
DR-Tune: Improving Fine-tuning of Pretrained Visual Models
by Distribution Regularization with Semantic Calibration

Nan Zhou1,2 Jiaxin Chen2 Di Huang1,2,3*

1State Key Laboratory of Software Development Environment, Beihang University, Beijing, China
2School of Computer Science and Engineering, Beihang University, Beijing, China

3Hangzhou Innovation Institute, Beihang University, Hangzhou, China
{zhounan0431,jiaxinchen,dhuang}@buaa.edu.cn

Abstract

The visual models pretrained on large-scale benchmarks
encode general knowledge and prove effective in building
more powerful representations for downstream tasks. Most
existing approaches follow the fine-tuning paradigm, either
by initializing or regularizing the downstream model based
on the pretrained one. The former fails to retain the knowl-
edge in the successive fine-tuning phase, thereby prone to be
over-fitting, and the latter imposes strong constraints to the
weights or feature maps of the downstream model without
considering semantic drift, often incurring insufficient op-
timization. To deal with these issues, we propose a novel
fine-tuning framework, namely distribution regularization
with semantic calibration (DR-Tune). It employs distribu-
tion regularization by enforcing the downstream task head
to decrease its classification error on the pretrained fea-
ture distribution, which prevents it from over-fitting while
enabling sufficient training of downstream encoders. Fur-
thermore, to alleviate the interference by semantic drift,
we develop the semantic calibration (SC) module to align
the global shape and class centers of the pretrained and
downstream feature distributions. Extensive experiments
on widely used image classification datasets show that DR-
Tune consistently improves the performance when combing
with various backbones under different pretraining strate-
gies. Code is available at: https://github.com/
weeknan/DR-Tune.

1. Introduction

Nowadays, it has become a prevailing paradigm to pre-
train deep models for common use on large-scale datasets
and fine-tune them in multiple diverse downstream tasks
in the community of computer vision [23, 8]. Due to the

*Corresponding author.

𝑧𝑧𝑑𝑑𝑧𝑧𝑝𝑝

ℒ𝑑𝑑

𝑧𝑧𝑑𝑑𝑧𝑧𝑝𝑝

ℒ𝑑𝑑

𝑧𝑧𝑑𝑑𝑧𝑧𝑝𝑝

ℒ𝑑𝑑

[]

Frozen Trained Trained Trained

(a) (b) (c)

Pretrained Encoder

Downstream Encoder

Regularization

Task Specific Head

[][]

Frozen Frozen

Figure 1. Comparison of distinct regularization-based approaches.
(a) (or (b)) performs regularization by reducing the ad-hoc discrep-
ancy between the weights (or the intermediate feature maps) of the
downstream encoder and the pretrained one. In contrast, DR-Tune
(c) performs regularization on the task-specific head by minimiz-
ing the classification error with the pretrained feature distribution.

data and semantic relevance between pretraining and down-
stream tasks, the pretrained model implicitly encodes useful
prior knowledge, and compared with the ones by training
from scratch, it substantially promotes the accuracy of the
downstream task and accelerates its training convergence in
a variety of applications [24, 50], e.g. image classification,
object detection, and semantic segmentation. In particular,
when labeled data are quite limited in the downstream task,
the issue of over-fitting can be effectively alleviated by us-
ing the pretrained model as a training prior.

To facilitate training downstream models with the pre-
trained ones, many efforts have recently been made. One
of the typical ways is to directly take the pretrained model
for initialization and fine-tune [27, 63] its weights by elab-
orately designing task-specific learning objectives [11, 39,
19, 70, 69]. Nevertheless, these methods neglect retaining

ar
X

iv
:2

30
8.

12
05

8v
1

 [
cs

.C
V

]
 2

3
A

ug
 2

02
3

https://github.com/weeknan/DR-Tune
https://github.com/weeknan/DR-Tune

(a) Vanilla Fine-tuning (b) Distribution Regularization (c) Semantic Drift (d) Semantic Calibration

Downstream Features Pretrained Features Unused Pretrained Features Downstream Features
Pretrained Features

Figure 2. Illustration on the motivation of DR-Tune. (a) Vanilla fine-tuning only uses downstream features for training, which is prone to be
over-fitting. (b) Distribution Regularization employs the pretrained feature distribution to constrain the task head, enforcing it to learn a
smooth classification boundary. (c) t-SNE [56] visualization on the features extracted by the pretrained/downstream encoders on CIFAR10
[37], showing the semantic drift issue. (d) Semantic Calibration clearly alleviates this semantic drift.

the pretrained prior in the fine-tuning phase and tend to in-
cur the “catastrophic forgetting” problem [44, 7, 17], mak-
ing the learned model prone to over-fit.

In contrast, another alternative focuses on utilizing the
prior knowledge encoded in the pretrained model to regu-
larize the training of downstream models [61, 17]. By in-
troducing extra regularization terms based on a pretrained
model either on the weights [61] (see Fig. 1 (a)) or the inter-
mediate feature maps [34, 40] (see Fig. 1 (b)), these meth-
ods prevent the downstream model from over-fitting and
significantly boost the overall performance; however, they
often impose explicit ad-hoc constraints by reducing the
discrepancy between the weights or the sample-wise feature
maps generated by the pretrained and downstream models,
without considering the semantic drift of the pretrained fea-
tures. As a consequence, they are inclined to suffer from
the non-negligible bias caused by the pretrained model, de-
teriorating the final result which may be even worse than
vanilla fine-tuning in specific scenarios as claimed in [11],
and leave much room for improvement.

To address the issues above, this paper proposes a novel
regularization-based framework for fine-tuning, namely
distribution regularization (DR) with semantic calibration
(DR-Tune). As Fig. 1 (c) illustrates, different from the ex-
isting methods, DR-Tune conducts distribution regulariza-
tion on the downstream classification head, instead of the
encoder. The basic idea behind is to minimize the clas-
sification error of the downstream task head according to
the pretrained feature distribution in addition to the nor-
mally used downstream feature distribution. Unfortunately,
the discrepancy between the dynamically updated down-
stream model and the frozen pretrained model incurs se-
mantic drift between the two distributions as shown in Fig. 2
(c), which hinders the task head from learning correct clas-
sification boundaries. To alleviate this drift, we develop
the semantic calibration (SC) module to align the pretrained
and downstream feature distributions via a holistic rotation

matrix as well as a group of class-level translation vectors,
which are efficiently estimated by establishing two mem-
ory banks. The rotation matrix performs global distance-
preserving alignment, while the translation vectors offer the
alignment of class center pairs, significantly removing the
semantic drift as depicted in Fig. 2 (d).

Intuitively, the proposed DR-Tune framework has two
underlying advantages: 1) DR does not impose explicit con-
straints neither on the weights nor on the intermediate fea-
ture maps, largely facilitating optimizing the downstream
encoder towards the downstream task; 2) SC greatly re-
duces the semantic drift and the classification bias is thus
alleviated when employing the pretrained feature distribu-
tion as regularization, leading to improved fine-tuning re-
sults; and 3) as in Fig. 2 (b), by leveraging the extra support
from the pretrained feature distribution and the downstream
features, the task head benefits generating smoother classi-
fication boundaries, restricting the over-fitting risk.

The main contributions are summarized as follows:
1) We propose a novel fine-tuning framework (DR-

Tune), which handles over-fitting by regularizing the task-
specific head with the pretrained feature distribution.

2) We design the SC module to address the semantic
drift between the pretrained and downstream feature distri-
butions, effectively decreasing the bias introduced by the
regularization from the pretrained models.

3) We conduct extensive evaluation on popular classifi-
cation datasets and demonstrate that DR-Tune consistently
improves the performance as combined with various net-
work structures under different pretraining schemes.

2. Related Work
2.1. General Model Fine-tuning

Most existing fine-tuning methods focus on downstream
tasks by elaborately designing task-specific learning objec-
tives. SCL [19], Bi-tuning [70] and Core-tuning [69] incor-

porate the supervised contrastive loss [33] with the standard
cross-entropy (CE) loss, achieving superior performance on
classification tasks. M&M [67] improves semantic seg-
mentation by utilizing limited pixel-wise annotations in the
downstream dataset in conjunction with the triplet loss. Be-
sides, BSS [11] observes that small eigenvalues incur degra-
dation compared to vanilla fine-tuning, and thus penalizes
on the eigenvalues of the learned representation. RIFLE
[39] performs fine-tuning by periodically re-initializing the
fully connected layers. In general, the methods above ne-
glect retaining the pretrained prior in the fine-tuning phase
and tend to over-fit on the downstream task.

In addition, several studies also attempt to apply vari-
ous adapters [51, 52, 68, 5, 41] or prompts [30, 46, 32, 1]
to decrease the computational and storage cost during fine-
tuning. Despite their efficiency, these methods sacrifice the
performance in accuracy.

