledge of features, which is
more suitable for dense generation tasks. Besides, in order
to have stability training, the spectral normalization [32] is
exploited to regularize the ConvTranspose2d layers of DC-
GAN, which controls the weights of modules by the Lips-
chitz constant.

Concretely, as displayed in Fig. 2, the noise z is input to
generator G to synthesize the alternative samples x̂. We first
divide the whole DCGAN module into four blocks. Then
we plug the attention module at each block to compute the
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stage.

low-dimensional feature maps Ad ∈ RC/r×H×W from orig-
inal feature maps Fg ∈ RC×H×W, where r is the scaled
scalar, C denotes channel, H and W represent the size of
the feature maps. This aims to achieve lightweight feature
maps. Next, the encoder is employed to achieve the latent
space as follows:

Ad = Cov1×1(Fg) ,

Ψ = ReLU(BN(Cov3×3(Ad))) ,

Γ = ReLU(BN(Cov3×3(MP(Ψ)))) ,

(4)

where Ψ represents features of intermediate process,
Cov1×1 and Cov3×3 denote the convolution with kernel
size of 1× 1 and 3× 3, and MP represents maximum pool-
ing.

By Eq. 4, we can get the representation of low-
dimensional latent space Γ from Ad ∈ RC/r×H×W, and
then decode the space with maximum uppooling (MUP) to
achieve spatial-wise attention As ∈ RC/r×H×W. This op-
eration can preserve information of the key locations in the
feature to achieve the 2D spatial attention map As as fol-
lows:{

Ψ = MUP(ReLU(BN(DC3×3(Γ)))) ,

As = Cov1×1(ReLU(BN(DC3×3(Ψ)))) ,
(5)

where DC3×3 denotes the deconvolution with kernel size
of 3 × 3, MUP represents the maximize unpooling. Then,
aggregating the attention maps to the original feature maps
to achieve F̃g is formulated as:

F̃g = λ(Softmax(As)×Fg) + Fg , (6)

where λ is the hyperparameter to balance the attention maps
with features, which defaults to 5e−2 in our experiments.
More details about the contributions of the attention gener-
ator are presented in Tab. 6.

4.2. Mixed High-Order Attention Distillation

In the stage of distillation, traditional DFKD meth-
ods [5, 11, 30] to solve coarse-grained classification com-
monly exploit the distribution of output layers due to the



significant inter-class variation (compared to intra-class
variation), which enables deep networks to learn gener-
alized discriminatory features of coarse-grained classifi-
cation. However, the distribution knowledge distillation
only exploits category-related information with dark knowl-
edge [16], which lacks semantically relevant information.
We argue that this paradigm may not be ideal for FGVC,
due to the data-free scenario.

To solve the above difficulties, recent methods com-
monly exploit attention mechanism [3, 31] to capture the
discriminative features of the object. However, the exist-
ing FGVC methods of attention mechanism are mainly de-
signed for data-available scenarios, and there is no related
research in the data-free scenario. This motivates us to ex-
tend this strategy in a data-free setting. Besides, the related
attention distillation works [52, 37] only consider the low-
order attention information, which only focuses on the lo-
cal information and cannot capture the complex interactions
among parts, resulting in less discriminative attention pro-
posals and failing in capturing the subtle differences among
objects. In the data-free scenario, due to the semantic in-
formation being sparse [9], we believe that low-order atten-
tion distillation cannot fully express the knowledge of the
features. Thus we propose to exploit mixed high-order at-
tention (MHA) to distill the aggregated local features and
semantic context relation of synthesized FGVC images.

Our mixed high-order attention module is shown in
Fig. 3, in which mixed 3-order attention (i.e., R = 3) is
exploited. The feature Fm ∈ RH×W×C is first extracted by
three route 1 × 1 convolutions to achieve 3-order interme-
diate representations. In each route, the convolution layer
and produced relative representation are the same as the or-
der R. Then we multiply the representations of each order
to obtain aggregated representations. For each aggregated
representation, we exploit RELU and 1 × 1 convolution to
produce the new map which will be aggregated with global
attention maps Am. At last, the activated global attention
map Am will be multiplied with the original features Fm to
produce the final attention maps F̃m = Am ×Fm.