2.2. Regularization for Model Fine-tuning

Regularization is a prevailing way to make use of the
pretrained prior knowledge for fine-tuning. Li et al. [61]
apply the ℓ2-norm penalty between the parameters of the
pretrained and downstream models, which outperforms the
standard weight decay. Yim et al. [62] introduce the knowl-
edge distillation [26, 53] and adopt the distance between
the flow of the solution procedure matrix of the pretrained
and downstream models as the regularizer. AT [34] and
DELTA [40] exploit the attention mechanism and regular-
ize the discrepancy between the intermediate feature maps.
[17] assembles multiple distance-based metrics for regular-
ization, which is optimized by the projected gradient de-
scent method. Co-Tuning [64] explores the semantic in-
formation of the pretrained dataset and uses the pretrained
labels to regularize the fine-tuning process. These methods
handle overfitting by imposing explicit ad-hoc constraints to
reduce the discrepancy between the weights or sample-wise
feature maps of the pretrained and downstream models, but
they do not take into account the semantic drift of the pre-
trained features, thus leaving room for improvement.

Compared to existing solutions as described in Sec. 2.1
and Sec. 2.2, we prevent the downstream model from over-
fitting by introducing distribution regularization (DR) on
the task head. DR leverages the pretrained feature distribu-
tion to enforce the task head learning smooth classification
boundaries without imposing explicit constraints on back-
bones, thus facilitating optimizing the downstream encoder.
In addition, we observe the semantic drift between the pre-
trained and downstream feature distributions, and mitigate
it by developing a novel semantic calibration (SC) module,
which substantially improves the final performance.

3. Approach
3.1. Preliminaries

Suppose a pretrained model gϕp · fθp(·), where fθp and
gϕp denote the encoder and the pretraining task head param-
eterized by θp and ϕp, respectively. Given a set of training
data D = {(xd

i , yi)}Ni=1 for the downstream task, we aim
to learn a downstream model gϕd · fθd(·) by fine-tuning the
pretrained model gϕp · fθp(·), where xd

i refers to the i-th
image with the class label yi, θd and ϕd are the parame-
ters to be learned for the downstream encoder fθd and the
downstream task head gϕd , respectively.

To learn θd and ϕd, vanilla fine-tuning firstly applies the
pretrained parameter θp to initialize θd as θd(0) := θp. ϕd

is randomly initialized, which is thereafter jointly learned
with θd by optimizing the following objective:

(θd
∗ ,ϕ

d
∗) = arg min

θd,ϕd
L
(
gϕd · fθd ;D

)
, (1)

where L(·) is the task-specific loss. The fine-tuned model
gϕd

∗
· fθd

∗
is used for inference in the downstream task.

Nevertheless, the vanilla fine-tuning strategy is prone to
be over-fitting on the downstream data, especially when the
training size N is small. To overcome this shortcoming,
the regularization-based fine-tuning strategy is employed by
introducing a regularization term R(·) on θd according to
θp and optimizing the following objective:

(θd
∗ ,ϕ

d
∗) = arg min

θd,ϕd
L
(
gϕd · fθd ;D

)
+R

(
θd;θp

)
. (2)

Most of existing fine-tuning methods perform regulariza-
tion in an ad-hoc manner such as the weight-based ones for-
mulated as R = ∥θd−θp∥ as well as the feature-based ones
written as R =

∑N
i=1 ∥FM(xd

i |fθd) − FM(xd
i |fθp)∥,

where FM(xd
i |fθd) indicates the feature map of xd

i ex-
tracted from the intermediate layer of fθd . The former
imposes strong constraints on θd, and the later forces the
downstream feature FM(xd

i) to be the same as the pre-
trained one for each training sample xd

i , both of which
impede θd from being sufficiently optimized towards the
downstream task.

3.2. Framework Overview

To address the issues above, we propose a novel fine-
tuning framework, namely distribution regularization with
semantic calibration (DR-Tune).

As illustrated in Fig. 3, given training set D =
{(xd

i , yi)}, we extract the downstream representations
{zd

i |zd
i = fθd(xd

i)} and the pretrained representations
{zp

i |z
p
i = fθp(xd

i)} by the encoders fθd and fθp , respec-
tively.

The basic idea of DR-Tune is employing an implicit dis-
tribution regularization (DR) RDR({(zp

i , yi)}|gϕd) on the

𝑓𝑓𝜽𝜽𝑝𝑝(�)

[𝒛𝒛1𝑑𝑑 , … , 𝒛𝒛𝑏𝑏𝑑𝑑]

[𝒛𝒛1
𝑝𝑝, … , 𝒛𝒛𝑏𝑏

𝑝𝑝]

Pretrained Feature Bank 𝓜𝓜𝑝𝑝

[𝒛𝒛1𝑑𝑑 , … , 𝒛𝒛𝑏𝑏𝑑𝑑]

. . .

. . .

Semantic Calibration

Downstream Encoder (Trained)

Pretrained Encoder (Frozen)

Input Batch
[�𝒗𝒗1

𝑝𝑝, … , �𝒗𝒗𝐾𝐾
𝑝𝑝]

Distribution Regularization

Downstream Feature Bank 𝓜𝓜𝑑𝑑

Classification
Head 𝑔𝑔𝝓𝝓𝑑𝑑(�)

ℒCE. . .

w. gradMA Mean Average CGA Confidence Guided Average Translation Vector w/o. grad

𝑹𝑹 @

Update

@ Matrix Multiply

Update
. . .

. . .

. . .

MA

CGA . . .
Class Prototype

+
Rotate Translate

+ Add

𝑓𝑓𝜽𝜽𝑑𝑑(�)

ℛDR

𝓜𝓜𝑑𝑑

𝓜𝓜𝑝𝑝

Figure 3. Illustration of the DR-Tune framework. DR-Tune has two branches, including a frozen pretrained encoder fθp and a trained
downstream encoder fθd . For input images, we obtain two sets of features extracted by fθp and fθd respectively and then we store them
in their individual feature banks Mp and Md. Semantic Calibration is further applied to Mp to alleviate the semantic drift. Finally, we
combine the calibrated pretrained features with the downstream ones to optimize the classification head (i.e. Distribution Regularization).

downstream model, i.e. the task head gϕd is enforced to
correctly classify the pretrained representations {zp

i }, be-
sides the downstream ones {zd

i }.
However, as shown in Fig. 2 (c), there exists seman-

tic drift between the pretrained feature distribution and the
downstream one. Therefore, directly using {zp

i } for regu-
larization incurs non-negligible bias, thus degrading the per-
formance of the fine-tuned downstream model. To solve this
problem, DR-Tune introduces a semantic calibration (SC)
module to alleviate the distribution drift. Concretely, as dis-
played in Fig. 3, DR-Tune employs two queues to build a
downstream feature bank Md as well as a pretrained fea-
ture bank Mp, which are dynamically updated according to
the features {zd

i } and {zp
i } in the mini-batch, respectively.

Md and Mp efficiently represent the downstream and pre-
trained feature distribution, based on which the calibration
parameters including a global rotation matrix R and a group
of class-level translations {δc} are estimated, where δc is
the translation vector for the c-th class. During training,
the calibrated pretrained features {ẑp

i |ẑ
p
i = R · zp

i + δyi
}

are used to form the final distribution regularization as
RDR({(ẑp

i , yi)}|gϕd). In the testing phase, we skip the SC
module as well as the feature banks, and only use the down-
stream encoder fθd and the head gϕd for inference.

The details about the DR term and the SC module are
described in Sec. 3.3 and Sec. 3.4, respectively.

3.3. Fine-tuning with Distribution Regularization

In this section, we elaborate the formulation of DR, i.e.
RDR({(zp

i , yi)}|gϕd).

Formally, suppose the training set D is drawn from the
data distribution X d, the feature distributions of {fθd(xd

i)}
and {fθp(xd

i)} are formulated as Zd = Px∼Xd(fθd(x))
and Zp = Px∼Xd(fθp(x)), respectively. It is worth noting
that both Zp and Zd are derived from the same distribution
X d, but by distinct encoders fθp and fθd .

Usually, the downstream task-specific learning objective
L can be briefly written as below:

L = − logPrxd
i ∼Xd

(
{(zd

i , yi)}|fθd ; gϕd

)
, (3)

where zd
i = fθd(xd

i) and Prxd
i ∼Xd

(
{(zd

i , yi)}|fθd ; gϕd

)
is the joint probability of the training feature set {(zd

i , yi)}
conditioned on fθd and gϕd .

As aforementioned, RDR aims to regularize the task
head gϕd by enforcing it to classify the pretrained repre-
sentations {zp

i }. To this end, we adopt the following for-
mulation of RDR

RDR = − logPrzp
i ∼Zp

(
{(zp

i , yi)}|gϕd

)
, (4)

where yi is the category of zp
i . From Eq. (4), it can be ob-

served that gϕd is optimized to maximize the joint probabil-
ity of {(zp

i , yi)} when minimizing RDR, thus forcing gϕd

to correctly classify {zp
i }.

This kind of regularization has the following advantages
compared to existing ad-hoc regularizers: 1) RDR does not
impose any explicit constraints neither on the downstream
weights θd nor on the intermediate downstream features,
thus bypassing the interference of improper constraints on

fine-tuning fθd . 2) As shown in Fig. 2 (b), instead of us-
ing the ad-hoc sample-wise regularization, RDR leverages
the pretrained feature distribution Zp for regularization,
which explores holistic information to prevent the down-
stream task head gϕd from over-fitting. In the meantime,
when combining RDR in Eq. (4) with the task-specific loss
L in Eq. (3), as gϕd becomes more generalizable, fθd is im-
proved correspondingly. Please refer to the supplementary
material for more analysis.

To specify the form of RDR, we clarify the joint
probability in Eq. (4). By assuming the independent
sampling of (zp

i , yi), Eq. (4) is rewritten as RDR =
−
∑

zp
i ∼Zp logPr

(
(zp

i , yi)|gϕd

)
. For the classification

task with C classes, the parameters of gϕd can be decom-
posed as ϕd = [ϕd

1,ϕ
d
2, · · · ,ϕd

C], where ϕd
c corresponds to

the ones for the c-th class prototype. Similar to the CE loss,
given a pretrained sample (zp

i , yi), the conditional proba-
bility Pr

(
(zp

i , yi)|gϕd

)
turns to be

Pr
(
(zp

i , yi)|gϕd

)
=

exp(ϕyi
· zp

i)∑C
c=1 exp(ϕc · zp

i)
.

Ideally, all pretrained representations {zp
i } of the train-

ing set should involve in computation of RDR; however it
is extremely inefficient to train gϕd by using all of them in
each iteration. An alternative way is to extract a mini-batch,
but it only captures local information of the distribution. In-
spired by [58, 23, 57], we make a trade-off by employing
a feature bank to approximate the distribution Zp. Specif-
ically, we maintain a queue Mp = {vp

k}Kk=1 with a fixed
size K by enqueuing the newest features (i.e. the features
from a mini-batch), and dequeuing the oldest ones.

Based on Pr
(
(zp

i , yi)|gϕd

)
and Mp, RDR is finally

formulated as below:

RDR = − 1

K

K∑
k=1

log
exp(ϕyk

· vp
k)∑C

c=1 exp(ϕc · vp
k)

. (5)

As to the task-specific loss for fine-tuning, we adopt the
commonly used CE loss:

L := LCE = − 1

B

B∑
i=1

log
exp(ϕyi · fθd(xd

i))∑C
c=1 exp(ϕc · fθd(xd

i))
, (6)

where {(xd
i , yi)} is the mini-batch for computational effi-

ciency, and B is the mini-batch size.

3.4. Semantic Calibration

Since the downstream model is dynamically updated
during fine-tuning while the pretrained model is kept frozen,
the discrepancy between these two models tends to incur
a semantic drift between the pretrained feature distribution
Zp and the downstream one Zd as illustrated in Fig. 2 (c).

Ignoring this drift and forcing gϕd to classify features from
disparate distributions by jointly optimizing RDR in Eq. (5)
and LCE in Eq. (6) degrades the performance.

To alleviate the semantic drift, we attempt to estimate
a transformation to calibrate Zp w.r.t. Zd. To overcome
the dilemma in balancing the efficiency and accuracy, we
maintain a downstream feature bank Md = {vd

k}Kk=1 with
size K, similar to the pretrained one Mp = {vp

k}Kk=1 con-
structed in the previous section. It is worth noting that vd

k

and vp
k are two distinct representations for the same image

xk.
In practice, the semantic drift between Zd and Zp is ex-

tremely complicated, and is hard to estimate. In our work,
we simplify it by assuming that the drift is mainly caused
by a misalignment of global rotation and a set of local ones
of the class centers. Accordingly, we calculate a rotation
matrix R and the class-level translations {δc}Cc=1.

In regards of R, we estimate it by solving the following
optimization problem:

R = argminR′·R′T=Id

K∑
k=1

∥ R′ · vp
k − vd

k ∥2, (7)

where Id is a d-dimensional identity matrix.
Eq. (7) can be solved by applying SVD on the covariance

matrix between Mp and Md [54].
As for the class-level translations {δc}Cc=1, we observe

that the inter-class distribution of Zp is less discriminative
due to the lack of supervision in the downstream task. In
contrast, Zd is more competent at distinguishing different
classes. Therefore, we maintain Zp and use the translation
transformation to adjust the inter-class distribution of Zp to
be consistent with Zd. More visualization is given in the
supplementary material.

With the motivation above, we first estimate the c-th
class center for Zp based on Mp as below

µp
c =

1

Nc

K∑
k=1

I [ypk = c] ·R · vp
k. (8)

In Eq. (8), Nc is the number of pretrained features from the
c-th class, and I[yk = c] is the indicator function, which
equals to 1 if yk = c and 0 otherwise.

As for the downstream features, we compute the class
center based on Md in a more elaborative way as follows

µd
c =

K∑
k=1

αk · I
[
ydk = c

]
· vd

k, (9)

where the weight

αk =
exp(ϕyd

k
· vd

k)∑K
j=1 I

[
ydj = ydk

]
· exp(ϕyd

j
· vd

j)
, (10)

represents the confidence of vd
k that it is correctly classified

to its label by the head gϕd . Since an outlier feature is usu-

Method ImageNet20 CIFAR10 CIFAR100 DTD Caltech101 Cars Pets Flowers Aircraft Avg.

CE-tuning 88.28 94.70 80.27 71.68 91.87 88.61 89.05 98.49 86.87 87.76
L2SP [61] 88.49 95.14 81.43 72.18 91.98 89.00 89.43 98.66 86.55 88.10
DELTA [40] 88.35 94.76 80.39 72.23 92.19 88.73 89.54 98.65 87.05 87.99
M&M [67] 88.53 95.02 80.58 72.43 92.91 88.90 89.60 98.57 87.45 88.22
BSS [11] 88.34 94.84 80.40 72.22 91.95 88.50 89.50 98.57 87.18 87.94
RIFLE [39] 89.06 94.71 80.36 72.45 91.94 89.72 90.05 98.70 87.60 88.29
SCL [19] 89.29 95.33 81.49 72.73 92.84 89.37 89.71 98.65 87.44 88.54
Bi-tuning [70] 89.06 95.12 81.42 73.53 92.83 89.41 89.90 98.57 87.39 88.58
Core-tuning [69] 92.73 97.31 84.13 75.37 93.46 90.17 92.36 99.18 89.48 90.47
SSF* [41] 94.72 95.87 79.57 75.39 90.40 62.22 84.89 92.15 62.38 81.95
DR-Tune (Ours) 96.03 98.03 85.47 76.65 95.77 90.60 90.57 99.27 89.80 91.35

Table 1. Comparison of the top-1 accuracy (%) by using various fine-tuning methods based on the self-supervised pretrained model, i.e.
ResNet-50 pretrained by MoCo-v2 on ImageNet. ‘*’ indicates that the method is re-implemented. The best results are in bold.

Method CIFAR100† Caltech101† DTD† Flowers† Pets† SVHN Sun397 Avg.

Linear probing 63.4 85.0 63.2 97.0 86.3 36.6 51.0 68.93
Adapter [28] 74.1 86.1 63.2 97.7 87.0 34.6 50.8 70.50
Bias [65] 72.8 87.0 59.2 97.5 85.3 59.9 51.4 73.30
VPT [30] 78.8 90.8 65.8 98.0 88.3 78.1 49.6 78.49
SSF [41] 69.0 92.6 75.1 99.4 91.8 90.2 52.9 81.57
Core-tuning* [69] 66.3 89.7 70.9 99.0 92.3 76.4 52.5 78.16
DR-Tune (Ours) 81.1 92.8 71.4 99.3 92.4 92.0 54.5 83.36

Table 2. Comparison of the top-1 accuracy (%) by using various fine-tuning methods based on the supervised pretrained model, i.e. ViT-B
pretrained on ImageNet. ‘*’ indicates that the method is re-implemented and ‘†’ refers to the training/test split setting as in [66]. The best
results are in bold.

ally hard to classify, its corresponding weight αk turns to
be small, and the effect of outliers on computing the class
center is suppressed, resulting in a more precise estimation.

Based on {µp
c}Cc=1 and {µd

c}Cc=1, the class-level transla-
tion vector for the c-th class is estimated as below:

δc = µd
c − µp

c , c = 1, · · · , C. (11)

According to the estimated rotation matrix R and the
class-level translation vector {δc}Cc=1, the SC module of
Mp w.r.t. Md is performed in the following:

v̂p
k = R · vp

k + δyp
k
, k = 1, · · · ,K. (12)

3.5. Optimization

According to the SC module in Eq. (12) and Eq. (5), the
final DR is refined as

RDR = − 1

K

K∑
k=1

log
exp(ϕyk

· v̂p
k)∑C

c=1 exp(ϕc · v̂p
k)

. (13)

The overall objective of DR-Tune is formulated as

min
θd,ϕd

LCE + λ · RDR, (14)

where LCE is from Eq. (6). λ is a hyper-parameter balanc-
ing the effect of LCE and RDR, which is set to K

B .

4. Experimental Results

In this section, we evaluate the performance of DR-Tune
by using distinct pretrained models on widely used datasets,
compared with the state-of-the-art counterparts.