For teacher and student, their channels may be different.
Thus we first exploit the Adapter to upgrade the channel
of the student to the same number as the teacher, which is
also implemented by the 1 × 1 2D convolution. Therefore,
at each block of the intermediate layer of T and S, we ex-
ploit mean square error (MSE) to measure the MHAD loss,
which is formulated as:

LMHAD =
1

N× C

N∑
i=1

C∑
j=1

MSE(F t
m,Fs

m) , (7)

where N and C represent the batch size and channel, while
F t

m and Fs
m denote the attention map of an intermediate

block of teacher and student, respectively. It should be
noted that this strategy is only exploited during our training

Algorithm 1 The whole pipeline of DFKD-FGVC.
Input: A pre-trained teacher model T on real data, genera-
tor G and student network S.
Output: A well-trained student network S.

1: // Ganerator Stage
2: for number of iterations do
3: for t steps iterations do
4: Generate random noise z ∼ N (0, 1) ;
5: Synthesize supporting sample x̂ = G(z) ;
6: Optimize the generator by LBN, and −LKD;
7: Freeze S and T , and update G by Eq. 10 .
8: end for
9: end for

10: // Distillation Stage
11: for number of iterations do
12: for k steps iterations do
13: Generate random noise z ∼ N (0, 1) ;
14: Synthesize supporting sample x̂ = G(z) ;
15: Calculate discrepancy by LKD, LMHAD, and

LSFCL.
16: Freeze G and T , and update S by Eq. 11 ;
17: end for
18: end for

process, which does not participate in the inference. There-
fore, this does not affect the efficiency of the model.

4.3. Semantic Feature Contrast Learning

Since the pre-trained teacher has a higher discriminative
ability than the student, optimizing the student by compar-
ing the features of the teacher is conducive to improving
the ability of the student to distinguish right from wrong.
Therefore, in our FGVC task, we not only focus on inter-
mediate low-level feature variances but also high-level se-
mantic variances of the penultimate layer. Unlike traditional
paradigms [6, 7, 21, 39], which contrast the original [7, 21]
and augmentation data or in data-driven scenarios [6, 39].
we exploit high-level semantic features to contrast feature
representation of teacher and student and aim to learn the
variances between different categories in the data-free sce-
narios, which are more difficult than data-driven scenarios.

Specifically, in the penultimate layer, we obtain their se-
mantic feature representations and exploit the multi-layer
perceptron (MLP) to map the representations to a com-
mon space to achieve 2N feature representations as Fs =
C(S(G(z))) and Ft = C(T (G(z))), where C is the MLP
layer with two hidden linear layers. Then, we normalize the
features to a unit hyperspace and measure their similarity as
follows:

sim(Ft,Fs) =
Ft · F⊤

s

∥Ft∥ · ∥Fs∥
, (8)

where · denotes the inner (dot) product. The cosine dis-



Table 1. Results of different data-free distillation methods on three fine-grained datasets.

Setting Prior Info. Compression Info. Accuracy
Method Data-free BN FLOPs Params. Aircraft Cars196 CUB200

ResNet-34 (T.) × × ∼3.67G ∼22M 70.15 84.22 76.87
ResNet-18 (S.) × × ∼1.82G ∼11M 68.71 77.43 58.60

ZSKD [33] ✓ × ∼1.82G ∼11M 37.32 26.21 30.53
ZSKT [30] ✓ × ∼1.82G ∼11M 51.16 28.48 31.88
DAFL [5] ✓ × ∼1.82G ∼11M 43.69 37.71 31.01

DFAD [11] ✓ × ∼1.82G ∼11M 49.51 48.72 40.15
ADI [47] ✓ ✓ ∼1.82G ∼11M 58.14 65.24 47.63
DFQ [8] ✓ ✓ ∼1.82G ∼11M 60.22 66.14 48.43

MAD [10] ✓ ✓ ∼1.82G ∼11M 63.74 67.53 53.43
CMI [12] ✓ ✓ ∼1.82G ∼11M 63.57 68.74 53.53

Ours ✓ ✓ ∼1.82G ∼11M 65.76 71.89 56.93

tance is used as the similarity metric to measure the rela-
tionship between two feature representations for contrastive
loss, which is defined as

LSFCL = min
S

{
− log

exp(sim(F i
t ,Fj

s )/τ)∑2N
k 1[k ̸=i] exp(sim(F i

t ,Fk
s )/τ)

}
,

(9)
where 1[k ̸=i] is an indicator function that returns 1 if i = j,
i and j ∈ 2N are the indexes of the samples in the represen-
tations, and τ denotes a temperature parameter. This loss
maximizes the representations of the different categories,
where the teacher can extract the effective features from
noisy images and pull away from the other dissimilar fea-
tures. Therefore, if one feature of the teacher is viewed as
an anchor, and the student extracts another representation
of this synthetic image as the positive. Due to the weak
ability of sample representations of the student model, such
operation of the student plays a role as augmented images.
The other 2(N− 1) features can be viewed as the negative.
Therefore, the loss LSFCL is used to optimize the student
to close to the teacher model, i.e., improving the ability of
students to distinguish different samples.

4.4. Total Objects

In the whole algorithm pipeline 1, we first optimize the
generator to synthesize more realistic diverse samples. The
total objective of the generator is

min
G

αLBN − LKD . (10)

Then, with the above strategy for the generator, we can de-
tail the total objective of the student:

min
S

LKD + βLMHAD + γLSFCL , (11)

where α, β, and γ are both hyper-parameters. The train-
ing plays an adversarial distillation to optimize both at each
iteration.

5. Experiments

5.1. Datasets and Implementation Details

Datasets. To demonstrate the effectiveness of our approach,
we conduct experiments on three fine-grained datasets.
Aircraft. FGVC-Aircraft [29] contains 100 different air-
craft variants formed by 10,000 annotated images, which
is divided into two subsets, i.e., the training set with 6,667
images and the testing set with 3,333 images.
Cars196. The Stanford Cars dataset [23] contains 16,185
images from 196 categories of cars. The data is split into
8,144 training images and 8,041 testing images.
CUB200. The Caltech-UCSD birds dataset (CUB-200-
2011) [43] consists of 11,788 annotated images in 200 sub-
ordinate categories, including 5,994 images for training and
5,794 images for testing.
Implementation Details. Our method is implemented with
the PyTorch library. All the models are trained on NVIDIA
3090 GPUs with 24G memory. ResNet-34 [15] is em-
ployed as the cumbersome teacher network for all exper-
iments in this paper, and four architectures, i.e., ResNet-
18 [15], WRN40-2 [15], MobileNetV2 [36], and ResNet-
34 [15] are utilized as students. We first train the generator
for 20 steps (i.e., t=20) where the generator follows the ar-
chitecture of DCGAN [35]. Adam [22] is adopted to opti-
mize the generator with an initial learning rate of 1× 10−3

and beta is set 0.5 to 0.99. Then, we train the student 15
steps (i.e., k=15) after the generator and optimize the pa-
rameters by the SGD optimizer with a momentum of 0.9, a
batch size of 64 as default, and a weight decay of 5×10−4.
The initial learning rate starts at 1×10−2 with cosine an-
nealing for a total of 200 epochs. In the pre-trained stage,
due to subtle discrepancies that are difficult to detect, the
input images of fine-grained datasets are both resized and
randomly cropped to 224×244. In the data-free distillation
stage, all the synthetic images are the same as the size of
the original input images in the pre-trained stage. As for the
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Figure 4. Visualization synthetic images generated by some representative approaches on Aircraft, Cars196, and CUB200 datasets.

hyper-parameters, both α, β, and γ are set to 0.3, 10, and 8
by default, respectively. Floating point operations (FLOPs)
and parameters (Params) are employed to measure the com-
putation and storage cost of the networks.