4.1. Datasets

We evaluate DR-Tune on widely used datasets, includ-
ing ImageNet20 [13, 29], CIFAR10 & 100 [37], DTD [12],
Caltech101 [16], Stanford Cars [36], Oxford Pets [49] &
Flowers [47], Aircraft [43], SVHN [45] and Sun397 [59].
Please refer to the supplementary material for more details.

4.2. Details

By following [15, 69], we use ResNet-50 [25] pretrained
by MoCo-v2 [9] and ViT-B [14] pretrained in a supervised
manner on ImageNet [13] as the backbone in main exper-
iments. Different pretrained strategies and backbones are
also evaluated in Sec 4.4. The size (i.e. K) of the memory
banks is set as 2,048 by default.

In most of our experiments, we train for 100 epochs by
using the SGD optimizer [3] with a cosine decay sched-
uler, where the weight decay and momentum are fixed as
1 × 10−4 and 0.9, respectively. We use the linear decay
scheduler on ImageNet20 [29] and the AdamW [42] op-
timizer to train the ViT [14] backbone. Since the mini-

Pretraining
Strategy

Caltech101 ImageNet20
CE-tuning Ours CE-tuning Ours

MoCo-v1 [23] 91.18 91.94 86.89 94.83
PCL [38] 93.48 94.90 83.91 95.80
InfoMin [55] 93.38 95.10 86.52 96.53
HCSC [20] 93.89 95.73 84.10 96.21

SwAV [4] 92.79 93.94 94.62 95.34

SimSiam [10] 82.28 90.33 91.33 94.82
Table 3. Top-1 accuracy (%) of DR-Tune by combining with dif-
ferent pretraining strategies based on ResNet-50, compared to the
baseline CE-tuning.

batch is augmented before the classification head, we set
the learning rate of the classification head 1 + K

B times that
of the backbone. Similar to [35, 8, 69], we utilize random
cropping and horizontal flipping for data augmentation with
an image size of 224×224 during training, and center crop-
ping during test.

4.3. Comparison with the State-of-the-art

In the literature, there are mainly two settings for com-
parison of different methods, i.e. the one based on the self-
supervised pretrained model as in [69] and another based on
the supervised pretrained model as in [66]. As for the self-
supervised setting, we compare our method with the fol-
lowing state-of-the-arts: 1) the baseline method denoted as
CE-tuning, which simply uses the pretrained model for ini-
tialization and is successively trained on downstream data
by the standard CE loss; 2) the regularization-based meth-
ods including L2SP [61] and DELTA [40]; 3) other fully
fine-tuning methods including M&M [67], BSS [11], RI-
FLE [39], Bi-tuning [70], SCL [19] and Core-tuning [69].
As to the supervised setting, the representative parameter
efficient methods, including the baseline Linear probing,
Adapter [28], Bias [65], VPT [30] and SSF [41], are se-
lected. It is worth noting that the datasets as well as the
training/test split used in these two settings are NOT the
same; therefore we separately report their results for fair
comparison as in Table 1 and Table 2, respectively.

Under the self-supervised pretraining setting, as sum-
marized in Table 1, vanilla fine-tuning (i.e. CE-tuning)
performs the worst, indicating the necessity of explor-
ing the pretrained model in downstream tasks, instead of
simply using it for initialization. By launching DR on
the task head and reducing the semantic drift, DR-Tune
largely outperforms the regularization-based methods L2SP
and DELTA, promoting their top-1 accuracies averaged
by 3.25% and 3.36%, respectively. The other counter-
parts such as Bi-tuning and Core-tuning focus on designing
loss functions to boost the learning of downstream mod-
els without the pretrained model for training, thus prone to
over-fit. In contrast, DR-Tune applies the pretrained fea-

Backbone Caltech101 DTD
CE-tuning Ours CE-tuning Ours

R-50 93.38 95.10 68.62 77.97
R-101 94.23 95.64 70.00 78.41
R-152 94.48 96.19 70.16 71.44
RX-101 94.71 96.39 72.18 76.70
RX-152 94.85 96.44 72.45 78.51

ViT-B 94.35 96.03 73.72 78.02
ViT-L 95.64 97.57 73.94 78.83

Table 4. Top-1 accuracy (%) of DR-Tune by combining with dis-
tinct backbones, compared to the baseline CE-tuning.

tures to facilitate the task head learning smooth classifica-
tion boundaries and achieves better performance on most
datasets. For instance, the accuracy of DR-Tune exceeds the
second best Core-tuning by 3.30%/1.34%/2.31% on Ima-
geNet20/CIFAR100/Caltech101 respectively, and is 0.88%
higher than Core-tuning on average over all datasets. Un-
der the supervised pretraining setting, as Table 2 shows,
our method consistently boosts the averaged top-1 accuracy,
promoting the second best method SSF by 1.78%.

Core-tuning and SSF are the most competitive counter-
parts only under the self-supervised and supervised setting,
respectively, and we further re-implement them and evalu-
ate their performance by using the alternative setting, de-
noted as SSF∗ and Core-tuning∗. As displayed, they fail
to retain high performance when using different pretrained
models, while our method yields decent results in both the
settings, clearly showing its generalizability.

4.4. Generalizability

We further evaluate the generalizability of DR-Tune by
combining it with distinct pretraining strategies, backbones
as well as the scales of the downstream data.

In regards of different pretraining strategies, except for
MoCo-v2 used in Table 1, we integrate DR-Tune with the
pretrained models based on the ResNet-50 backbone by: 1)
the contrastive self-supervised methods including MoCo-v1
[23], PCL [38], InfoMin [55] and HCSC [20]; 2) the clus-
tering based self-supervised method SwAV [4]; and 3) the
prediction based self-supervised method SimSiam [10]. As
shown in Table 3, DR-Tune consistently delivers significant
improvement on Caltech101 and ImageNet20 compared to
CE-tuning, in regardless of the pretraining strategy used.

With respect to distinct backbones, we adopt the widely
used residual networks including ResNet(R)-50/-101/-152
and ResNeXt(RX)-101/-152 [60] pretrained by InfoMin
[55], as well as the vision transformers including ViT-Base
(ViT-B)/-Large (ViT-L) [14] pretrained by MAE [22]. As
shown in Table 4, DR-Tune obtains gains compared to CE-
tuning with distinct backbones. The results on ViT fur-
ther demonstrate that DR-Tune applies to the Masked Im-
age Modeling pretraining strategy [2].

Method
Sampling Ratios on ImageNet20

10% 25% 50% 100%

CE-tuning 58.37±0.63 71.10±0.28 80.79±0.80 88.28
Bi-tuning [70] 60.50±1.11 75.86±0.74 83.19±0.27 89.06
Core-tuning [69] 78.64±0.58 84.48±0.34 89.09±0.40 92.73
SSF* [41] 90.17±0.16 92.81±0.11 93.71±0.19 94.70
DR-Tune 92.73±0.17 94.16±0.20 95.21±0.07 96.03

Table 5. Comparison of the top-1 accuracy (%) using varying data
scales for fine-tuning. ‘*’ indicates our implementation.

As for varying data scales in fine-tuning, we establish
training subsets on ImageNet20 by using three sampling ra-
tios, i.e. 10%, 25% and 50%. For each setting, we repeat
the experiments for three times with distinct random seeds,
and report the mean and standard deviation of the top-1
accuracy. As shown in Table 5, our method substantially
outperforms the compared methods. Especially, when the
amount of data is extremely limited (i.e. 10%), the perfor-
mance of most counterparts sharply drops, observing that
the top-1 accuracies of CE-tuning, Bi-tuning, Core-tuning
and SSF decrease by 29.9%, 28.6%, 14.1% and 4.53% re-
spectively, compared to the ones using 100% of the training
data. By contrast, DR-Tune performs robustly, with only a
3.3% drop in accuracy.

4.5. Ablation Studies

Effect of main components. We investigate the influ-
ences of DR and SC in DR-Tune on the Caltech101, Cars
and Pets datasets. All the results are obtained based on
ResNet-50 pretrained by MoCo-v2 on ImageNet. As dis-
played in Table 6, both DR and SC contribute to the overall
performance. For fine-grained Cars and Flowers, the fea-
ture distributions generated by the pretrained model and the
downstream one exhibit a severe semantic drift, due to their
large discrepancy on the semantic granularity. DR alone
fails to deal with this drift, thus incurring degradation in per-
formance. SC remarkably boosts the overall performance
by mitigating this semantic drift. Please refer to the supple-
mentary material for more analysis.

Effect of different transformations in SC. The pro-
posed SC module performs feature transformation by a
global rotation (GR) and a group of class-level translations
(CLT) refined by the confidence guided average (CGA).
We therefore evaluate their effects on Caltech101, Cars and
Pets. As demonstrated in Table 7, both GR and CLT clearly
promote the performance. By suppressing the weights of
suspicious outlier features, CGA facilitates computing the
centers more precisely, further improving the accuracy, es-
pecially on the fine-grained Cars and Pets datasets, of which
the centers are more sensitive to hard samples due to small
inter-class discrepancies.