5.2. Results and Comparisons

As shown in Table 1, we focus on evaluating our ap-
proach and other compared methods on three public fine-
grained datasets, i.e., Aircraft, Cars196, and Cub200. To
evaluate the effectiveness of our proposed method, we
conduct fair comparison experiments with two kinds of
DFKD methods which are primarily for general classifica-
tion tasks: (1) Without (×) prior information methods, in-
cluding ZSKT, DAFL, and DFAD; (2) With (✓) prior in-
formation methods, including ADI, DFQ, MAD, and CMI.
The first two rows of the table show the results of the
teacher and student with annotated data supervision in train-
ing, which is also our target to achieve by KD. Obviously,
the performance of the methods exploiting prior informa-
tion is better than those without. For example, DFAD only
achieves 49.51%, 48.72%, and 40.15% on three datasets,
while ADI can achieve 58.14%, 65.24%, and 47.63%. This
is mainly because BN regularization has a good perfor-
mance to inverse and generate relatively realistic images,
which is particularly important for downstream distillation.
Based on the BN regularization, our approach exploits the
spatial attention generator to generate the images with se-
mantic information, which can further improve the perfor-
mance of the student.

Besides, almost all of the above approaches exploit the
vanilla KD (e.g., KL divergence) to transfer the knowledge
from the output layer, although they can perform well on
coarse-grained classification, but do not perform well on
fine-grained classification. Our method mainly adopts two
strategies to further improve the performance of the stu-

dent by about 3% on average, which indicates that vanilla
KD alone cannot complete all knowledge transfer, and
special design is necessary for FGVC tasks distillation in
DFKD. Under identical conditions, thanks to two optimiza-
tion strategies, i.e., MHAD and SFCL, our approach outper-
forms the other data-free methods to achieve state-of-the-art
performance on three datasets.

Table 2. More comparisons of different architectures’ students
with ResNet-34 on Aircraft dataset.

Student ZSKT DFAL DFAD ADI DFQ MAD CMI Ours
WRN40-2 49.13 36.83 50.44 57.83 58.26 59.85 62.43 64.54

MobileNetV2 24.39 18.51 23.01 53.66 53.93 54.61 55.04 57.37
ResNet-34 39.52 36.63 52.15 60.75 61.75 63.12 64.66 65.48

To verify the generality of our approach, we perform
distillation on another three student models with differ-
ent architectures, including heterogeneous distillation (i.e.,
WRN40-2 and MobileNetV2) and self-distillation (i.e.,
Resnet-34). For WRN40-2 and MobileNetV2, we leverage
the MLP with two hidden layers to map the dimension to
match the teacher and implement our two strategies both in
the penultimate layer. As shown in Table 2, our approach
can also achieve state-of-the-art performance in different ar-
chitectures.

5.3. Visualization and Analysis

Synthetic images. To clearly evaluate the effect of synthe-
sized images, we present a visualization analysis of some
representative methods on Aircraft, Cars196, and CUB200
in this section. As we can see from Fig. 4, the first column
is the real data for reference. However, for ZSKT, DAFL,
and DFAD, there is a big gap between the generated images
and the real data. Since ADI, CMI, and Ours both exploit
the BN to regularize the features, the synthesized images
are more realistic than the other data-free methods, which
is beneficial for downstream distillation. With the assis-
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Figure 5. Visualization of t-SNE distribution on Aircraft dataset.