Effect of hyper-parameter. The DR-Tune framework

CE DR SC Caltech101 Cars Pets

✓ 91.93 88.45 88.36
✓ ✓ 94.39 89.03 89.37
✓ ✓ ✓ 95.73 90.60 90.57

Table 6. Ablation studies on the main components. CE: Cross En-
tropy; DR: Distribution Regularization; and SC: Semantic Cali-
bration.

GR CLT CGA Caltech101 Cars Pets

94.39 89.03 89.37
✓ 95.59 90.25 89.62

✓ 95.11 89.96 89.69
✓ ✓ 95.17 90.29 90.24

✓ ✓ ✓ 95.73 90.60 90.57
Table 7. Ablation studies for different operations in SC. GR:
Global Rotation; CLT: Class-Level Translation; and CGA: Con-
fidence Guided Average.

64 128 256 512 1024 2048 409664 128 256 512 1024 2048 4096
K (log-scale)

86

88

90

92

94

96

To
p-

1
A

cc
ur

ac
y

(%
)

95.11 95.22 95.29 95.53 95.17 94.94 94.67

88.9 89.29 89.35 89.17

87.91 87.61 87.46

91.93

85.69

Figure 4. Ablation results on Caltech101 and Aircraft w.r.t. K.

is hyper-parameter-friendly, and the only hyper-parameter
is the size of the feature banks K. Since the learning rate
varies as K changes (see details in Sec. 4.2) in our setting,
we fix it as 0.01 to eliminate its interference. As shown in
Fig. 4, DR-Tune outperforms the baseline by vanilla fine-
tuning and performs steadily with different K values, even
when K is set at a small one (e.g. 64).

5. Conclusion and Limitation
In this paper, we propose a novel framework, namely

distribution regularization with semantic calibration (DR-
Tune), for fine-tuning pretrained visual models on down-
stream tasks. DR-Tune employs DR on the classification
head by leveraging the pretrained feature distribution, and
develops an SC module to alleviate the semantic drift of the
pretrained features relative to the downstream ones. Exten-
sive comparison results as well as ablation studies on widely
used datasets clearly show the effectiveness and generaliz-
ability of the proposed method.

Despite its merits, DR-Tune has some limitations: 1) It
suffers from a high training latency, due to computation of
rotations by SVD in SC, which can be further improved by
more efficient solutions. 2) SC aligns the downstream and
pretrained features by a global feature after average pooling
for classification, ignoring spatial misalignment, which is
crucial to spatio-sensitive tasks, e.g. object detection and
semantic segmentation, leaving room for gains.

Acknowledgment

This work is partly supported by the National Key R&D
Program of China (2021ZD0110503), the National Natu-
ral Science Foundation of China (62022011 and 62202034),
the Research Program of State Key Laboratory of Software
Development Environment, and the Fundamental Research
Funds for the Central Universities.

References
[1] Hyojin Bahng, Ali Jahanian, Swami Sankaranarayanan, and

Phillip Isola. Exploring visual prompts for adapting large-
scale models. arXiv preprint arXiv:2203.17274. 3

[2] Hangbo Bao, Li Dong, Songhao Piao, and Furu Wei. Beit:
bert pre-training of image transformers. In ICLR, 2021. 7

[3] Léon Bottou. Large-scale machine learning with stochastic
gradient descent. In COMPSTAT, pages 177–186. 2010. 6

[4] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Pi-
otr Bojanowski, and Armand Joulin. Unsupervised learn-
ing of visual features by contrasting cluster assignments. In
NeurIPS, 2020. 7

[5] Hao Chen, Ran Tao, Han Zhang, Yidong Wang, Wei Ye,
Jindong Wang, Guosheng Hu, and Marios Savvides. Conv-
adapter: exploring parameter efficient transfer learning for
convnets. arXiv preprint arXiv:2208.07463, 2022. 3

[6] Liang-Chieh Chen, George Papandreou, Florian Schroff, and
Hartwig Adam. Rethinking atrous convolution for seman-
tic image segmentation. arXiv preprint arXiv:1706.05587,
2017. 16

[7] Sanyuan Chen, Yutai Hou, Yiming Cui, Wanxiang Che, Ting
Liu, and Xiangzhan Yu. Recall and learn: fine-tuning deep
pretrained language models with less forgetting. In EMNLP,
pages 7870–7881, 2020. 2

[8] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-
offrey Hinton. A simple framework for contrastive learning
of visual representations. In ICML, 2020. 1, 7

[9] Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He.
Improved baselines with momentum contrastive learning.
arXiv preprint arXiv:2003.04297, 2020. 6

[10] Xinlei Chen and Kaiming He. Exploring simple siamese rep-
resentation learning. In CVPR, 2021. 7

[11] Xinyang Chen, Sinan Wang, Bo Fu, Mingsheng Long, and
Jianmin Wang. Catastrophic forgetting meets negative trans-
fer: batch spectral shrinkage for safe transfer learning. In
NeurIPS, 2019. 1, 2, 3, 6, 7, 16

[12] Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy
Mohamed, and Andrea Vedaldi. Describing textures in the
wild. In CVPR, 2014. 6, 12

[13] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In CVPR, 2009. 6, 12

[14] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: trans-
formers for image recognition at scale. In ICLR, 2020. 6,
7

[15] Linus Ericsson, Henry Gouk, and Timothy M Hospedales.
How well do self-supervised models transfer? In CVPR,
2021. 6

[16] Li Fei-Fei, Rob Fergus, and Pietro Perona. Learning gen-
erative visual models from few training examples: an incre-
mental bayesian approach tested on 101 object categories. In
CVPR Workshop, 2004. 6, 12

[17] Henry Gouk, Timothy Hospedales, et al. Distance-based reg-
ularisation of deep networks for fine-tuning. In ICLR, 2020.
2, 3

[18] Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bern-
hard Schölkopf, and Alexander Smola. A kernel two-sample
test. JMLR, 2012. 15

[19] Beliz Gunel, Jingfei Du, Alexis Conneau, and Veselin Stoy-
anov. Supervised contrastive learning for pre-trained lan-
guage model fine-tuning. In ICLR, 2020. 1, 2, 6, 7, 16

[20] Yuanfan Guo, Minghao Xu, Jiawen Li, Bingbing Ni, Xu-
anyu Zhu, Zhenbang Sun, and Yi Xu. Hcsc: hierarchical
contrastive selective coding. In CVPR, 2022. 7

[21] Maria Halkidi and Michalis Vazirgiannis. Clustering validity
assessment: Finding the optimal partitioning of a data set. In
ICDM, 2001. 15

[22] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr
Dollár, and Ross Girshick. Masked autoencoders are scalable
vision learners. In CVPR, 2022. 7

[23] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross
Girshick. Momentum contrast for unsupervised visual rep-
resentation learning. In CVPR, 2020. 1, 5, 7

[24] Kaiming He, Ross Girshick, and Piotr Dollár. Rethinking
imagenet pre-training. In ICCV, 2019. 1

[25] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
2016. 6

[26] Geoffrey Hinton, Oriol Vinyals, Jeff Dean, et al. Distill-
ing the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015. 3, 13, 14

[27] Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing
the dimensionality of data with neural networks. Science,
313:504–507, 2006. 1

[28] Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna
Morrone, Quentin De Laroussilhe, Andrea Gesmundo, Mona
Attariyan, and Sylvain Gelly. Parameter-efficient transfer
learning for nlp. In ICML, 2019. 6, 7

[29] Jeremy Howard. The imagenette and imagewoof datasets.
https://github.com/fastai/imagenette,
2019. 6, 12

https://github.com/fastai/imagenette

[30] Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie,
Serge Belongie, Bharath Hariharan, and Ser-Nam Lim. Vi-
sual prompt tuning. In ECCV, 2022. 3, 6, 7

[31] Y. Jin. Multi-level logit distillation. In CVPR, 2023. 13, 14
[32] Chen Ju, Tengda Han, Kunhao Zheng, Ya Zhang, and Weidi

Xie. Prompting visual-language models for efficient video
understanding. In ECCV, 2022. 3

[33] Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna,
Yonglong Tian, Phillip Isola, Aaron Maschinot, Ce Liu, and
Dilip Krishnan. Supervised contrastive learning. In NeurIPS,
2020. 3

[34] Nikos Komodakis and Sergey Zagoruyko. Paying more at-
tention to attention: improving the performance of convolu-
tional neural networks via attention transfer. In ICLR, 2017.
2, 3

[35] Simon Kornblith, Jonathon Shlens, and Quoc V Le. Do bet-
ter imagenet models transfer better? In CVPR, 2019. 7

[36] Jonathan Krause, Jia Deng, Michael Stark, and Li Fei-Fei.
Collecting a large-scale dataset of fine-grained cars. 2013.
6, 12

[37] Alex Krizhevsky et al. Learning multiple layers of features
from tiny images. Tech Report, University of Toronto, 2009.
2, 6, 12, 15

[38] Junnan Li, Pan Zhou, Caiming Xiong, and Steven Hoi. Pro-
totypical contrastive learning of unsupervised representa-
tions. In ICLR, 2020. 7

[39] Xingjian Li, Haoyi Xiong, Haozhe An, Cheng-Zhong Xu,
and Dejing Dou. Rifle: backpropagation in depth for deep
transfer learning through re-initializing the fully-connected
layer. In ICML, 2020. 1, 3, 6, 7, 16

[40] Xingjian Li, Haoyi Xiong, Hanchao Wang, Yuxuan Rao,
Liping Liu, and Jun Huan. Delta: deep learning transfer us-
ing feature map with attention for convolutional networks. In
ICLR, 2018. 2, 3, 6, 7, 16

[41] Dongze Lian, Zhou Daquan, Jiashi Feng, and Xinchao
Wang. Scaling & shifting your features: A new baseline for
efficient model tuning. In NeurIPS, 2022. 3, 6, 7, 8, 16

[42] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. In ICLR, 2018. 6

[43] Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew
Blaschko, and Andrea Vedaldi. Fine-grained visual classi-
fication of aircraft. arXiv preprint arXiv:1306.5151, 2013.
6, 12

[44] Michael McCloskey and Neal J Cohen. Catastrophic inter-
ference in connectionist networks: The sequential learning
problem. In PLM, volume 24, pages 109–165. 1989. 2

[45] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bis-
sacco, Bo Wu, and Andrew Y Ng. Reading digits in natural
images with unsupervised feature learning. 2011. 6, 12

[46] Xing Nie, Bolin Ni, Jianlong Chang, Gaomeng Meng, Chun-
lei Huo, Zhaoxiang Zhang, Shiming Xiang, Qi Tian, and
Chunhong Pan. Pro-tuning: unified prompt tuning for vision
tasks. arXiv preprint arXiv:2207.14381, 2022. 3

[47] Maria-Elena Nilsback and Andrew Zisserman. Automated
flower classification over a large number of classes. In
ICVGIP, 2008. 6, 12

[48] W. Park. Relational knowledge distillation. In CVPR, 2019.
13, 14

[49] Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and
CV Jawahar. Cats and dogs. In CVPR, 2012. 6, 12

[50] Maithra Raghu, Zhang Chiyuan, Jon Kleinberg, and Samy
Bengio. Transfusion: understanding transfer learning for
medical imaging. In NeurIPS, 2019. 1

[51] Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea Vedaldi.
Learning multiple visual domains with residual adapters. In
NeurIPS, 2017. 3

[52] Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea Vedaldi.
Efficient parametrization of multi-domain deep neural net-
works. In CVPR, 2018. 3

[53] Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou,
Antoine Chassang, Carlo Gatta, and Yoshua Bengio. Fitnets:
hints for thin deep nets. In ICLR, 2015. 3

[54] Olga Sorkine-Hornung and Michael Rabinovich. Least-
squares rigid motion using svd. Computing, 1:1–5, 2017.
5, 12

[55] Yonglong Tian, Chen Sun, Ben Poole, Dilip Krishnan,
Cordelia Schmid, and Phillip Isola. What makes for good
views for contrastive learning? In NeurIPS, 2020. 7

[56] Laurens Van der Maaten and Geoffrey Hinton. Visualizing
data using t-sne. JMLR, 9(11), 2008. 2, 15

[57] Xun Wang, Haozhi Zhang, Weilin Huang, and Matthew R
Scott. Cross-batch memory for embedding learning. In
CVPR, 2020. 5

[58] Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua Lin.
Unsupervised feature learning via non-parametric instance
discrimination. In CVPR, 2018. 5

[59] Jianxiong Xiao, James Hays, Krista A Ehinger, Aude Oliva,
and Antonio Torralba. Sun database: Large-scale scene
recognition from abbey to zoo. In CVPR, 2010. 6, 12

[60] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and
Kaiming He. Aggregated residual transformations for deep
neural networks. In CVPR, 2017. 7

[61] Li Xuhong, Yves Grandvalet, and Franck Davoine. Explicit
inductive bias for transfer learning with convolutional net-
works. In ICML, 2018. 2, 3, 6, 7, 16

[62] Junho Yim, Donggyu Joo, Jihoon Bae, and Junmo Kim. A
gift from knowledge distillation: fast optimization, network
minimization and transfer learning. In CVPR, 2017. 3

[63] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson.
How transferable are features in deep neural networks? In
NeurIPS, 2014. 1

[64] Kaichao You, Zhi Kou, Mingsheng Long, and Jianmin Wang.
Co-tuning for transfer learning. In NeurIPS, 2020. 3

[65] Elad Ben Zaken, Yoav Goldberg, and Shauli Ravfogel. Bitfit:
simple parameter-efficient fine-tuning for transformer-based
masked language-models. In ACL, 2022. 6, 7

[66] Xiaohua Zhai, Joan Puigcerver, Alexander Kolesnikov,
Pierre Ruyssen, Carlos Riquelme, Mario Lucic, Josip Djo-
longa, Andre Susano Pinto, Maxim Neumann, Alexey Doso-
vitskiy, et al. A large-scale study of representation learning
with the visual task adaptation benchmark. arXiv preprint
arXiv:1910.04867, 2019. 6, 7, 12, 13, 16

[67] Xiaohang Zhan, Ziwei Liu, Ping Luo, Xiaoou Tang, and
Chen Loy. Mix-and-match tuning for self-supervised seman-
tic segmentation. In AAAI, 2018. 3, 6, 7, 16

[68] Jeffrey O Zhang, Alexander Sax, Amir Zamir, Leonidas
Guibas, and Jitendra Malik. Side-tuning: a baseline for net-
work adaptation via additive side networks. In ECCV, 2020.
3

[69] Yifan Zhang, Bryan Hooi, Dapeng Hu, Jian Liang, and Jiashi
Feng. Unleashing the power of contrastive self-supervised
visual models via contrast-regularized fine-tuning. In
NeurIPS, 2021. 1, 2, 6, 7, 8, 14, 15, 16

[70] Jincheng Zhong, Ximei Wang, Zhi Kou, Jianmin Wang, and
Mingsheng Long. Bi-tuning of pre-trained representations.
arXiv preprint arXiv:2011.06182, 2020. 1, 2, 6, 7, 8, 16

Supplementary Material
In this document, we describe more details about the

datasets and the settings of hyper-parameters used for eval-
uation in Sec. A. Additionally, we summarize the overall
pipeline of the proposed DR-Tune framework in Sec. B,
and provide more analysis, semantic segmentation results
as well as quantitative results in Sec. C, Sec. D and Sec. E,
respectively. Finally, we discuss the limitations in Sec. F.

A. Details on Datasets and Hyper-parameters.
In Sec. 4 of the main body, we briefly summarize

the datasets used for evaluation, including ImageNet20
[13, 29], CIFAR10 & 100 [37], DTD [12], Caltech101
[16], Stanford Cars [36], Oxford-IIIT Pets [49], Oxford
102 Flowers [47], FGVC Aircraft [43], SVHN [45] and
Sun397 [59]. As a supplement, we describe more details in
this section.

ImageNet20 is a subset of the large-scale ImageNet
dataset [13], which contains 26,348 images from 20 cat-
egories. It is collected by combining an easy-to-classify
dataset Imagenette and a hard-to-classify dataset Image-
woof [29]. On this dataset, 18,494 images are used for train-
ing and the rest 7,854 images are utilized for evaluation.

CIFAR10 & 100 [37] are two widely used datasets con-
taining natural objects from 10 and 100 categories, respec-
tively. They are both divided into a subset of 50,000 images
for training and a subset of 10,000 images for evaluation.

Describable Textures Dataset (DTD) [12] is a texture
dataset, consisting of 5,640 images organized according to a
list of 47 categories inspired from human perception. 3,760
images are used for training and the remaining 1,880 images
are adopted for evaluation.

The Caltech101 dataset [16] includes 9,146 images from
101 distinct categories, each of which contains 40 to 800
images. We use 3,060 images and 6,084 images for training
and evaluation, respectively.

Stanford Cars [36] is a fine-grained dataset, which con-
tains 16,185 images of 196 different types of cars. This
dataset is split into a set of 8,144 images for training and a
set of 8,041 images for evaluation.

Oxford-IIIT Pets [49] consists of the images captured
from 37 kinds of pets, of which each class roughly includes
200 images. This dataset exhibits large variations in scale,
pose and lighting. We use 3,680 images for training and the
rest 3,369 images for evaluation.

Oxford 102 Flowers [47] contains 7,370 flower images
from 102 different categories. 6,552 images are used for
training and 818 images for evaluation.

The FGVC Aircraft [43] is a fine-grained dataset, which
contains 10,000 images from 100 different types of aircraft
models. We split this dataset into a subset of 6,667 images
for training and the remaining 3,333 images for evaluation.

Algorithm 1: The overall pipeline of DR-Tune.
Input: The pretrained encoder fθp , the size of the

memory bank K and the batch size B.
Output: The fine-tuned downstream encoder fθd

and the classification head gϕd .
1 Initialization: Set θd := θp, randomly initialize

ϕd, and fill the memory banks Mp and Md with
the pretrained features.