tance of two optimization strategies of MHAD, and SFCL,
our approach can generate better and more discriminative
foreground images compared to ADI, DFQ, and CMI. For
example, we can clearly distinguish the outline of the car
and the color of the different areas of the birds.
t-SNE. To illustrate the advantages of our approach in syn-
thesizing images having more similar distributions with real
images, we sample 10 categories from the Aircraft dataset
and visualize the representations of MobileNetV2 by t-SNE
as Fig. 5. As shown in Fig. 5(f), our approach gains ob-
viously better representations than the other methods, ac-
cording to the comparison with each other. Compared the
Tab. 1 with Fig. 4, we can conclude that the performance of
the student primarily relies on the quality of the synthetic
images and the effect of knowledge transfer in DFKD.
Attention map. To further verify the effect of our mixed
high-order attention (MHA) modules feature selection, we
visualized the generated samples through GradCAM 1, as
shown in Fig. 6. The first row is the synthesized alternative
samples of CUB200 which are generated by our attention
module. We can see the fine-grained semantic information
of different synthesized birds. For example, we can distin-
guish different beaks or wings of birds, and different col-
ors of features. When we employ the student embedded
with MHA modules to visualize birds’ discriminative fea-
tures by GradCAM, the attention maps are sparse and focus
on the discriminative parts, as shown in the second row of
the figure. For example, the wings of birds are activated,
which indicates that the wings are being paid attention to.
We can conclude that MHA modules can focus on contex-
tual semantic information on features which is based on the
attention of discriminative features.

5.4. Ablation Study

Contribution of loss. To verify the contribution of each
component, we conduct ablation experiments on the three
datasets with ResNet-18, as shown in Table 3. In the first
row is the Baseline of each benchmark, which exploits the
Eq. 10 to optimize the G, while only optimizing the S by
exploiting the LKL to distill the knowledge. Then, adding
the LSFCL component to the Baseline, the result of each
benchmark is improved by 3.07%, 2.33%, 2.92%, respec-

1https://github.com/jacobgil/pytorch-grad-cam.git
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Figure 6. Visualization of synthetic images with attention map
generated by GradCAM on CUB200 datasets.

tively. Likewise, when we add LMHAD to the baseline, it
can also achieve significant improvement. Nevertheless, by
comparing both, we can find that the contribution of LSFCL

is relatively weaker than LMHAD, which proves the effec-
tiveness of exploiting mixed high-order attention to model
discriminative features, which has been ignored by other
methods. Finally, we add both to the baseline and obtain
the final state-of-the-art effect.

Table 3. The ablation study of our approaches with different com-
ponents. ‘+’ denotes the add operation.

Method Aircraft Cars196 Cub200
Baseline 60.30 64.80 51.34
+ LSFCL 63.37 67.13 54.26
+ LMHAD 64.86 69.92 55.71
+ LMHAD + LSFCL 65.76 71.89 56.93

Effect of hyper-parameters. In our optimization, α, β,
and γ are the major hyper-parameters for balancing the loss
terms in our framework. By adjusting the BN hyperparam-
eter in the interval between 0 to 5, we find that the optimal
value of α is 0.3. Then, we investigate the effect of β and γ
on the student ResNet-18 on the Cars196 dataset and show
the results in Fig. 7. In Fig. 7(a), we set γ as 1.0 and vary
β from 0 to 100, in which 10 is a reasonable parameter ver-
ified by our experiments. Then, we set the optimal value
of β to 10 and vary γ from 0 to 100, in which the student
network achieves the best performance when γ is set to 8,
as shown in Fig. 7(b). It is clear that, when using different
β and γ, our model stably outperforms the baseline model.
The experimental results show that our proposed framework
is robust to the different parameters.
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Figure 7. Effect of hyper-parameter β and γ on Cars196 dataset.

Control parameter of attention ganerator. Due to the pa-
rameter λ being exploited to control the aggregating of at-
tention and feature maps, we perform a group analysis of
this parameter. As shown in Tab. 4, we first fix the other pa-
rameters, and then the λ is set to 0, which indicates that the
generator does not exploit the attention mechanism. And
the results on the three datasets achieve 63.88, 69.24, and
54.81, respectively. From the interval 0 to 5e−2, the effect
of the generator rises significantly while the effect of the
model decays between 5e−2 and 9e−2, in which the reason-
able parameter is 5e−2. This indicates that the generator
needs to be moderate when employing attention. When the
generator pays too much attention to the attention image, it
may destroy the original synthesized images resulting in the
degradation of the model.