2 while not converge do
3 Sample a mini-batch {xd

i , yi}Bi=1.
4 for i ∈ {1, · · · , B} do
5 Extract the pretrained and downstream

features for xd
i as follows:

zp
i = fθp(xd

i), z
d
i = fθd(xd

i).
6 end
7 Calculate the rotation matrix R via SVD [54].
8 Compute the class-level translations as below:
9 for c = 1 to C do

10 Calculate µp
c based on Mp by Eq. (8).

11 Calculate µd
c based on Md by Eqs. (9)-(10).

12 Compute the c-th translation vector as below
13 δc = µd

c − µp
c .

14 end
15 Calibrate the memory bank Mp via Eq. (12).
16 Update θd and ϕd by optimizing Eq. (14).
17 Update Mp/Md by zp

i /zd
i , respectively.

18 end

SVHN is obtained from house numbers in Google Street
View images, including 73,257 training images and 26,032
test images of size 32x32 from 10 classes. By following the
training/test split setting as in [66], we adopt 1,000 images
for training and 26,032 images for evaluation.

Sun397 [59] is a scene understanding benchmark with
76,128 training images and 21,750 test images of 397 cat-
egories. Following the training/test split setting as in [66],
we adopt 1,000 images for training and 21,750 images for
evaluation.

Settings of hyper-parameters. As depicted in Sec. 4.3
of the main body, we compare DR-Tune with the state-of-
the-art under two different settings, i.e. the one based on the
self-supervised pretrained model and the other based on the
supervised pretrained model. The corresponding settings of
hyper-parameters are summarized in Table. 8 and Table. 9,
respectively.

B. Overall Pipeline of DR-Tune

In Sec. 3 of the main body, we elaborate the technical de-
tails on the main components of Dr-Tune. We additionally
summarize the overall pipeline of DR-Tune in Algorithm 1.

Hyper-parameter ImageNet20 CIFAR10 CIFAR100 DTD Caltech101 Cars Pets Flowers Aircraft

Epochs 100 200 100
lr schedule linear decay cosine decay
lr for the encoder 0.01 0.01 0.01 0.01 0.1 0.1 0.01 0.01 0.1
lr for the head 0.33 0.33 0.33 0.33 0.1 0.1 0.17 0.13 0.1
The size K of memory banks 2048 2048 2048 2048 2048 2304 1024 768 2048
The batch size B 64
Weight decay factor 10−4

Momentum factor 0.9
Table 8. Details about the hyper-parameters used for comparison with the fine-tuning methods based on the self-supervised pretrained
model, corresponding to Table 1 of the main body. ‘lr’ is the abbreviation of ‘learning rate’.

Hyper-parameter CIFAR100† Caltech101† DTD† Flowers† Pets† SVHN Sun397

Epochs 100 300 100
lr schedule cosine decay
lr for the encoder 0.01 0.01 0.01 0.01 0.01 0.01 0.01
lr for the head 0.17 0.02 0.1 0.33 0.1 0.1 0.1
The size K of memory banks 512 128 32 2048 256 128 2048
The batch size B 32
Weight decay factor 10−4 10−3 10−3 10−4 10−4 10−3 10−4

Momentum factor 0.9
Table 9. Details about the hyper-parameters used for comparison with the fine-tuning methods based on the supervised pretrained model,
corresponding to Table 2 of the main body. ‘lr’ is the abbreviation of ‘learning rate’. ‘†’ refers to the training/test split setting as in [66].

C. More Analysis on DR-Tune

In this section, we conduct a more detailed study on how
DR-Tune contributes to the performance gain by analyzing
the encoder as well as the classification head on the CIFAR-
10 benchmark. We also analyze some detailed designs in
the SC module and compare DR-Tune with knowledge dis-
tillation (KD). Furthermore, we report the runtime cost and
standard errors.

On the classification head. In this case, we take a coun-
terpart, which is composed of a frozen downstream encoder
fine-tuned by CE-tuning and a classification head randomly
initialized. As shown in Fig. 5 (a) and (b), the classifica-
tion head is trained by the standard Cross-Entropy loss (i.e.
LCE) and the one used in DR-Tune (i.e. LCE + λ · RDR),
respectively; and we can observe that the top-1 accuracy
is improved from 96.52% to 96.72%, indicating that RDR

leads to a better classification head.
On the encoder. We compare two models that are de-

picted in Fig. 5 (a) and (c), both of which have a frozen
downstream encoder and a randomly initialized classifica-
tion head and are trained by LCE. Their difference lies in
that the downstream encoder is fine-tuned by CE-tuning or
by DR-Tune, and this change improves the top-1 accuracy
from 96.52% to 97.86%, showing that DR-Tune facilitates
the training of a stronger encoder.

As shown in Fig. 5 (d), when we combine the settings in
Fig. 5 (b) and (c), the improved encoder and classification
head finally reach the top-1 accuracy of 97.98%, highlight-

Operation Imagenet20 CIFAR10 Pets

CLR 95.82 97.75 90.19
SA 95.77 97.79 90.24
GR (w/o SA) 95.85 97.82 89.56
GR (Ours) 96.03 98.03 90.57

Table 10. Top-1 accuracies (%) of different operations in the SC
module.

Method Reference Teacher Caltech101 DTD

CE-tuning - - 93.38 68.62

KD [26] NeurIPS’14
ResNet-50† 94.46 72.66
ResNet-101† 93.68 74.42
ResNet-101∗ 95.04 76.86

RKD [48] CVPR’19 ResNet-50† 93.66 69.10
MLD [31] CVPR’23 ResNet-50† 94.90 72.82
DR-Tune Ours - 95.10 77.97

Table 11. Top-1 accuracies (%) of KD and DR-Tune with ResNet-
50 as student network. †: pretrained by InfoMin; ∗: supervised
pretraining.

ing the effectiveness of DR-Tune.
On the SC module. Global rotation (GR) is performed

in the SC module to alleviate the semantic drift. We explore
some different designs for this. (1) Rotation is performed
around the category center of each class, i.e. class-level ro-
tation (CLR). (2) Replace the rotation operation by aligning
the L2-norm between pretrained and downstream features,
i.e. scale alignment (SA). As shown in Table 10, CLR does

Frozen

Frozen

ℒCE
𝜆𝜆 ⋅ ℛDRFrozen ℒCE

Frozen ℒCE Frozen

Frozen

Downstream encoder
obtained by CE-tuning

Acc: 96.52 Acc: 96.72

Acc: 97.86 Acc: 97.98

Downstream encoder
obtained by DR-Tune

+

(a)

(c)

(b)

(d)

Pretrained encoder

Pretrained encoder

Downstream encoder
obtained by CE-tuning

Downstream encoder
obtained by DR-Tune

ℒCE
𝜆𝜆 ⋅ ℛDR

+

Figure 5. Illustration of different learning strategies: (a) The baseline CE-Tuning; (b) Training the classification head by optimizing
LCE + λ · RDR; (c) Applying the downstream encoder generated by DR-Tune; (d) Combining the settings in (b) and (c).

Method
Train Test

Latency↓
(ms)

Memory↓
(GB)

Latency↓
(ms)

Memory↓
(GB)

Accuracy↑
(%)

CE-tuning 73.55 7.64 66.68 4.22 87.76
Core-tuning [69] 151.92 22.22 67.04 4.22 90.47
DR-Tune (Ours) 167.50 8.41 66.49 4.22 91.35

Table 12. Comparison of runtime cost and accuracy.

not lead to a gain, but takes C − 1 times more operations
than GR (C: number of classes). We thus adopt GR in im-
plementation. The performance of SA is not as good as GR
in most cases, but using SA with GR can boost the perfor-
mance, indicating that using both rotation and scale align-
ment is a better option.

Comparison to knowledge distillation. The Knowl-
edge distillation (KD) based methods utilize a frozen pre-
trained teacher network to guide the student network, which
has a similar framework with DR-Tune. We thus com-
pare DR-Tune to some representative KD-based methods:
1) logit distillation including KD [26] and MLD [31] and
2) feature distillation i.e. RKD [48]. Despite sharing the
same spirit of using pretrained models as regularizers, the
KD-based methods ignore the semantic drift issue and im-
pose constraints on the whole downstream model instead
of the task head, which may degrade the performance. As
an empirical study, Table 11 shows that all the KD-based
methods boost the accuracy of the baseline CE-tuning, but
perform worse than DR-Tune when using the same teacher

ResNet-50 pretrained by InfoMin. We then evaluate KD us-
ing different teachers with various backbones and pretrain-
ing schemes. As displayed, larger teacher models deliver
further improvements to KD, but the results are still not as
good as those of DR-Tune.

On the runtime cost. We report the latency and memory
for CE-tuning, Core-tuning and DR-Tune, evaluated using
the same NVIDIA V100 GPU with a batch size of 64, based
on ResNet-50 pretrained by MoCo-v2. As in Table 12, DR-
Tune has relatively higher training latency compared to CE-
tuning, due to extra computation in DR and SC. Core-tuning
suffers much more memory usage, as it employs extra pa-
rameters and the feature mixture strategy. However, DR-
Tune takes a similar cost to CE-tuning in testing, since DR
and SC are not used in this phase. Besides, DR-tune de-
livers remarkably higher accuracies, thus reaching a better
balance between efficiency and accuracy for deployment.