Table 4. The effect of λ under different parameters.

λ Aircraft Cars196 CUB200
0 63.88 69.24 54.81

1e−2 64.32 69.87 55.44
5e−2 65.76 71.89 56.93
7e−2 65.02 70.95 56.30
9e−2 64.23 70.36 55.81

Order effectiveness of MHA. We adopt mixed 3-order at-
tention distillation in our method, which is mainly due to
the 3-order attention having the ability to pay attention to
the context information. It has more information than the
1-order attention. In this section, we conduct experiments
to verify the effect of different orders on different FGVC
datasets. As can be seen from Tab 5, when exploiting the
1-order attention distillation, we can only achieve 64.31,
69.26, and 56.12 on three datasets. However, when we ex-
ploit the 3-order attention distillation, we can improve the
scores of 1.5% on average. What exceeded our expectations
is the lower effect when 2-order attention was used. We be-
lieve that the 2-order attention mainly focuses on the global
information, including the background information, which
confuses the foreground attention and reduces the effect of
attention.

Table 5. The effect of different orders on different FGVC datasets.

Order Aircraft Cars196 CUB200 Avg.

R = 1 64.31 69.26 56.12 63.23
R = 2 63.12 70.35 55.06 62.84
R = 3 65.76 71.89 56.93 64.86

5.5. Architecture of generator

As illustrated in Fig. 1, the generator with spatial-wise
attention modules is adopted in our experiments. There-
fore, we detail the architecture of the generator and attention
module as indicated in Tab. 6. Concretely, our generator is
isomorphic to DCGAN [35]. However, to facilitate the cal-
culation of the spatial-wise attention module, we divide the
generator into four blocks. At each block, we exploit spec-
tral normalization to normalize the weights of deconvolu-
tion, which aims to stabilize the training of the generator.
Then, the encoder-decoder spatial-wise attention module is
plugged into each block of the generator, in which the in-
dexes of Maxpool are also used in the MaxUnpool to focus
on the key position of synthesized features.

Table 6. The Left. Attention Generator Architectures. The noise is
mapped to the features which are upsampled to the required image
size. The SN denotes the spectral normalization, while SAM rep-
resents spatial-wise attention modules corresponding to the Right.

Attention Generator Spatial-wise Attention Modules
FC, Reshape, BN 1 × 1 C → C/r Conv

3× 3, 512 → 256, Deconv ↑2×, 3× 3, C/r → 2C/r, Conv,
SN, LReLU, SAM BN, ReLU, Maxpool

3× 3, 256 → 128, Deconv ↑2×, 3× 3, 2C/r → 4C/r, Conv,
SN, LReLU, SAM BN, ReLU

3× 3, 128 → 64, Deconv ↑2×, 3× 3, 4C/r → 2C/r, Decov,
SN, LReLU, SAM BN, ReLU, MaxUnpool

3× 3, 64 → 64, Deconv ↑2×, 3× 3, 2C/r → C/r, Decov,
SN, LReLU, SAM BN, ReLU

3× 3, 64 → 3, Conv, Tanh 1× 1, C/r → C, Conv, SoftMax

* C is the input channel of each block, while r is scale scalar.

6. Conclusion

In this paper, we address the data-free distillation for
FGVC. We propose to exploit the generator with spatial
attention to synthesize the images with discriminative fea-
tures. Then, two effective strategies are exploited to op-
timize the student by MHAD and SFCL, where MHAD
captures the discriminative features with context informa-
tion and SFCL exploits the high-level semantic features to
contrast the variances between the different categories. Ex-
perimental evidence demonstrates that both approaches can
improve the performance of the student on FGVC tasks
and outperform other data-free distillation approaches to
achieve state-of-the-art performance.
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