On the standard errors. In Table 1 and Table 2 of the
main body, we report the mean results after repeating the
experiments for three times with different random seeds on

(a) w/o. Semantic Calibration (b) Global Rotation (c) Class-Level Translation (d) w. Semantic Calibration
Figure 6. t-SNE [56] visualization of the pretrained and downstream features on CIFAR10 from the first 6 classes. Different colors indicate
different classes, and points with low/high brightness denote the pretrained/downstream features, respectively.

each dataset, omitting the standard errors for succinctness.
In this supplement, we provide the standard errors to val-
idate the robustness. Note that the counterparts including
Linear probing, Adapter, Bias, VPT and SSF in Table 2
do NOT report the standard errors. Therefore, we only re-
port the standard errors of DR-Tune and the re-implemented
baseline Core-tuning. The results are summarized in Table
13 and Table 14, showing that our method steadily reaches
moderately small standard errors on different datasets and
settings.

D. Results on Semantic Segmentation
In this section, we evaluate the generalizability of DR-

Tune on the semantic segmentation task beyond classifica-
tion.

Following the same setting as [69] does, we evaluate DR-
Tune on semantic segmentation. Since only CE-tuning and
Core-tuning report the results on this task among the coun-
terparts in Table 1, we take them for comparison. As Ta-
ble 15 displays, DR-Tune clearly outperforms them, show-
ing its generalizability beyond classification.

E. Qualitative Results
Visualization of the SC process. We provide visualiza-

tion results on CIFAR10 to demonstrate the effectiveness of
the transformations used in the SC module. As displayed in
Fig. 6, the pretrained feature distribution (low brightness)
and the downstream counterpart (high brightness) clearly
exhibit a semantic drift. Global rotation mitigates the mis-
alignment of the overall shape as well as the overall center.
Class-level translations align the centers for each class, fur-
ther alleviating the semantic drift. We also add quantitative
evaluations by adopting the Maximum Mean Discrepancy
(MMD) [18] metric in Table 16, showing that the distribu-
tion distance remarkably decreases.

Visualization of the feature distribution. In Sec 3.4 of
the main body, due to the lack of supervision in the down-
stream task, the inter-class distribution of the pretrained fea-

Figure 7. t-SNE visualization of distributions of the pretrained
(left) and downstream (right) features on CIFAR10.

ture is less discriminative than the downstream one. To
make it more convincing, we visualize the distributions
of the pretrained and downstream features on CIFAR10 in
Fig. 7, where the downstream ones are more discriminative.

Visualization of the training process. In Fig. 8, we
use t-SNE [56] to visualize the features of the training and
testing sets from CIFAR10 [37] during training. We also
use the S_Dbw score [21] to evaluate the inter-class den-
sity and intra-class variance of the learned features where
a lower S_Dbw score is better. DR-Tune utilizes the prior
knowledge that accelerates the convergence, and therefore a
faster convergence process is observed compared to vanilla
fine-tuning (i.e. CE-tuning), which only uses the pre-trained
model for initialization. Besides, after training, the features
obtained by DR-Tune have a lower S_Dbw score, indicat-
ing a more compact intra-class distribution and a more dis-
persed inter-class distribution.

F. Limitations
As discussed in Sec. C, DR-Tune suffers from a high

training latency, due to computation of rotations by SVD
in SC, which can be further improved by more efficient so-
lutions. Besides, SC aligns the downstream and pretrained
features by a global feature after average pooling for clas-
sification, ignoring spatial misalignment, which is crucial
to spatio-sensitive tasks, e.g. object detection ans semantic
segmentation, leaving room for gains.

Method ImageNet20 CIFAR10 CIFAR100 DTD Caltech101

CE-tuning 88.28±0.47 94.70±0.39 80.27±0.60 71.68±0.53 91.87±0.18
L2SP [61] 88.49±0.40 95.14±0.22 81.43±0.22 72.18±0.61 91.98±0.07
DELTA [40] 88.35±0.41 94.76±0.05 80.39±0.41 72.23±0.23 92.19±0.45
M&M [67] 88.53±0.21 95.02±0.07 80.58±0.19 72.43±0.43 92.91±0.08
BSS [11] 88.34±0.62 94.84±0.21 80.40±0.30 72.22±0.17 91.95±0.12
RIFLE [39] 89.06±0.28 94.71±0.13 80.36±0.07 72.45±0.30 91.94±0.23
SCL [19] 89.29±0.07 95.33±0.09 81.49±0.27 72.73±0.31 92.84±0.03
Bi-tuning [70] 89.06±0.08 95.12±0.15 81.42±0.01 73.53±0.37 92.83±0.06
Core-tuning [69] 92.73±0.17 97.31±0.10 84.13±0.27 75.37±0.37 93.46±0.06
SSF* [41] 94.72±0.07 95.87±0.10 79.57±0.02 75.39±0.66 90.40±0.17
DR-Tune (Ours) 96.03±0.11 98.03±0.04 85.47±0.08 76.65±0.07 95.77±0.12

Method Cars Pets Flowers Aircraft Avg.

CE-tuning 88.61±0.43 89.05±0.01 98.49±0.06 86.87±0.18 87.76
L2SP [61] 89.00±0.23 89.43±0.27 98.66±0.20 86.55±0.30 88.10
DELTA [40] 88.73±0.05 89.54±0.48 98.65±0.17 87.05±0.37 87.99
M&M [67] 88.90±0.70 89.60±0.09 98.57±0.15 87.45±0.28 88.22
BSS [11] 88.50±0.02 89.50±0.42 98.57±0.15 87.18±0.71 87.94
RIFLE [39] 89.72±0.11 90.05±0.26 98.70±0.06 87.60±0.50 88.29
SCL [19] 89.37±0.13 89.71±0.20 98.65±0.10 87.44±0.31 88.54
Bi-tuning [70] 89.41±0.28 89.90±0.06 98.57±0.10 87.39±0.01 88.58
Core-tuning [69] 90.17±0.03 92.36±0.14 99.18±0.15 89.48±0.17 90.47
SSF* [41] 62.22±0.21 84.89±0.17 92.15±0.55 62.38±0.55 81.95
DR-Tune (Ours) 90.60±0.15 90.57±0.09 99.27±0.10 89.80±0.09 91.35

Table 13. Comparison of the top-1 accuracies (%) as well as the standard errors by using various fine-tuning methods based on the self-
supervised pretrained model, i.e. ResNet-50 pretrained by MoCo-v2 on ImageNet. ‘*’ indicates that the method is re-implemented. The
best results are in bold.

Method CIFAR100† Caltech101† DTD† Flowers† Pets† SVHN Sun397 Avg.

Core-tuning [69] 66.3±0.55 89.7±0.07 70.9±0.03 99.0±0.05 92.3±0.16 76.4±0.08 52.5±0.85 78.16
DR-Tune (Ours) 81.1±0.34 92.8±0.19 71.4±0.41 99.3±0.02 92.4±0.21 92.0±0.10 54.5±0.03 83.36

Table 14. Comparison of the top-1 accuracies (%) as well as the standard errors by using various fine-tuning methods based on the
supervised pretrained model, i.e. ViT-B pretrained on ImageNet. ‘*’ indicates that the method is re-implemented. ‘†’ refers to the
training/test split setting as in [66]. The best results are in bold.

Method MPA ↑ FWIoU ↑ MIoU ↑

CE-tuning 87.31 90.26 78.42
Core-tuning [69] 88.76 90.75 79.62
DR-Tune (Ours) 89.90 90.81 79.93

Table 15. Results (%) on PASCAL VOC for semantic segmenta-
tion, using DeepLab-V3 [6] with ResNet-50 pretrained by MoCo-
v2.

Method w/o. SC w. SC (Ours)

MMD(Zp,Zd) 1.478 0.028
Table 16. Comparison in terms of MMD on CIFAR10.

Epoch 1 Epoch 5 Epoch 10 Epoch 100

C
E-

tu
ni

ng
D

R
-T

un
e

S_Dbw: 0.61 S_Dbw: 0.55 S_Dbw: 0.52 S_Dbw: 0.37

S_Dbw: 0.59 S_Dbw: 0.48 S_Dbw: 0.39 S_Dbw: 0.12

(a) Results of training samples on CIFAR10.

Epoch 1 Epoch 5 Epoch 10 Epoch 100

C
E-

tu
ni

ng
D

R
-T

un
e

S_Dbw: 0.59 S_Dbw: 0.54 S_Dbw: 0.53 S_Dbw: 0.46

S_Dbw: 0.56 S_Dbw: 0.51 S_Dbw: 0.43 S_Dbw: 0.23

(b) Results of testing samples on CIFAR10.

Figure 8. t-SNE visualizattion and S_Dbw scores of the learned features on the CIFAR10 dataset: (a) on the training samples and (b) on
the testing samples. CE-tuning refers to vanilla fine-tuning.

